History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012			

 $Q(\beta^{-})=438 4$; S(n)=6912 10; S(p)=5310 4; $Q(\alpha)=373 4 2017$ Wa10 $Q(\varepsilon)=2444 4$; $S(2n)=1.608 \times 10^4 10$; S(2p)=12931 4 2017Wa10

Additional information 1. $(21)^{-1.000\times10}$ $(2p)^{-12}$.

Additional information 2.

Data are from 24-h and 5-h IT decays (1970To11, 1957Mi01, and 1955Ha52) for three levels below 100 keV; from single-particle transfer (1974ElZW) for five levels below 300 keV; and from the ¹⁵⁰Nd(¹¹B,5nγ) reaction (1982Be46).

Other studies of possible interest:

Coulomb displacement energies for ¹⁵⁶Gd – ¹⁵⁶Tb: 1983Ja03.

Model calculations of μ and Q: 1978Ko15.

A survey of the features of the nuclear structure of the low-lying states of the odd-odd deformed nuclides is given by 1998Ja07.

A survey of the properties of K=0 bands in strongly deformed nuclides is given by 1988Fr16.

Numerous discussions of signature inversion in the $(v_{13/2})(\pi h_{11/2})$ band in ¹⁵⁶Tb as well as in a number of other odd-odd

nuclides have been published. See, e.g., 1992Ja03, 1994Yo02, 1994Yo03, 1995Li40, 1996Go19, 1997Zh13, 2001Zh16, 2001Ri19, 2003Ya19.

156Tb Levels

Cross Reference (XREF) Flags

- **A** 150 Nd(11 B,5n γ), 124 Sn(36 S,p3n γ)
- **B** 155 Gd(3 He,d),(α ,t)
- C 156 Tb IT decay (5.3 h)
- D ¹⁵⁶Tb IT decay (24.4 h)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments
0.0@	3-	5.35 d 10	ABC	ĨD	 %ε+%β⁺=100 µ=1.41 18; Q=+2.3 8 J^π: J from atomic-beam magnetic resonance (1970Ad09). π from log ft=5.85 for ε decay to 4⁻ level at 2044 in ¹⁵⁶Gd and expected g.s. configuration. T_{1/2}: From 1959He44, ε decay. Others: 5.9 d (1949Bu01), 5.2 d (1955Ha52), 5.6 d (1957Mi67), and 5.0 and 4.7 d (1973St22). µ: From 1989Ra17 evaluation and based on data of 1962Lo01. Others: 1.68 21 and 1.92 26 from the 1989Ra17 evaluation and based on data of 1983Be03 and 1979Ri17, respectively. See, also, the compilation by 2005St24. Q: From 1989Ra17 evaluation and based on the data of 1979Ri17 and 1962Lo01, respectively. See, also, the compilation by 2005St24. %β⁻: γ radiations following the β⁻ decay to ¹⁵⁶Dy have not been reported, so the β⁻ branching is taken to be zero in the determination of the %ε+%β⁺ value. Only decay to the 2⁺ and 4⁺ members of the ground-state band would be allowed by the Q(β⁻) value. The lack of observed ε decay to the 2⁺ and 4⁺ members of ground-state band in ¹⁵⁶Gd lends support to this conclusion.
49.630 ^{&} 10	4+	49 ns 7	A	D	J ^{π} : E1 γ to 3 ⁻ g.s. indicates J ^{π} =2 ⁺ ,3 ⁺ ,4 ⁺ . Excitation function (1970To11, IT decay) indicates J>J(g.s.). T _{1/2} : From 1982Be46, ¹⁵⁰ Nd(¹¹ B,5n γ).
49.630+x ^d	(7-)	24.4 h <i>10</i>		D	 %IT=100 E(level): Level postulated by 1970To11 to explain 24.4-h half-life, since T_{1/2} of 49 level is known to be short. J^π: Value inferred from comparison of the spins of the g.s. and the 2 isomers with

Continued on next page (footnotes at end of table)

