Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

 $Q(\beta^{-})=722 \ 8; \ S(n)=7241 \ 9; \ S(p)=9709 \ 10; \ Q(\alpha)=-1.64\times 10^{3} \ 3 \ 2017Wa10$

S(2n)=13048 9; S(2p)=1.811×10⁴ 10 2017Wa10

Additional information 1.

In this data set, the reference "¹⁵⁶Pm β^- Decay" generally refers to the decay of the ¹⁵⁶Pm g.s. (26.70 s) and not to the decay of the isomer (<5 s).

Some model and theory articles are:

1969Br18: deduced deformation parameter β_4 .

1974So02: dependence of $p(\theta)$ from ¹⁵⁴Sm(t,p) on β_4 deformation.

1975Bi13: 0⁺ level energies and B(E2).

1986Be10: Cranked shell-model calculations of the spectrum of two-quasiparticle states.

1987Ap04: nucleon correlations.

1990Ha22: level energies and B(E2).

1998Ga12: HFB-based calculations of expected two-quasiparticle states.

1998Lo07: IBA-based calculations of relative I γ values of E1 transitions from the first 1⁻,3⁻,5⁻ levels to the g.s. band.

¹⁵⁶Sm Levels

The level energies are primarily from the 156 Pm β^- decay study and secondarily from the 252 Cf SF decay studies.

Cross Reference (XREF) Flags

A	¹⁵⁶ Pm β^- decay (<5 s)	D	²⁵² Cf SF decay
В	$(HI,xn\gamma)$	Е	154 Sm(t,p)
С	156 Pm β^{-} decay (26.70 s)		

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0‡	0+	9.4 h 2	ABCDE	%β ⁻ =100 T _{1/2} : From 1963Gu04, γ(t). Others: 9.1 h 7, β+γ(t) (1960Al33); 15 h 13, γ(t) (1969WiZX). All values are from ¹⁵⁶ Sm β ⁻ decay.
75.89 [‡] 5	2+	>2 ns	ABCDE	J^{π} : L=2 in (t,p); E2 to 0 ⁺ g.s. T _{1/2} : From 1970ChZH, ²⁵² Cf SF decay.
249.71 [‡] 7	4+		BCDE	J^{π} : E2 γ to 2 ⁺ and expected band structure.
517.07 [‡] 8	6+		BCDE	J^{π} : E2 γ to 4 ⁺ and expected band structure.
803.69 [#] 22	(1 ⁻)		ACE	XREF: E(810). J^{π} : γ 's to 0^+ and 2^+ . Probable bandhead of the $K^{\pi}=1^-$ octupole vibrational band.
871.57 [‡] 22	8+		ΒD	J^{π} : γ to 6 ⁺ and expected band structure.
875.69 [#] 11	(3 ⁻)		CE	J^{π} : γ 's to 2 ⁺ and 4 ⁺ . Level energy suggests that this is the 3 ⁻ member of the K ^{π} =1 ⁻ octupole band.
1009.79 [#] 9	(2 ⁻)		С	J ^{π} : Sole decay mode is γ to 2 ⁺ . From level energy, probable 2 ⁻ member of the $K^{\pi}=1^{-}$ octupole band.
1020.62 [#] 10	(5 ⁻)		С	J^{π} : γ' s to 4 ⁺ and 6 ⁺ . From level energy, probably the 5 ⁻ member of the K ^{π} =1 ⁻ band.
1068 [@] 10	0^{+}		Е	J^{π} : L=0 in (t,p).
1110.11 ^{&} <i>11</i>	(3 ⁻)		CE	XREF: E(1120). J^{π} : From γ 's to 2 ⁺ and 4 ⁺ , $J^{\pi}=2^+,3,4^+$. Agreement of the γ branching to the 2 ⁺ and 4 ⁺ members of the g.s. band with the Alaga-rule predictions for $\Delta K=0$ dipole transitions lends support to the assignment of this state as the 3 ⁻ member of the $K^{\pi}=0^-$ octupole band. Hence, $J^{\pi}=3^-$ is reasonable.

