Adopted Levels, Gammas

		Fu	Type Ill Evaluatio	Author C. W. Reich	History Citation NDS 113, 2537 (2012)	Literature Cutoff Date 1-Mar-2012					
$Q(\beta^{-})=5197 \ 9; \ S(n)=5295 \ 6; \ S(p)=9169 \ 10; \ Q(\alpha)=-2830 \ 19 \ 2017Wa10$ S(2n)=1.179×10 ⁴ \ 6; \ S(2p)=2.064×10 ⁴ \ 10 \ 2017Wa10 Additional information 1. Additional information 2.											
					¹⁵⁶ Pm Levels						
				A 1 B 1	Reference (XREF) Flags ¹⁵⁶ Nd β^- decay ¹⁵⁶ Pm IT decay (<5 s) ¹⁵² Cf SF decay						
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF		Cor	nments					
0‡	4(+)	26.70 s 10	j	%β ⁻ =100 J ^π : Based on assumption that the evaluator's proposed conf (from general considerations, the most plausible one) is correct. J=4 is consistent with the observed β ⁻ decay of ¹⁵⁶ Pm to ¹⁵⁶ Sm levels with J ^π =3, 5 ⁻ and 6 ⁺ (1990He11). Based on these latter data, 1990He11 proposed π=-, with conf=π5/2[413]+v3/2[521]. The evaluator has not adopted this conf, based on the expectation that it is unlikely to form the g.s. for this nuclide. Assuming π=-, 2007Sh05 (¹⁵⁶ Nd β ⁻ decay) assign conf=π5/2[532]+v3/2[651]. A discussion of various available configurations for ¹⁵⁶ Pm, together with the role of log <i>ft</i> values in their assignment, is given by 2011So05. The π=+ assignment is shown as questionable, since the apparent existence of a β ⁻ transition to a 6 ⁺ state in ¹⁵⁶ Sm presents some problems for it. (This situation is discussed by 2011So05.). T _{1/2} : From 1987Gr12, γ(t). Others: 28.2 s <i>11</i> (1986Ma12), γ(t); and 29 s 2 (1986Ok01) γ(t). Other reports presenting the data of 1987Gr12 are 1986GrZX and 1988GrZY.							
85.6 [†] 150.3 [‡] 1	(5 ⁺) 1 ⁽⁺⁾	<5 s		%IT≈98; %α≈2 J ^π : M3 transition t	to the $4^{(+)}$ g.s.						
$168.7 I \\ 189.2^{\dagger} \\ 313.9^{\dagger} \\ 358.4 2 \\ 453.3^{\dagger} \\ 618.7^{\dagger}$	(6 ⁺) (7 ⁺) (8 ⁺) (9 ⁺)				t) for the 150.3 γ (2007Sh	05, IT decay).					

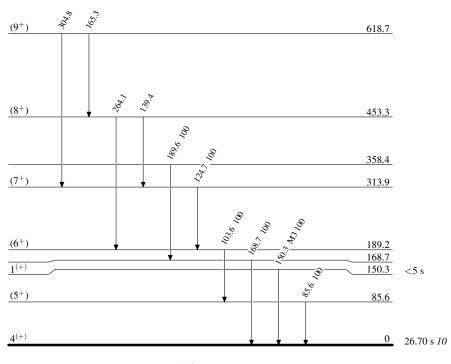
[†] Band(A): Assumed K=4 (g.s.) band. α =8.51 keV; β =+3.2 eV. Probable conf is π 5/2[532]+ ν 3/2[521].

[‡] Band(B): $K^{\pi}=1^{(+)}$ bandhead. Probable conf is $\pi 5/2[532]-\nu 3/2[521]$. Note that this ordering of this conf and that of the g.s. is consistent with the expectations of the Gallagher-Moszkowski rules (1958Ga27).

Adopted Levels, Gammas (continued)

 $\gamma(^{156}\text{Pm})$

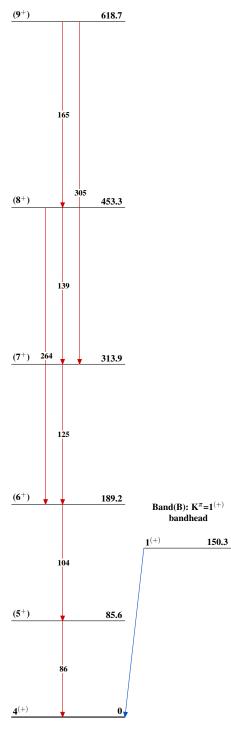
A number of γ 's are reported in ¹⁵⁶Nd β^- decay but are not placed in the level scheme. For a listing of these, see the ¹⁵⁶Nd β^- Decay data set.


E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f J ²	$\frac{t}{f}$ Mult.	α^{\dagger}	Comments
85.6	(5^{+})	85.6	100	0 4(-	-)		
150.3	$1^{(+)}$	150.3 <i>1</i>	100	0 4(-	⁻⁾ M3	20.5	B(M3)(W.u.)>0.41
168.7		168.7 <i>1</i>	100	0 4(-	-)		
189.2	(6^{+})	103.6	100	85.6 (5	+)		
313.9	(7^{+})	124.7	100	189.2 (6	+)		
358.4		189.6 <i>1</i>	100	168.7			
453.3	(8^+)	139.4		313.9 (7	+)		
		264.1		189.2 (6	+)		
618.7	(9^{+})	165.3		453.3 (8	+)		
		304.8		313.9 (7	+)		

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme


Intensities: Relative photon branching from each level

¹⁵⁶₆₁Pm₉₅

Adopted Levels, Gammas

Band(A): Assumed K=4 (g.s.) band

¹⁵⁶₆₁Pm₉₅