156Tb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				 those in ¹⁵⁴Tb, in particular with that of the low-lying 7⁻ state there. From excitation-function data, 1970To11 conclude that the spin of the 24.4-h isomer is greater than that of the ¹⁵⁶Tb g.s. (3⁻) and that of the 5.3-h isomer is less than that of the ¹⁵⁶Tb g.s. %IT: Value assumed by evaluator since β⁻ and ε decays have not been reported. No β⁻ decay is expected, since there are no high-spin levels in the daughter below the Q(β⁻) energy.
87 [@]	4 ^{-#}		В	
88.4 ^e	(0+)	5.3 h 2	С	 %IT<100; %ε+%β⁺>0 J^π: E3 γ to the g.s. (J^π=3⁻). Excitation function (1970To11, IT decay) indicates J(88)<j(g.s.).< li=""> T_{1/2}: Unweighted average of 5.0 h <i>I</i> (1950Wi13), 5.5 h (1955Ha52), and 5.4 h 6 (1970To11), all from IT decay. %IT: Value unknown, but known to decay both by IT and β⁺ decay. 1950Wi13 report Eβ+≈1400, which agrees with Q value of 2444 4, but their limit of Iβ⁺<25% is not useful since the theoretical Iε/Iβ⁺>7 already requires Iβ⁺<13%. 1970Ag02 report Eβ+=2640.0 5 which is much too high, so their value of Iβ⁺=0.024% 8 may also be in error. </j(g.s.).<>
100 /	1-#		R	
109.7 ^{<i>a</i>}	5+		A	J^{π} : D γ to 4 ⁺ level and expected band structure.
156 ^f	2 ^{-#}		В	
183.5 <mark>&</mark>	- 6 ⁺		Α	J^{π} : D γ to 5 ⁺ level and expected band structure.
188 f	3-#		R	
222	5		B	
245			В	
281.9 ^a	7+		Α	J ^{π} : From D γ to 6 ⁺ level and expected band structure.
290 5	4 ^{-#}		В	
313			В	
378.9 <mark>b</mark>	6(-)		AB	
393.6 <mark>&</mark>	8+		Α	
405			В	
442.0 ^C	$7^{(-)}$		Α	
483			В	
530.6 ^{<i>a</i>}	9+		Α	
546.6 ⁰	8(-)		Α	
550			В	
590 615			B	
638			B	
646.8 ^C	9 (-)		A	
686.2 ^{&}	10+		Α	
695	10		B	
754			В	
790			В	
800.0 ^b	$10^{(-)}$		Α	
858.2 ^a	11+		Α	
954.5 [°]	$11^{(-)}$		Α	
1060.4 <mark></mark>	12^{+}		Α	
1146.9 <mark>b</mark>	$12^{(-)}$		Α	
1263.3 ^a	13+		Α	
1366.8 ^C	$13^{(-)}$		Α	

		¹⁵⁶ Tb Levels (continued)									
E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
1510.6 <mark>&</mark>	14+	A	2609.9 <mark>&</mark>	18+	A	4049 ^b	22(-)	A	9159 <mark>b</mark>	(34 ⁻)	A
1584.3 <mark>b</mark>	$14^{(-)}$	Α	2694.2 ^b	$18^{(-)}$	Α	4255? ^a	(23+)	Α	10160 <mark>b</mark>	(36-)	A
1741.4 ^a	15+	Α	2890.5 ^a	19+	Α	4556 ^C	23(-)	Α	11204 <mark>b</mark>	(38-)	Α
1873.9 ^c	$15^{(-)}$	Α	3114.5 ^C	$19^{(-)}$	Α	4794 <mark>b</mark>	$24^{(-)}$	Α	12293 <mark>b</mark>	(40 ⁻)	A
2029.6 <mark>&</mark>	16^{+}	Α	3243.7 <mark>&</mark>	20^{+}	Α	5579 ^b	(26 ⁻)	Α	13435 <mark>b</mark>	(42 ⁻)	Α
2103.2 ^b	$16^{(-)}$	Α	3345.7 <mark>b</mark>	$20^{(-)}$	Α	6407 <mark>b</mark>	(28 ⁻)	Α	14638 <mark>b</mark>	(44 ⁻)	A
2285.9 ^a	17^{+}	Α	3548.4 ^a	21^{+}	Α	7280 <mark>b</mark>	(30-)	Α	15907 <mark>b</mark>	(46 ⁻)	Α
2461.5 [°]	$17^{(-)}$	Α	3815 ^C	$21^{(-)}$	Α	8198 <mark>b</mark>	(32 ⁻)	Α			

[†] From unweighted least-squares fit to γ energies.

[‡] Specific arguments are given for the levels below 300 keV. Above this energy, the assignments are entirely from the heavy-ion data set. These depend on the γ multipolarities and the band-structure considerations customarily employed in such studies.

[#] From comparison of the measured (³He,d) and (α ,t) cross sections with those predicted for the members of the band having the proposed configuration, together with the expected energy spacings (1974ElZW).

^(a) Band(A): $K^{\pi}=3^{-}$ Band, conf= $\pi 3/2[411]+\nu 3/2[521]$.

