156 Nd β^- decay 2007Sh05,1989OkZX

History					
Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012		

Parent: 156 Nd: E=0; J^{π} =0+; $T_{1/2}$ =5.26 s 20; $Q(\beta^{-})$ =3.69×10³ 20; % β^{-} decay=100.0

¹⁵⁶Nd-T_{1/2}: From ¹⁵⁶Nd Adopted Levels.

¹⁵⁶Nd-Q(β ⁻): From 2011AuZZ.

Additional information 1.

Unless otherwise noted, all the data are from 2007Sh05.

2007Sh05: 156 Nd produced by thermal-neutron induced fission of 235 U, followed by on-line isotope separation. γ' s detected using a HPGe detector and a short coaxial detector. Conversion electrons detected using a cooled Si(Li) detector. Measured E γ , I γ , $\beta\gamma$ coin, β (ce) coin, $\gamma\gamma$ coin and (ce) γ coin. Report three excited states in addition to an isomeric state in 156 Pm and $T_{1/2}$ values for the g.s. and the isomer.

2004SuZY: same authors as 2007Sh05. Contains information regarding the isomer at 150.3 keV, which subsequently appeared in 2007Sh05.

1987Gr12: 156 Nd produced by spontaneous fission of 252 Cf, followed by isotope separation. γ 's measured with Ge detectors. Two γ 's (84 and 150) reported, but with no I γ values.

1989OkZX: Summary in a laboratory progress report. Thermal-neutron induced fission of ²³⁵U, followed by isotope separation.

156Pm Levels

E(level)	J^{π}	T _{1/2}	Comments
0	4(+)	26.70 s <i>10</i>	J^{π} : 2007Sh05 propose $J^{\pi}=(4^{-})$, but the evaluator has not adopted this value. See the relevant
	(.)		discussion in the adopted values. $T_{1/2}$: From 156 Pm adopted values and based on data of 1987 Gr12. Probable conf is $\pi 5/2[532]+\nu 3/2[521]$. Note that 2007 Sh05 propose that the conf is $\pi 5/2[532]+\nu 3/2[651]$, in which case π would be negative. The evaluator has not adopted this proposal. See the discussion on this point in the adopted values.
150.3 <i>I</i>	1 ⁽⁺⁾	<5 s	%IT≈98; $\%\beta^-\approx 2$ J ^{π} : 2007Sh05 propose J ^{π} =(1 ^{$-$}), but the evaluator has not adopted this value. See the relevant
			discussion in the adopted values.
			 T_{1/2}: From 2007Sh05. From a careful analysis of the decay curve of the K-line of the 150.3γ, 2007Sh05 suggest the possible presence of a second activity, in addition to that of the g.s., with T_{1/2}=2.3 s 20. They assign it to the decay of an isomeric state at 150 keV in ¹⁵⁶Pm. Probable conf is π5/2[532]-v3/2[521]. 2007Sh05 propose that the conf is π5/2[532]-v3/2[651], in which case π would be negative. The evaluator has not adopted this proposal. See the discussion
168.7 <i>1</i> 358.4 2			on this point in the adopted values.
			$\underline{\gamma}(^{156}\text{Pm})$

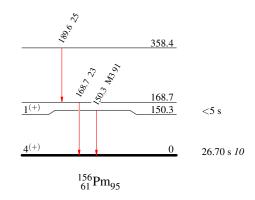
E_{γ}	I_{γ} ‡#	$E_i(level)$
^x 49.2 2	8.8 11	
$x60.1^{\dagger} 2$	34 2	
^x 69.7 2	33 19	
^x 73.5 2	34 <i>3</i>	
^x 83.6 2	13 2	
^x 84.7 [†] 1	100 3	
x88.6 2	38 <i>3</i>	
^x 105.3 1	25 <i>3</i>	
^x 108.7 1	3.1 13	
^x 112.1 2	67 <i>7</i>	
^x 126.5 2	18 <i>3</i>	

$^{156}\mathrm{Nd}\,\beta^-$ decay 2007Sh05,1989OkZX (continued)

γ (156Pm) (continued)

E_{γ}	I_{γ} ^{‡#}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{@}$	Comments
^x 129.8 <i>I</i>	6.4 13							
^x 142.4 2 ^x 144.2 <i>1</i>	3.8 <i>12</i> 20 <i>2</i>							
150.3 [†] 1	91 5	150.3	1(+)	0	4(+)	M3	20.5	$\alpha(K)\exp=14$ 4; $\alpha(L)\exp=4.5$ 15
								$\alpha(K)=13.63 \ 20; \ \alpha(L)=5.29 \ 8; \ \alpha(M)=1.255 \ 18;$
								$\alpha(N+)=0.3245$ $\alpha(N)=0.2834; \alpha(O)=0.03976; \alpha(P)=0.00171925$
^x 151.8 3	<11							I_{γ} : γ mixed with a γ from the ¹⁵⁶ Pm decay.
^x 157.2 [†] 1	116 4							,
^x 160.9 [†] 1	51.6 <i>16</i>							
^x 162.8 <i>1</i>	25.8 15							
168.7 <i>1</i>	23 3	168.7		0	4 ⁽⁺⁾			
^x 178.3 <i>1</i>	11 2							
189.6 <i>I</i>	25 3	358.4		168.7				
x195.5 2	7 2							
^x 196.5 [†] 2	39 2							
^x 198.5 <i>I</i>	38 2							
^x 238.4 2 ^x 269.9 1	7 2 13.0 <i>14</i>							
x273.9 [†] 1								
	47.0 <i>17</i>							
^x 319.1 [†] 1	37 <i>3</i>							I _{γ} : γ peak contains a contribution from the 320.2 γ from the ¹⁵⁶ Pm decay.
^x 323.4 3	5.7 13							•

 $^{^{\}dagger}$ γ also reported by 1989OkZX. ‡ Where 1989OkZX report the same γ' s as 2007Sh05, the I γ values are generally quite different. ‡ I(K α x ray)=1100 160, I(K β x ray)=270 40, relative to I $_{\gamma}$ =100 for the 150.3 γ (1989OkZX).


[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^{}x}$ γ ray not placed in level scheme.

Decay Scheme

Intensities: Relative I_{γ} Legend $\frac{0^{+} \quad 0}{Q_{\beta^{-}=3.69\times10^{3}}} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\beta^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\beta^{-}=3.69\times10^{3}} \\ \end{array}}_{60} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\beta^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3.69\times10^{3}} \\ \end{array}}_{5.26 \text{ s } 20} \underbrace{\begin{array}{c} 0^{+} \quad 0 \\ Z_{\gamma^{-}=3$