Continued on next page (footnotes at end of table)

¹⁵⁶Sm Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
1144.07 [#] 9	(4-)		С	J^{π} : Sole mode of decay is a γ to 4 ⁺ . From level energy, probably the 4 ⁻ member of the $K^{\pi}=1^{-}$ octupole band.
1256.1 5			С	
1307.4 [‡] 3 1397.55 ^a 9	10 ⁺ 5 ⁻	185 ns 7	B D CD	J^{π} : γ to 8 ⁺ and expected band structure. J^{π} : The γ transitions from this state to the g.s. band have large hindrance factors, indicating a large K value. Examination of the Nilsson orbitals expected to be present among the lowest-lying two-quasiparticle excitations in ¹⁵⁶ Sm indicates two such pairs, each of which has K^{π} =5 ⁻ . Since this state is the more weakly fed of the two in β^- decay, the listed two-neutron-quasiparticle conf is assigned as the dominant component in the make-up of this state. T _{1/2} : From 1990He11, ¹⁵⁶ Pm β^- decay. 2009Si21, in SF decay, report
1441 10	2+		F	$T_{1/2}$ =186 ns 44. Other: 1974CIZX report a 160 ns 40 activity among the products of ²⁵² Cf spontaneous fission, but do not definitely associate it with a specific ¹⁵⁶ Sm level. See the comment on this level in the ²⁵² Cf SF Decay data set. I^{π} : I_{r} =2 in (t p)
1509.22^{d} 9	- 4 ⁺		C e	XREF: e(1516).
				J^{π} : γ' s to 2 ⁺ and 6 ⁺ .
1511.07 ^b 18	(6 ⁻)		D	E(level): Even though the levels immediately above and below this one may be associated with the 1516 proton group in (t,p), the evaluator has chosen not to include this level in that possible association because it is expected that only natural-parity states are excited to any appreciable extent in the (t,p) reaction. J^{π} : The sole decay mode of this state is a γ transition to the K^{π} =5 ⁻ bandhead at 1397 keV, suggesting that this state also has a large K value and is most probably
1515.04 ^c 9	5-	4.5 ns 2	CDe	the 6 ⁻ member of the band built on that state. XREF: e(1516). J^{π} : In an argument similar to that for the 1397, 5 ⁻ , state, this state has a large K value, for which K^{π} =5 ⁻ is the most likely assignment. See the discussion in the comment on the J^{π} value of the 1397, 5 ⁻ , state above, as well as in the ¹⁵⁶ Pm β^{-} Decay data set.
1610.30 12			CE	,- · · · · · · · · · · · · · · · · · · ·
1643.74 ^{<i>a</i>} 18	(7 ⁻)		D	
1738.35 13			C E	
1753.2 ^c 5 1792 10	(7 ⁻)		D E	
1794.32 ^b 21	(8 ⁻)		D	
1818.7 [‡] 4 1851 <i>10</i> 1911 <i>10</i>	12+		BD E E	J^{π} : γ to 10^+ and expected band structure.
1963.41 ^{<i>a</i>} 23 1970 20 2033 8 3	(9-)		D E C	
2150.56 ^b 24 2199.91 11 2265.52 11 2341.92 12	(10 ⁻)		D C C C	
2355.0 ^a 4	(11 ⁻)		D	
2400.1 [‡] 4	14+		BD	J^{π} : γ to 12^+ and expected band structure.
2482.6 <i>3</i> 2519.04 <i>11</i>	3		C C	J^{π} : γ 's to 2 ⁺ , (2 ⁻), 4 ⁺ and (4 ⁻) levels indicate J=3. The π assignment is
2526.22 9	3		С	problematic at present. See the discussion in the ¹⁵⁰ Pm β^- Decay data set. J ^{π} : γ 's to 2 ⁺ , (2 ⁻), 4 ⁺ and (4 ⁺) levels indicate J=3. The π assignment is problematic at present. See the discussion in the ¹⁵⁶ Pm β^- Decay data set.

