¹⁵⁶Tb IT decay (5.3 h) 1970To11,1957Mi01,1955Ha52

Type Author Citation Literature Cutoff Date

Full Evaluation C. W. Reich NDS 113, 2537 (2012) 1-Mar-2012

Parent: 156 Tb: E=88.4; J^{π} =(0⁺); $T_{1/2}$ =5.3 h 2; %IT decay=100.0

¹⁵⁶Tb-%IT decay: value unknown, but 1950Wi13 and 1970Ag02 report β^+ decay.

Additional information 1.

Data are from 1957Mi01, 1957Mi67, and 1970To11 for the γ ray and 1950Wi13, 1955Ha52, and 1970To11 for the half-life. Others: 1970Ag02; 1975ViZP.

Experimental methods:

1950Wi13: from 153 Eu(α ,n), E(α)=19-38 MeV and Gd(p,xn), E(p)=10 MeV. β ⁺ observed in spectrograph.

1955Ha52: from (p,xn) on enriched Gd targets with chemical separation. Half-life measured.

1957Mi01: From (p,xn) with chemical separation. ce measured using magnetic spectrometer. Report 88-keV G.

1957Mi67: From (p,xn) with chemical separation. ce measured using magnetic spectrograph. Report 88-keV G.

1970To11: From ¹⁵⁷Gd(p,2n) on enriched (93.7%) and natural (15.6%) targets with chemical separation. ce measured using magnetic spectrometer. Report half-life and multipolarity of 88-keV G.

¹⁵⁶Tb Levels

E(level) $J^{\pi^{\dagger}}$ $T_{1/2}$ Comments

0.0‡ 3- 5.35 d 10 $T_{1/2}$: From Adopted Levels.

88.4# (0+) 5.3 h 2 %IT<100; %ε+%β+>0 $T_{1/2}$: From Adopted Levels and based on data of 1950Wi13, 1955Ha52, and 1970To11.

%IT: Value unknown, but it is <100, since β+ decay has been reported (1950Wi13,1970Ag02).

1950Wi13 report Eβ+≈1400 which agrees with Q value of 2544 4, but their limit of Iβ+<25% is not useful since Iε/Iβ+>7 already requires Iβ+<13%. 1970Ag02 report Eβ+=2640.0 5, which is much too high, so their value of Iβ+=0.024% 8 may also be in error.

γ (156Tb)

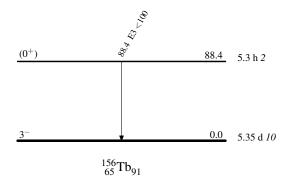
Iy normalization, I(γ +ce) normalization: evaluator assumes that 100% of the IT decays are through the 88-keV γ transition. Thus, this value represents an upper limit.

[†] From ¹⁵⁶Tb Adopted Levels.

[‡] Band(A): $K^{\pi}=3^{-}$ Bandhead, conf= $\pi 3/2[411]+\nu 3/2[521]$.

[#] Band(B): $K^{\pi}=0^{+}$ Bandhead, $conf=\pi 3/2[411]-\nu 3/2[402]$.

[†] From ¹⁵⁶Tb Adopted γ radiations.


[‡] For absolute intensity per 100 decays, multiply by <0.0115.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵⁶Tb IT decay (5.3 h) 1970To11,1957Mi01,1955Ha52

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch %IT=100.0

¹⁵⁶Tb IT decay (5.3 h) 1970To11,1957Mi01,1955Ha52

 $\begin{array}{ll} Band(A); \ K^{\pi}{=}3^{-} & Band(B); \ K^{\pi}{=}0^{+} \\ Bandhead, conf{=}\pi 3/2[411] Bandhead, conf{=}\pi 3/2[411] \\ & + \nu 3/2[521] & -\nu 3/2[402] \end{array}$

<u>3</u>- <u>0.0</u> (0⁺) 88.4

 $^{156}_{65}{
m Tb}_{91}$