¹⁵⁶**Pm** β^{-} decay (26.70 s) 1990He11

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Parent: ¹⁵⁶Pm: E=0; $J^{\pi}=4^{(+)}$; $T_{1/2}=26.70 \text{ s } 10$; $Q(\beta^{-})=5150 \ 33$; $\%\beta^{-}$ decay=100.0

¹⁵⁶Pm-J^{π}: Additional information 1.

¹⁵⁶Pm-T_{1/2}: Additional information 2.

¹⁵⁶Pm-Q(β^{-}): Additional information 3.

Additional information 4. ¹⁵⁶Pm has been produced by thermal-neutron induced fission of ²³⁵U (1986Ma12,1986Ok01,1990He11) and spontaneous fission of ²⁵²Cf (1987Gr12), all with isotope separation. All data reported here are from 1990He11 or computed by the evaluator. For shorter lists of γ 's, see 1986Ma12, 1986Ok01, and 1987Gr12.

1990He11: ¹⁵⁶Sm, from thermal-neutron fission of ²³⁵U followed by isotope separation. Source material collected on a movable tape and transported to a counting station. Measured multiscaled γ singles using a large-volume coaxial Ge detector and a LEPS detector. Measured simultaneously low-energy γ 's and ce's using the LEPS and an ion-implanted Si detector. System geometry was calibrated using γ 's of known multipolarities from the ¹²⁴In decay. Measured $\gamma\gamma$ and $\beta\gamma(t)$ coincidences using a small plastic detector and various Ge detectors. Report $E\gamma$, $I\gamma$, $Q(\beta^{-})$, $T_{1/2}$ values for two excited states. The ce data are not reported in 1990He11, but some of the deduced multipolarities are given there.

¹⁵⁶Sm Levels

The level energies are from a least-squares fit to the γ energies. There are several cases in which the deduced level-energy difference differs from the corresponding γ energy by more than 2 or 3 times the quoted uncertainty. It is thus reasonable to assume, for specific γ lines, that there are doublets and/or that the uncertainties are underestimated, possibly due to difficulties in the spectral analysis.

E(level)	$J^{\pi #}$	T _{1/2}	Comments
0@	0^{+}		
75.89 [@] 5	2^{+}		
249.71 [@] 7	4+		
517.07 [@] 8	6+		
803.69 ^{&} 22	(1^{-})		
875.69 ^{&} 11	(3 ⁻)		
1009.79 ^{&} 9	(2^{-})		
1020.62 ^{&} 10	(5 ⁻)		
1110.11 ^{<i>a</i>} 11	(3 ⁻)		J^{π} : 1990He11 report J^{π} =(3).
1144.07 ^{x} 9	(4 ⁻)		
1256.1 5			
1397.55 ⁶ 9	5-	185 ns 7	$T_{1/2}$: From 1990He11. Note that 1974CIZX report a half-life of 160 ns 40, but were not able to identify the associated level.
1509.22 ^{<i>d</i>} 9	4+		1990He11 propose the two-proton quasiparticle excitation $\pi 5/2[413] + \pi 3/2[411]$ as the conf of this state (note that the one shown by them apparently has a misprint), presumably by analogy with the 1510.5, 4 ⁺ , state in ¹⁵⁶ Gd. However, the location of the Fermi surface for protons in ¹⁵⁶ Sm is different from that in ¹⁵⁶ Gd. The evaluator has proposed a different conf for this state (see the Adopted Levels data set).
1515.04 ^{<i>c</i>} 9 1610.30 <i>12</i> 1738.35 <i>13</i> 2033.8 <i>3</i> 2199.91 <i>11</i> 2265.52 <i>11</i>	5-	4.5 ns 2	T _{1/2} : From 1990He11.

¹⁵⁶**Pm** β^- decay (26.70 s) **1990He11** (continued)

¹⁵⁶Sm Levels (continued)

E(level)	E(level)	$J^{\pi \#}$	E(level)	J ^{π#}
2341.92 12	2519.04 [†] <i>11</i>	3	2609.7 [†] 3	(4)
2482.6 <i>3</i>	2526.22 [‡] 9	3	2616.51 [‡] 21	(4)
			2699.7 5	

[†] Suggested member of a band by 1990He11. From log *ft* considerations, these authors suggest that π for the J=3 level is most likely the same as that of the ¹⁵⁶Pm g.s., which these authors propose to be negative. 2011So05, however, indicate that this log *ft* argument may not be a strong one in this case. Based on the expected nucleonic configurations, the evaluator prefers π =+ for the ¹⁵⁶Pm g.s. The sole decay mode of the 2609 level is to a 4⁺ level, consistent with J^{π}=4⁻, which is the value listed by 1990He11. In that case this and the J=3 level would not be members of the same band.