Continued on next page (footnotes at end of table)

¹⁵⁶Sm Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
2576.9 ^b 3	(12 ⁻)	С	
2609.7 <i>3</i>	(4 ⁻)	С	J^{π} : Sole decay mode is a γ to 4 ⁺ .
2616.51 21	(4 ⁻)	С	J^{π} : Sole decay mode is a γ to 4 ⁺ .
2677 10		E	
2699.7 5		С	
2814.9 ^a 4	(13 ⁻)	D	
3044? [‡]	(16 ⁺)	D	
3069.5 ^b 4	(14 ⁻)	D	
3335? <mark>a</mark>	(15^{-})	D	

[†] For those levels populated only in the SF-decay studies, the listed values are based on the observed decay properties and the usual considerations of rotational-band structure in strongly deformed nuclei.

^{\ddagger} Band(A): K^{π}=0⁺ g.s. band. α =12.72 keV, β =-11.6 eV.

[#] Band(B): Probable $K^{\pi}=1^{-}$ octupole band. This band probably contains a sizeable component of the two-neutron quasiparticle state v5/2[642]-v3/2[521].

^(a) Band(C): Bandhead of the first excited $K^{\pi}=0^+$ band.

& Band(D): Possible 3⁻ member of the $K^{\pi}=0^{-}$ octupole band.

^{*a*} Band(E): $K^{\pi}=5^{-}$ band, $\alpha=1$ branch. Dominant conf= $\nu 5/2[642]+\nu 5/2[523]$. $\alpha=9.49$ keV, $\beta=-0.64$ eV, computed from the energies of the 5⁻ through 8⁻ levels. This state is most likely appreciably mixed with the $K^{\pi}=5^{-}$ state at 1515 keV. 1998Ga12 (in SF decay) propose that this (1397) state is the two-proton quasiparticle state with conf= $\pi 5/2[532]+\pi 5/2[413]$.

^b Band(e): $K^{\pi}=5^{-}$ band, $\alpha=0$ branch. See the comments on the $\alpha=1$ branch.

^{*c*} Band(F): $K^{\pi}=5^{-}$ band. Dominant conf= $\pi 5/2[532]+\pi 5/2[413]$. $\alpha=8.49$ keV, computed from the energies of the 5⁻ and 7⁻ levels. See the comment on the other 5⁻ band regarding possible mixing of these two bands.

^{*d*} Band(G): Probable $K^{\pi}=4^+$ bandhead. Probable conf is v3//2[521]+v5/2[523]. For another proposed configuration (which is not adopted here), see the discussion of this level in the ¹⁵⁶Pm β^- Decay data set.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f J	J_f^{π}	Mult.	α^{\dagger}	Comments
75.89	2+	75.88 5	100	0 0	+	E2	6.51	B(E2)(W.u.)<300
249.71	4+	173.75 5	100	75.89 2	+	E2	0.336	
517.07	6+	267.32 5	100	249.71 4	+	E2	0.0808	
803.69	(1^{-})	727.6 3	82 18	75.89 2	+			
		803.9 <i>3</i>	100 18	0 0	+			
871.57	8^{+}	354.5 2	100	517.07 6	+			
875.69	(3^{-})	626.37 20	17 <i>3</i>	249.71 4	+			
		799.70 10	100 11	75.89 2	+			
1009.79	(2^{-})	934.00 10	100	75.89 2	+			
1020.62	(5^{-})	503.37 20	12 4	517.07 6	+			
		770.77 10	100 12	249.71 4	+			
1110.11	(3 ⁻)	860.26 20	79 7	249.71 4	+			
		1034.25 10	100 7	75.89 2	+			
1144.07	(4 ⁻)	894.35 10	100	249.71 4	+			
1256.1		380.4 4	100	875.69 (3	3-)			
1307.4	10^{+}	435.8 2	100	871.57 8	+			
1397.55	5-	376.75 10	4.4 5	1020.62 (5	5-)	[M1,E2]	0.036 9	
		880.39 10	50.7 25	517.07 6	+	[E1]	0.00132	$B(E1)(W.u.)=6.0\times10^{-10} 4$
								I_{γ} : Value from 1990He11, ¹⁵⁶ Pm β^{-} decay.

