¹⁵⁶Er ε decay **1999KaZV,2003KaZQ**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Parent: ¹⁵⁶Er: E=0; $J^{\pi}=0^+$; $T_{1/2}=19.5 \text{ min } 10$; $Q(\varepsilon)=1260 \ 65$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁵⁶Er-T_{1/2}: Additional information 1.

¹⁵⁶Er-Q(ε): Additional information 2.

¹⁵⁶Er- $\%\varepsilon$ + $\%\beta^+$ decay: $\%\alpha$ =7×10⁻⁶ 3, from the ¹⁵⁶Er Adopted Levels. It is assumed here that $\%\varepsilon$ + $\%\beta^+$ =100. Additional information 3.

2003KaZQ: This represents a published version of the material contained in the private communication of 2002KaZL.

2002KaZL: Private communication to the evaluator from V. G. Kalinnikov (August, 2002). This information represents a further analysis of the data of 1999KaZV. They extend, and in some instances change, the conclusions of this earlier study.

1999KaZV: ¹⁵⁶Er from high-energy proton-induced spallation on a W target. Isotope-separated samples. Measured E γ , I γ , ce, $\gamma\gamma$. Report E γ , I γ , I_e, multipolarities, J^{π} and Q(ε).

1995KaZS: Using isotope-separated $^{156}\mathrm{Ho}$ sources, report $T_{1/2}$ for the 52-keV isomeric state.

1982Vy06: ¹⁵⁶Er from proton-induced spallation on a Ta target. E(p)=660 MeV. Chemical and isotope separation, γ 's measured using Ge(Li) detectors. ce measured using a magnetic spectrometer and spectrograph. Measured γ -ce coin. Three I γ values are identical to those in 1975Al26, so evaluator assumes that they were not remeasured.

1975Al26: ¹⁵⁶Er from proton-induced spallation on a Ta target. E(p)=660 MeV. Chemical and isotope separation γ 's measured using Ge(Li) detectors. ce measured using a magnetic spectrometer. Report $E\gamma$, $I\gamma$, I(ce), and deduced multipolarities.

1978Sc10: ¹⁵⁶Er from proton-induced spallation on a Ta target. E(p)=660 MeV. Isotope separation. Measured half-lives by Kx-ce coin using a NaI(Tl) detector and a magnetic spectrometer.

Others: 1981BuZJ, 1975Gr44, 1965Zh02.

The level scheme is primarily that proposed by 2003KaZQ, together with the placement of several γ 's unplaced in previous studies. It is in most instances similar to that of 1999KaZV. Where there are differences, these are pointed out. The placement of several γ 's is that from the earlier studies.

2007KaZT discuss allowed-unhindered ("spin-flip") ε transitions involving ¹⁵⁶Ho, ¹⁵⁸Ho, and ¹⁶⁰Ho and, using nuclear-model considerations, configuration assignments for several of the low-lying bandheads in these nuclides.

From the 511-keV photon intensity, the total $I\beta^+=0.21\%$ 10 (1982Vy06).

The intensities of the $\varepsilon + \beta^+$ branches are computed from intensity- balance considerations and should be regarded as questionable in some instances. For example, the small log *ft* value for the transition to the 52.37, 1⁻ level, together with the absence of a γ deexciting the 251.1 level, suggest that there are intensity imbalances in the proposed level scheme. Nonetheless, because of the strong population of the 1⁺ level at 117.58 keV in ε decay, the log *ft* value of the feeding transition is most probably \approx 4.5, indicating an allowed-unhindered transition.

¹⁵⁶Ho Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0@	4-	56 min 1	$T_{1/2}$: From the adopted values.
52.37 ^{&}	1-	9.5 s 15	See the discussion in the Adopted Levels, Gammas data set regarding the configuration of this level.
82.23 ^a	2-	1.38 ns <i>12</i>	T _{1/2} : From 1995KaZS, (ce(L)(52 γ),t). T _{1/2} : Weighted average of 1.46 ns <i>15</i> (1975Al26) and 1.25 ns <i>20</i> (1978Sc10) from (γ +x)-30 coincidences. 1999KaZV report 1.25 ns. 1999KaZV report J ^{π} =2 ⁻ . If the 82.18 γ is correctly placed, then the possible J ^{π} values, 0 ⁻ or 1 ⁻ are ruled out. In this case, little ε + β ⁺ feeding of this level is expected (and observed)
91.0	1^{+}		f are funded out. In this case, find $e^{+}p^{-}$ recalling of this rever is expected (and observed).
117.58 ^b	1^{+}	58 ns <i>3</i>	$T_{1/2}$: From Kx-35 γ coincidences (2005KaZY). From Kx-35 γ coincidences, 1978Sc10 report $T_{1/2} = 58$ ns 4. 1999KaZV report 58 ns.
215.74 251.09 [‡]	1-		1
268.12	1		

¹⁵⁶Er ε decay **1999KaZV**,2003KaZQ (continued)

¹⁵⁶Ho Levels (continued)

E(level)	īπ
	J

303.52[‡] 434.2 *10* 504.95[‡]

571.64‡

[†] Computed from the listed γ -ray energies.

[‡] New level introduced by 2003KaZQ, but no properties other than the level energy are given.

[#] From the adopted values.

1

[@] Band(A): $K^{\pi}=4^{-}$ Bandhead. Probable conf= $\pi 5/2[402]+\nu 3/2[521]$. The $\Sigma=1$ coupling of these two orbitals lies below the $\Sigma=0$ coupling, in agreement with the expectations of 1958Ga27.

& Band(B): $K^{\pi}=1^{-}$ Bandhead. Probable conf= $\pi 5/2[402]-v3/2[521]$. The $\Sigma=0$ coupling of these two orbitals lies above the $\Sigma=1$ coupling, in agreement with the expectations of 1958Ga27.

