¹⁶⁰Ta α decay (1.7 s) 1996Pa01

Type Author Citation Literature Cutoff Date

Full Evaluation C. W. Reich NDS 113,2537 (2012)

History

Citation Literature Cutoff Date

Parent: 160 Ta: E=x; J^{π} =(2)⁻; $T_{1/2}$ =1.7 s 4; $Q(\alpha)$ =5451 5; % α decay=?

¹⁶⁰Ta-E: Additional information 1.

 160 Ta-J^{π}: Additional information 2.

 160 Ta- $T_{1/2}$: Additional information 3.

 160 Ta-Q(α): Additional information 4.

Additional information 5.

The evaluator has assumed that this activity is different from the previously established 1.55-S 160 Ta activity. This is based on the observation that the study of 1996 Pa01 shows two α activities in 160 Ta, which having a distinct α group which correlates with a different 156 Lu α group, although with comparable half-lives. Since the $E(\alpha)$ value associated with this activity implies a $Q(\alpha)$ value close to that given by 2011 AuZZ, the evaluator has assumed that this activity corresponds to the 160 Ta g.s. (or at least that it lies below the 1.55-S activity).

1996Pa01: Source material produced in 58 Ni+ 102 Pd reactions. Reaction products separated using a recoil mass separator and detected in a double-sided Si-strip detector. Measured $T_{1/2}$ and $E(\alpha)$.

¹⁵⁶Lu Levels

E(level) J^{π} Comments

0 (2) E(level): The final state for this α transition is not established. The evaluator has assumed that it is the g.s. J^{π} : From adopted values.

α radiations

E α E(level)I α Comments5315 50100E α : From 1996Pa01. If this transition connects the two ground states, then Q(α) is computed to be 5449 5.I α : Only one α transition is assumed to be associated with the decay of this state.