 $\gamma(^{156}\text{Sm})$

Continued on next page (footnotes at end of table)

γ ⁽¹⁵⁶Sm) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1397.55	5-	1147.84 <i>10</i>	100.0 5	249.71 4	÷	[E1]	0.00081	From 252 Cf SF decay, 1995Zh15 report Iy=152, while 1998Ga12 report Iy=87. B(E1)(W.u.)=5.4×10 ⁻¹⁰ 2 Additional information 2
1509.22	4+	992.0 <i>10</i> 1259.44 <i>10</i> 1433.70 <i>10</i>	2.4 8 100 5 67 3	517.07 6 ⁻ 249.71 4 ⁻ 75.89 2 ⁻	+ + +			
1511.07	(6^{-})	113.6 2	100	1397.55 5	-			
1515.04	5-	117.42 <i>5</i> 370.94 <i>10</i> 494.4 <i>4</i>	100 5 4.4 7 2.2 7	1397.55 5 ⁻ 1144.07 (4 1020.62 (5	- -) 5-)	M1 [M1,E2] [M1,E2]	1.068 0.038 <i>9</i> 0.018 <i>5</i>	B(M1)(W.u.)=0.00142 12
1610.30 1643.74	(7 ⁻)	1360.58 <i>10</i> 132.6 2 246.1 2	100 230 <i>40</i> 100	249.71 4 ⁻ 1511.07 (6 1397.55 5 ⁻	+ 5 ⁻) -			
1738.35		223.31 10	100	1515.04 5	-			
1753.2	(7^{-})	237.8 [‡] 2	100	1515.04 5	-			
1794.32	(8-)	150.1 2 283.4 2	90 <i>14</i> 100	1643.74 (7 1511.07 (6	7 ⁻) 5 ⁻)			
1818.7	12^{+}	511.3 2	100	1307.4 10	0+			
1963.41	(9 ⁻)	168.9 2 320.0 2	120 <i>18</i> 100	1794.32 (8 1643.74 (7	8 ⁻) 7 ⁻)			
2033.8		518.4 <i>4</i> 524.9 <i>4</i>	90 <i>10</i> 100 <i>10</i>	1515.04 5 ⁻ 1509.22 4 ⁻	+			
2150.56	(10 ⁻)	187.2 2 356.1 2	50 <i>11</i> 100	1963.41 (9 1794.32 (8	9 ⁻) 8 ⁻)			
2199.91		684.65 <i>10</i> 690.90 <i>10</i>	37.5 <i>18</i> 100 <i>5</i>	1515.04 5 1509.22 4	+			
2265.52		750.26 10 756.51 10	100 <i>10</i> 100 <i>10</i>	1515.04 5 $1509.22 4^{-1}$	+			
2341.92	(11-)	827.03 10 832.08 20	50 8 100 <i>17</i>	1515.04 5 $1509.22 4^{-1}$	+			
2355.0	(11)	204.4 2 391.6 2	80 <i>10</i> 100	2150.56 (1 1963.41 (9	0)) ⁻)			
2400.1	14	2406 7 3	100	75 80 2	2 +			
2482.0	3	1374.91 <i>10</i>	82 7	1144.07 (4	↓ [−])			
		2269.9 <i>4</i> 2443.34 <i>20</i>	25 <i>4</i> 86 7	249.71 4 ⁻ 75.89 2 ⁻				
2526.22	3	1382.24 <i>10</i> 1516.56 <i>10</i> 2276.18 <i>20</i> 2450.17 <i>10</i>	77 4 100 5 9.5 14 36 4	1144.07 (4 1009.79 (2 249.71 4 ⁻ 75.89 2 ⁻	↓ ⁻) 2 ⁻) +			
2576.9	(12 ⁻)	222.2 <i>2</i> 426.2 <i>2</i>	35 <i>12</i> 100	2355.0 (1 2150.56 (1	1 ⁻) 0 ⁻)			
2609.7	(4 ⁻)	2360.0 <i>3</i>	100	249.71 4	÷			
2616.51	(4 ⁻)	2366.78 20	100	249.71 4	+			
2699.7		1555.6 5	100	1144.07 (4	I−)			
2814.9	(13^{-})	460.0 2	100	2355.0 (1	1-)			
3044? 3069.5	(16 ⁺) (14 ⁻)	644 [‡] 492.6 2	100 100	2400.1 14 2576.9 (1	4 ⁺ 2 ⁻)			
3335?	(15 ⁻)	520 [‡]	100	2814.9 (1	3-)			