[‡] Suggested member of a band by 1990He11. From log *ft* considerations, these authors indicate that π for the J=3 level is most likely the same as that of the ¹⁵⁶Pm g.s., which they propose to be negative. However, the evaluator has preferred π =+ for the ¹⁵⁶Pm g.s. The sole decay mode of the 2616 level is to a 4⁺ level, consistent with J^{π}=4⁻, which is the value listed by 1990He11. In that case this and the J=3 level would not be members of the same band.

[#] From the adopted values. These are generally those proposed by 1990He11. Where there are differences, these are noted.

[@] Band(A): $K^{\pi}=0^+$ ground-state band.

& Band(B): Probable $K^{\pi}=1^{-}$ octupole band. This band likely contains a significant component of v5/2[642]-v3/2[521].

^{*a*} Band(C): Possible 3⁻ member of the $K^{\pi}=0^{-}$ octupole band. This suggestion is supported by the observation that the γ branching from this level to the 2⁺ and 4⁺ members of the g.s. band agrees well with the Alaga-rule expectations for $\Delta K=0$ dipole transitions.

^b Band(D): $K^{\pi}=5^{-}$ bandhead, conf=v5/2[642]+v5/2[523]. This is the dominant conf. See the discussion regarding the 5⁻ state at 1515 keV regarding possible configuration mixing between these two 5⁻ states.

^{*c*} Band(E): $K^{\pi}=5^{-}$ bandhead, $conf=\pi5/2[532]+\pi5/2[413]$. The preferential β^{-} feeding of this state relative to the 1397, 5⁻, state suggests that it is predominantly two-proton, rather than two-neutron, in character. These two 5⁻ states are, however, most likely mixed to some extent. Evidence for such mixing, which is frequently observed between two-proton and two-neutron bands with the same K^{π} values, is evidenced by the existence (albeit with a sizeable hindrance factor) of the 117-keV M1 transition connecting them and the possible, but much weaker, β^{-} feeding of this level.

^{*d*} Band(F): Probable $K^{\pi}=4^+$ bandhead.

β^{-} radiations

The $I\beta^-$ values have all been computed from the γ -transition intensity balances and therefore are accurate only insofar as this decay scheme is correct and complete. There are 3 unplaced γ rays with intensities of $\approx 0.6\%$ and, since the weakest reported γ' s have intensities of 0.3%, it is reasonable to expect that there are unobserved γ rays with intensites of 0.2% and less. With a Q value of 5150 keV and the high spin (J=4) of the parent, it is expected that many levels above that at 2699 keV will be populated, albeit weakly. Therefore, a minimum uncertainty of 0.4% has been assigned to each $I\beta^-$ by the evaluator.

1995Gr19, using total-absorption γ spectroscopy, deduce that the β branching to the ground and first excited states is 1.8% 17. These authors point out that their data do not provide evidence for a nonzero β - branch to the first excited state.

The $I\beta^-$ to the 803 and 1009 levels have been set to zero because the adopted J^{π} requires that these transitions be negligibly weak. The values deduced from the intensity balance are 2.0% 3 and 2.1% 8, respectively.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
$(2.45 \times 10^3 \ 3)$	2699.7	0.4 4	7.0 5	av Eβ=968 15		
$(2.53 \times 10^3 \ 3)$	2616.51	0.8 4	6.76 22	av Eβ=1006 15		
$(2.54 \times 10^3 \ 3)$	2609.7	1.0 4	6.67 18	av Eβ=1009 15		
$(2.62 \times 10^3 \ 3)$	2526.22	16.5 6	5.51 <i>3</i>	av Eβ=1047 15		
$(2.63 \times 10^3 \ 3)$	2519.04	8.2 5	5.82 4	av E β =1050 15		

¹⁵⁶Pm β^- decay (26.70 s) 1990He11 (continued)