& Band(B): $K^{\pi}=4^+$ Band, $(\pi 3/2[411])(\nu_{13/2})$, $\alpha=0$. At the lower spins, the most likely two-quasiparticle conf is $\pi 3/2[411] + \nu 5/2[642].$

^a Band(C): $K^{\pi} = 4^+$ Band, $(\pi 3/2[411])(\nu_{13/2})$, $\alpha = 1$. At the lower spins, the most likely two-quasiparticle conf is $\pi 3/2[411] + \nu 5/2[642].$

^b Band(D): Probable $(v_{13/2})(\pi h_{11/2})$ band, $\alpha=0$. At the lower spins, the most likely conf assignment is $\pi 5/2[532]+v3/2$ [651], with $K^{\pi}=4^{-}$.

^c Band(E): Probable $(v_{i_{13/2}})(\pi h_{11/2})$ band, $\alpha = 1$. At the lower spins, the most likely conf assignment is $\pi 5/2[532] + v_3/2$ [651], with $K^{\pi}=4^{-}$.

^d Band(F): $K^{\pi}=7^{-}$ Bandhead, conf= $\pi 3/2[411]+\nu 11/2[505]$.

^e Band(G): $K^{\pi}=0^+$ Bandhead, conf= $\pi 3/2[411]-\nu 3/2[402]$.

^f Band(H): $K^{\pi}=0^{-}$ Band, conf= $\pi 3/2[411]-\nu 3/2[521]$.

$\gamma(^{156}\text{Tb})$

Unplaced γ 's are not included here; see the heavy-ion-induced reaction data set.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
49.630	4+	49.630 10	100	0.0	3-	E1	0.357	$B(E1)(W.u.)=2.9\times10^{-5} 4$
								Mult.: From L-subshell ratios in ¹⁵⁶ Tb IT decay (24.4 h).
								 δ: M2 mixing is<0.6% (1970To11), ¹⁵⁶Tb IT decay (24.4 h).
88.4	(0+)	88.4	100	0.0	3-	E3	86.2	For %IT=100, B(E3)(W.u.)= 1.20×10^{-5} 11. This is an upper limit, since any non-zero $\varepsilon + \beta^+$ branch will lower this value.
								Mult.: Assignment based on K/L2/L3/M/N data from
								156 Tb IT decay (5.3 h).
109.7	5+	59.97	100	49.630	4^{+}	D		
183.5	6+	73.95	100	109.7	5+	D		
		133.94	31	49.630	4^{+}			
281.9	7+	98.50	100	183.5	6+	D		

Continued on next page (footnotes at end of table)

$\gamma(^{156}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult. [†]
281.9	7+	172.10 [@]	<96 [@]	109.7	5+	
378.9	6(-)	269.26	100	109.7	5+	D
393.6	8+	111.62	100	281.9	7+	D
		210.14	90	183.5	6+	Q
442.0	$7^{(-)}$	63.0	79	378.9	6(-)	D
		258.48	100	183.5	6+	D
530.6	9+	137.02	94	393.6	8+	D
	()	248.6	100	281.9	7+	Q
546.6	8(-)	104.61	100	442.0	7(-)	D
646.8	9(-)	100.21	100	546.6	8(-)	D
		204.80	40	442.0	7(-)	Q
686.2	10^{+}	155.64	81	530.6	9+	D
		292.74	100	393.6	8+	Q
800.0	$10^{(-)}$	153.22	100	646.8	9(-)	D
		253.51	60	546.6	8(-)	Q
858.2	11^{+}	172.10 [@]	≤91 [@]	686.2	10^{+}	
		327.39	100	530.6	9+	Q
954.5	$11^{(-)}$	154.40	100	800.0	$10^{(-)}$	D
		307.65	100	646.8	9(-)	Q
1060.4	12+	202.27	55	858.2	11^{+}	
		374.2	100	686.2	10^{+}	Q
1146.9	$12^{(-)}$	192.50	71	954.5	$11^{(-)}$	D
		347.06	100	800.0	$10^{(-)}$	
1263.3	13+	203.00	35	1060.4	12^{+}	
		405.1	100	858.2	11^{+}	Q
1366.8	$13^{(-)}$	219.88	37	1146.9	$12^{(-)}$	D
		412.1	100	954.5	$11^{(-)}$	Q
1510.6	14^{+}	247.3	22	1263.3	13^{+}	
		450.3	100	1060.4	12+	Q
1584.3	$14^{(-)}$	217.46	26	1366.8	$13^{(-)}$	D
		437.5	100	1146.9	$12^{(-)}$	
1741.4	15+	230.8	25	1510.6	14+	
		478.0	100	1263.3	13+	Q
1873.9	$15^{(-)}$	289.74	23	1584.3	$14^{(-)}$	D
		507.0	100	1366.8	13(-)	Q
2029.6	16+	≈288	8	1741.4	15^{+}	
		519.0 [#]	<100	1510.6	14^{+}	
2103.2	$16^{(-)}$	229.15	≤83	1873.9	$15^{(-)}$	D
		519.0 [#]	<100	1584.3	$14^{(-)}$	
2285.9	17^{+}	256	32	2029.6	16+	
		544.7	100	1741.4	15+	Q
2461.5	$17^{(-)}$	358.4	54	2103.2	$16^{(-)}$	
		587.6	100	1873.9	$15^{(-)}$	Q
2609.9	18^{+}	580.3	100	2029.6	16+	Q
2694.2	$18^{(-)}$	232.6	≥15	2461.5	$17^{(-)}$	D
		591.0	100	2103.2	$16^{(-)}$	Q
2890.5	19+	604.6	100	2285.9	17^{+}	-
3114.5	$19^{(-)}$	420.2	30	2694.2	$18^{(-)}$	
		653.1	100	2461.5	$17^{(-)}$	
3243.7	20^{+}	633.8	100	2609.9	18^{+}	Q
3345.7	$20^{(-)}$	651.5	100	2694.2	18(-)	
3548.4	21^{+}	657.9	100	2890.5	19^{+}	