$\gamma(^{156}\text{Sm})$ (continued)

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[‡] Placement of transition in the level scheme is uncertain.

¹⁵⁶₆₂Sm₉₄

6

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) + 511,3 100 283 130, 40 130, 90 \$ 8 $\frac{\frac{12^+}{(8^-)}}{(7^-)}$ 1818.7 1794.32 1753.2 1360.38 100 1 ^{246,1} 100 1738.35 (7⁻) $= \frac{1_{(1,2)}}{3^{6}c_{3}} \frac{|c_{1}|}{|c_{2}|} + \frac{1_{(1,2)}}{|c_{2}|} + \frac{|c_{1}|}{|c_{2}|} + \frac{1_{(1,2)}}{|c_{2}|} + \frac{1_{$ 1643.74 + ¹/3.6 | 1610.30 -66--66--66-<u>1515.04</u> 4.5 ns 2 <u>1511.07</u> $\frac{5^{-}}{(6^{-})}$ 4^+ 1509.22 5-+ 435,8 10 1397.55 185 ns 7 + 380[|] 4 00 10^{+} 1307.4 1256.1 $\begin{bmatrix} 1_{034,25}^{0} \\ 8_{025,29}^{0} \end{bmatrix}$ 4 894.35 100 1144.07 1110.11 $\left| \begin{array}{c} 7_{0,\gamma} \\ 3_{0,\gamma} \\ 3_{0,3\gamma} \\ 3_{3,3\gamma} \\ 3_{3}, 0_{0} \\ 1 \end{array} \right|^{\frac{9}{2}}$ (4⁻) (3-) $\frac{(5^{-})}{(2^{-})}$ 1020.62 1009.79 $\frac{1}{||} \left| \frac{2^{9}}{2^{6} \cdot 3^{2}} \frac{1}{2^{9}} \right|$ 1 354 100 1 (3-) 875.69 ego ⁶⁰³. 23, 100 8^+ 871.57 (1⁻) 803.69 + 30.32 E2 100 517.07 6+ + 173,75 E2 100 4+ 249.71 + 3.88 22100 2^{+} 75.89 >2 ns 0^+ 0 9.4 h 2

 $^{156}_{62}{
m Sm}_{94}$

7

Adopted Levels, Gammas

 $^{156}_{62}{
m Sm}_{94}$

Band(B): Probable K^π=1[−] octupole band (4[−]) 1144.07

Band(D): Possible $3^$ member of the $K^{\pi}=0^$ octupole band

(3⁻) 1110.11

Band(C): Bandhead of the first excited $K^{\pi}=0^+$ band

0+ 1068

(5-)	1020.62
	•
(2-)	1009.79

(3⁻) 875.69

(1⁻) 803.69

¹⁵⁶₆₂Sm₉₄

¹⁵⁶₆₂Sm₉₄