				β^{-} radiations	(continued)
E(decay)	E(level)	$\mathrm{I}\beta^{-\dagger}$	Log ft		Comments
$(2.67 \times 10^3 \ 3)$	2482.6	1.0 4	6.75 18	av Eβ=1067 15	
$(2.81 \times 10^3 \ 3)$	2341.92	1.8 4	6.59 10	av Eβ=1131 15	
$(2.88 \times 10^3 \ 3)$	2265.52	4.2 4	6.27 5	av Eβ=1165 15	
$(2.95 \times 10^3 \ 3)$	2199.91	7.7 4	6.05 <i>3</i>	av Eβ=1195 15	
$(3.12 \times 10^3 \ 3)$	2033.8	1.9 4	6.75 10	av Eβ=1271 16	
$(3.41 \times 10^3 \ 3)$	1738.35	1.0 4	7.20 18	av Eβ=1407 16	
$(3.54 \times 10^3 \ 3)$	1610.30	1.8 4	7.01 10	av Eβ=1466 16	
$(3.63 \times 10^3 \ 3)$	1515.04	23.0 15	5.95 4	av Eβ=1510 16	
$(3.64 \times 10^3 \ 3)$	1509.22	11.4 9	6.26 4	av Eβ=1513 16	
$(3.75 \times 10^3 \ 3)$	1397.55	3.1 16	6.88 23	av Eβ=1564 16	
$(3.89 \times 10^3 \ 3)$	1256.1	0.6 4	7.7 3	av Eβ=1629 <i>16</i>	
$(4.04 \times 10^3 \ 3)$	1110.11	2.5 4	7.11 8	av Eβ=1697 <i>16</i>	
$(4.13 \times 10^3 \ 3)$	1020.62	1.7 4	7.32 11	av Eβ=1738 16	
$(4.27 \times 10^3 \ 3)$	875.69	3.6 5	7.05 7	av Eβ=1805 16	
$(4.63 \times 10^3 \ 3)$	517.07	3.4 10	8.96 ¹ <i>u</i> 13	av Εβ=1947 16	

† Absolute intensity per 100 decays.

$\gamma(^{156}\text{Sm})$

I γ normalization: calculated to give average γ feeding of levels at 0 and 75 keV as 100%; these feedings are 96% 6 and 102% 3, respectively.

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{@}$	Comments
75.88 5	12.5 7	75.89	2+	0	0+	E2	6.51	$\alpha(K)=2.38$ 4; $\alpha(L)=3.20$ 5; $\alpha(M)=0.745$ 11; $\alpha(N+)=0.183$ 3
								α (N)=0.1629 24; α (O)=0.0202 3; α (P)=9.97×10 ⁻⁵ 14
117.42 5	13.8 7	1515.04	5-	1397.55	5-	M1	1.068	$\alpha(K)=0.906 \ 13; \ \alpha(L)=0.1281 \ 18; \ \alpha(M)=0.0275 \ 4; \ \alpha(N+)=0.00723 \ 11$
								α (N)=0.00624 9; α (O)=0.000935 14; α (P)=5.78×10 ⁻⁵ 9
								Mult.: As assigned by 1990He11. The ce data are also consistent with mult=E1+M2, with %M2 between 8 and 9. However, from RUL, $\delta(M2/E1) \leq 0.01$. Thus, there is no parity change involved in the 117.42 transition.
173.75 5	52.0 20	249.71	4+	75.89	2+	E2	0.336	$\alpha(\mathbf{K})=0.232 \ 4; \ \alpha(\mathbf{L})=0.0809 \ 12; \ \alpha(\mathbf{M})=0.0184 \ 3; \\ \alpha(\mathbf{N}+)=0.00461 \ 7 \\ \alpha(\mathbf{N})=0.00407 \ 6; \ \alpha(\mathbf{O})=0.000533 \ 8; \\ \alpha(\mathbf{P})=1.112 \times 10^{-5} \ 16 $
223.31 10	1.0 1	1738.35		1515.04	5-			
267.32 5	13.3 7	517.07	6+	249.71	4+	E2	0.0808	$\alpha(K)=0.0618 \; 9; \; \alpha(L)=0.01483 \; 21; \; \alpha(M)=0.00332$ 5; $\alpha(N+)=0.000841 \; 12$ $\alpha(N)=0.000738 \; 11; \; \alpha(O)=0.0001005 \; 14;$ $\alpha(P)=3.25\times10^{-6} \; 5$
370.94 10	0.6 1	1515.04	5-	1144.07	(4-)	[M1,E2]	0.038 9	$\begin{aligned} &\alpha(\mathbf{K}) = 0.032 \ 8; \ \alpha(\mathbf{L}) = 0.0050 \ 4; \ \alpha(\mathbf{M}) = 0.00109 \ 7; \\ &\alpha(\mathbf{N}+) = 0.000284 \ 22 \\ &\alpha(\mathbf{N}) = 0.000246 \ 18; \ \alpha(\mathbf{O}) = 3.6 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.9 \times 10^{-6} \ 6 \end{aligned}$

Continued on next page (footnotes at end of table)