 $\gamma(^{156}\text{Tb})$ (continued)

									-		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_{f}^{π}
3815	$21^{(-)}$	700	100	3114.5	$19^{(-)}$	8198	(32 ⁻)	918	100	7280 (.	30-)
4049	$22^{(-)}$	703	100	3345.7	$20^{(-)}$	9159	(34 ⁻)	961	100	8198 (.	32-)
4255?	(23 ⁺)	707 <mark>&</mark>	100	3548.4	21^{+}	10160	(36 ⁻)	1001	100	9159 (.	34-)
4556	$23^{(-)}$	741	100	3815	$21^{(-)}$	11204	(38 ⁻)	1044	100	10160 (.	36-)
4794	$24^{(-)}$	745	100	4049	$22^{(-)}$	12293	(40^{-})	1089	100	11204 (.	38-)
5579	(26^{-})	785	100	4794	$24^{(-)}$	13435	(42^{-})	1142	100	12293 (4	40-)
6407	(28^{-})	828	100	5579	(26 ⁻)	14638	(44-)	1203	100	13435 (4	42-)
7280	(30 ⁻)	873	100	6407	(28 ⁻)	15907	(46 ⁻)	1269	100	14638 (4	44-)

[†] Specific multipolarities are from ce studies of the isomeric decays (1970To11,1957Mi67,1957Mi01) and D or Q assignments are from $\gamma(\theta)$ in the heavy-ion study, as interpreted by the evaluator.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Multiply placed.

[@] Multiply placed with undivided intensity.

& Placement of transition in the level scheme is uncertain.

¹⁵⁶₆₅Tb₉₁

6

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

0.0 5.35 d 10

¹⁵⁶₆₅Tb₉₁

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁵⁶₆₅Tb₉₁

 $^{156}_{65}{
m Tb}_{91}$

Band	l(D): P	robable				
(vi	$(\pi_{13/2})(\pi$	h _{11/2})				
ł	oand, (χ=0				
(46-)		15907				
	1269					
(44-)	-	14638				
	1203					
(42 ⁻)	+	13435				
(40 ⁻)	1142	12203				
(10)	1089	12295				
(38-)		11204				
(36-)	1044	10160				
()	1001	10100				
(34-)	-	9159				
(32-)	961	8198				
(30-)	918	7280				
(28-)	873	6407				
(26 ⁻)	828	5579	Band (vi	l(E): P	robable	
24 ⁽⁻⁾	785	4794	23(-)	and, a	x=1 4556	
22 ⁽⁻⁾	745	4049	<u>25</u>	741	3815	
20 ⁽⁻⁾	703	3345.7	<u>19(-)</u>	700	3114.5	
18 ⁽⁻⁾	652	2694.2	17(-)	653	2461.5	
<u>16⁽⁻⁾</u>	591 519	2103.2	15(-)	588	1873.9	
14(-)		1584.3	< <u>13(-)</u>	507	1366.8	
$\frac{12^{(-)}}{10^{(-)}}$	438 347	1146.9 800.0	11 ⁽⁻⁾ 9 ⁽⁻⁾	412	954.5	B Bandl
8(-)	254	546.6	7(-)	308	442.0	
6(-)		378.9		205	442.0	
						(7-)

Band Bandhead	(F): K ^π =7 ⁻ , conf=π3/2[411]	Band(G): K ^π =0 ⁺ 1] Bandhead, conf=π3/2[411]			
+v	11/2[505]	-v3/2[402]			
(7-)	49.630+x	(0 ⁺)	88.4		

¹⁵⁶₆₅Tb₉₁

Band(H): K^π=0⁻ Band, conf=π3/2[411]-v3/2[521]

4- 290

3- 188

2- 156

1- 100

 $^{156}_{65}{
m Tb}_{91}$