¹⁵⁶Tb IT decay (24.4 h) 1970To11

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012					

Parent: ¹⁵⁶Tb: E=49.630+x; J^{π} =(7⁻); $T_{1/2}$ =24.4 h *10*; %IT decay=100.0

¹⁵⁶Tb-%IT decay: Since there is no evidence for the existence of an ε -decay branch, the evaluator assumes that 100% of the decays are by isomeric decay and that all of these are via the 49-keV γ .

Additional information 1.

1970To11 produced this activity by the 157 Gd(p,2n) reaction on enriched (93.7%) and natural (15.6%) targets with chemical separation. ce measured in magnetic spectrometer. One γ reported. Existence of this activity confirmed by 1975ViZP.

¹⁵⁶Tb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments					
0.0 [‡]	3-	5.35 d 10	$T_{1/2}$: From Adopted Levels.					
49.630 [#] 10	4+							
49.630+x [@]	(7-)	24.4 h 10	%IT=100					
			%IT: Value assumed by evaluator since β^- and ε decays have not been reported.					
			E(level): Level postulated to explain $T_{1/2}$. If $T_{1/2}$ were associated with the 49-keV level, E1					
			hindrance would be very large (6×10^{16}) ; and $T_{1/2}$ of 49-keV level is known to be short (1982Be46).					
			$T_{1/2}$: From ce(t) for the 49.6 γ (1970To11).					

[†] From ¹⁵⁶Tb Adopted Levels.

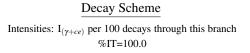
[±] Band(A): $K^{\pi}=3^{-}$ Bandhead, conf= $\pi 3/2[411]+\nu 3/2[521]$.

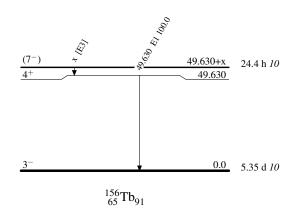
[#] Band(B): $K^{\pi} = 4^+$ Bandhead, conf= $\pi 3/2[411] - \nu 5/2[642]$.

[@] Band(C): $K^{\pi}=7^{-}$ Bandhead, conf= $\pi 3/2[411]+\nu 11/2[505]$.

 $\gamma(^{156}\text{Tb})$

I γ normalization: Since there is no evidence for the existence of an ε -decay branch, the evaluator assumes that 100% of the decays are by isomeric decay and that all of these are via the 49-keV γ .


Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
X		49.630+x	(7 ⁻)	49.630	4+	[E3]		 E_γ: 1975ViZP failed to see this γ in coincidence with the 49 γ with two Si(Li) detectors. Mult.: E3 is expected if this transition takes place between 7⁻ and 4⁺ states, as proposed here.
49.630 10	100	49.630	4+	0.0	3-	E1	0.350	α (L)=0.275 4; α (M)=0.0602 9; α (N+)=0.01543 22 α (N)=0.01350 19; α (O)=0.00186 3; α (P)=7.79×10 ⁻⁵ 11


[†] From ¹⁵⁶Tb Adopted γ radiations.

[±] For absolute intensity per 100 decays, multiply by 0.741 3.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵⁶Tb IT decay (24.4 h) 1970To11

¹⁵⁶Tb IT decay (24.4 h) 1970To11

Band(A): $K^{\pi}=3^{-}$ Band(B): $K^{\pi}=4^{+}$ Band(C): $K^{\pi}=7^{-}$ Bandhead, conf= $\pi 3/2$ [411]Bandhead, conf= $\pi 3/2$ [411]Bandhead, conf= $\pi 3/2$ [411] +v 3/2[521] -v 5/2[642] +v 11/2[505]

3-	0.0	4 ⁺	49.630	(7-)	49.630+x

¹⁵⁶₆₅Tb₉₁