 $^{156}_{62}$ Sm₉₄-4

				¹⁵⁶ Pm β^{-} decay (26.70 s)			1990He11 (continued)		
					<u>)</u>	y(¹⁵⁶ Sm) (co	ontinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments	
376.75 10	0.9 1	1397.55	5-	1020.62	(5 ⁻)	[M1,E2]	0.036 9	$\begin{aligned} &\alpha(K) = 0.030 \ 8; \ \alpha(L) = 0.0048 \ 4; \ \alpha(M) = 0.00104 \\ & 8; \ \alpha(N+) = 0.000271 \ 23 \\ &\alpha(N) = 0.000235 \ 18; \ \alpha(O) = 3.4 \times 10^{-5} \ 4; \\ &\alpha(P) = 1.8 \times 10^{-6} \ 6 \end{aligned}$	
380.4 <i>4</i> 494.4 <i>4</i>	0.6 <i>1</i> 0.3 <i>1</i>	1256.1 1515.04	5-	875.69 1020.62	(3 ⁻) (5 ⁻)	[M1,E2]	0.018 5	α (K)=0.015 4; α (L)=0.0022 4; α (M)=0.00048 8; α (N+)=0.000125 20 α (N)=0.000108 17; α (O)=1.6×10 ⁻⁵ 3; α (P)=9.E-7 3	
503.37.20	0.3 1	1020.62	(5^{-})	517.07	6+				
518 4 4	0.9.7	2033.8	(0)	1515.04	5-				
524.9.4	107	2033.8		1509.22	<u>4</u> +				
x625 27 20	0.6.1	2035.0		1507.22	-				
626 37 20	0.61	875 69	(3^{-})	249 71	Δ^+				
684 65 10	211	2199.91	(5)	1515.04	5-				
690 90 10	563	2199.91		1509.22	1 4+				
727.6.3	0.0.2	803.60	(1^{-})	75.80	7 2+				
750.26.10	0.92	2265.52	(1)	1515.04	2 5-				
756 51 10	2.12 212	2265.52		1500.22	J 1+				
770 77 10	2.12	1020.62	(5^{-})	2/0 71	- 1+				
799 70 10	2.0 5	875.69	(3^{-})	75.80	+ 2+				
803.9.3	112	803.69	(1^{-})	0	0^{+}				
827 03 10	0.61	2341.92	(1)	1515.04	5-				
832 08 20	122	2341.92		1509.22	<u>4</u> +				
860 26 20	1.2.2	1110 11	(3^{-})	249 71	4+				
880 39 10	10.4.5	1397 55	5-	517.07	6 ⁺				
894 35 10	844	1144 07	(4^{-})	249 71	4^{+}				
934 00 10	12.3.6	1009 79	(2^{-})	75.89	2+				
992.0.10	031	1509.22	4+	517.07	$\frac{2}{6^{+}}$				
1034 25 10	141	1110 11	(3^{-})	75.89	2^{+}				
1147.84 10	20.5 10	1397.55	5-	249.71	4 ⁺			I_{γ} : 1990He11 report this uncertainty as 0.1. However, this seems unusually small. The evaluator has assumed that it is a misprint.	
1259.44 10	12.6 6	1509.22	4+	249.71	4+			· · · · · · · · · · · · · · · · · · ·	
1360.56 10	1.8 2	1610.30		249.71	4+				
1374.91 10	2.3 2	2519.04	3	1144.07	(4^{-})				
1382.24 10	5.7 3	2526.22	3	1144.07	(4^{-})				
^x 1416.6 5	0.6 1								
1433.70 10	8.4 4	1509.22	4+	75.89	2^{+}				
^x 1473.6 4	0.5 1								
1509.12 20	2.8 3	2519.04	3	1009.79	(2^{-})				
1516.56 10	7.4 4	2526.22	3	1009.79	(2-)				
1555.6 5	0.4 1	2699.7		1144.07	(4-)				
2269.9 4	0.7 1	2519.04	3	249.71	4 ⁺				
2276.18 20	0.7 1	2526.22	3	249.71	4+				
2360.0 3	1.0 1	2609.7	(4)	249.71	4+				
2366.78 20	0.8 1	2616.51	(4)	249.71	4+				
2406.7.3	1.0 7	2482.6		75.89	2^{+}				
2443.34 20	2.4 2	2519.04	3	75.89	2+				
2450.17 10	2.7 3	2526.22	3	75.89	2^{+}				

[†] From 1990He11. Others: 1986Ok01, 1987Gr12. [‡] Based on I γ and Ice data normalized using transitions of known multipolarity in the ¹²⁴In decay. Multipolarities deduced from

1990He11 (continued) $^{156} \mathrm{Pm}\,\beta^-$ decay (26.70 s)

$\gamma(^{156}\text{Sm})$ (continued)

the J^{π} assignments are omitted if $\alpha < 0.01$. [#] For absolute intensity per 100 decays, multiply by 1.00 5.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁶**Pm** β^- decay (26.70 s) 1990He11

¹⁵⁶Pm β^- decay (26.70 s) 1990He11

Decay Scheme (continued)

¹⁵⁶Pm β^- decay (26.70 s) 1990He11

¹⁵⁶₆₂Sm₉₄