^{*a*} Band(C): $K^{\pi}=2^{-}$ Bandhead. Probable conf= $\pi7/2[404]-\nu3/2[521]$.

^b Band(D): $K^{\pi}=1^+$ Bandhead. Conf= $\pi 7/2[523]-\nu 5/2[523]$.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
$(6.9 \times 10^2 7)$	571.64	0.33 8	6.22 15	0.33 8	εK=0.8189 24; εL=0.1392 18; εM+=0.0418 7
(7.6×10 ² 7)	504.95	1.5 2	5.64 11	1.5 2	εK=0.8209 20; εL=0.1378 15; εM+=0.0413 5
(8.3×10 ² 7)	434.2	0.4 2	6.30 24	0.4 2	εK=0.8227 16; εL=0.1365 12; εM+=0.0409 5
(9.6×10 ² 7)	303.52	0.70 12	6.19 10	0.70 12	εK=0.8251 12; εL=0.1347 9; εM+=0.0402 3
(9.9×10 ² 7)	268.12	1.3 2	5.96 10	1.3 2	εK=0.8257 11; εL=0.1343 8; εM+=0.0401 3
$(1.04 \times 10^3 7)$	215.74	2.6 5	5.70 11	2.6 5	εK=0.8264 10; εL=0.1337 7; εM+=0.03987 25
$(1.14 \times 10^3 7)$	117.58	52 6	4.48 8	52 6	εK=0.8276 8; εL=0.1328 6; εM+=0.03956 20
$(1.17 \times 10^3 7)$	91.0	18 7	4.97 18	18 7	εK=0.8279 8; εL=0.1326 6; εM+=0.03948 19
$(1.18 \times 10^3 7)$	82.23			09	
$(1.21 \times 10^3 7)$	52.37	23 13	4.9 <i>3</i>	23 13	εK=0.8283 7; εL=0.1323 5; εM+=0.03938 18

[†] Absolute intensity per 100 decays.

¹⁵⁶Er ε decay **1999KaZV,2003KaZQ** (continued)

 $\gamma(^{156}\text{Ho})$

I γ normalization: Note that the energy of the γ connecting the 52.37 level and the g.s. is essentially identical to that deduced from the energy difference of the 286 and 215 levels. If a significant portion of the intensity in this peak is in fact to be associated with this latter placement, then the basis for the intensity normalization chosen here is called into question. (The possibility of this additional placement has been pointed out by the reviewer.).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α &	$I_{(\gamma+ce)}^{@}$	Comments
8.72 5	6.5 22	91.0	1+	82.23 2-	El		11	78 24	$\alpha(M)=8.30; \alpha(N+)=2.7$ E_{γ} : From identification (2003KaZQ) of a 6.98 5 keV conversion line as an M ₃ line from an E1 transition. 1999KaZV assign it as an M ₁ line from a 9.11-keV M1 transition. I_{γ} : Computed from Ice(M ₃)=18 6 (2003KaZQ) and $\alpha(M3)=2.77$ for an 8.72 E1 γ . Mult.: From 2003KaZQ. 1999KaZV identify the 6.98 5 electron line as an M ₁ line and report mult=M1. $I_{(\gamma+ce)}$: From I γ and α . 2003KaZQ estimate I $(\gamma+ce)\approx60$.
26.55 10	0.20 5	117.58	1+	91.0 1 ⁺	M1+E2	0.12	35.1 7		1999KaZV report $l_e=27.9$ for a 9.11γ. $\alpha(L)=27.2 \ 6; \ \alpha(M)=6.23 \ 13; \ \alpha(N+)=1.62 \ 4$ $\alpha(N)=1.42 \ 3; \ \alpha(O)=0.188 \ 4; \ \alpha(P)=0.00654 \ 12$ I_{γ} : From Ice(L ₁)=3.0 8 (2003KaZQ) and $\alpha(L1)=14.6$. Mult.,δ: From $\alpha(L1)$ exp≥11 and the relative intensity ratios of 1, ≈0.40,≈0.65, respectively, for the L1, L2, L3 lines, 2003KaZQ conclude mult is M1+1.5%E2 for this transition. 1999KaZV report E1
29.86	18.3 <i>13</i>	82.23	2-	52.37 1-	M1+E2	0.033 6	15.0 4		$\alpha(L)=11.7 \ 3; \ \alpha(M)=2.60 \ 6; \ \alpha(N+)=0.694 \ 15$ $\alpha(N)=0.603 \ 14; \ \alpha(O)=0.0867 \ 17; \ \alpha(P)=0.00466 \ 7$ I_{γ} : Weighted average of: 17.0 $17 \ (1975Al26); \ and \ 20.0 \ 20$ (1999KaZV). 1982Vy06 list 17.0 $17.$ Mult., δ : From L and M subshell ratios (1975Al26,1982Vy06). 1999KaZV indicate mult-M1
35.37	100	117.58	1+	82.23 2-	E1		0.968		$\alpha(L)=0.757 \ 11; \ \alpha(M)=0.1687 \ 24; \ \alpha(N+)=0.0424 \ 6 \ \alpha(N)=0.0376 \ 6; \ \alpha(O)=0.00460 \ 7; \ \alpha(P)=0.0001448 \ 21 \ F. Mult : From 1999K a ZV$
52.37	0.091 9	52.37	1-	0 4-	M3		4.17×10 ³	380 40	ce(L)/(γ +ce)=0.740 8; ce(M)/(γ +ce)=0.205 4; ce(N+)/(γ +ce)=0.0541 11 ce(N)/(γ +ce)=0.0480 10; ce(O)/(γ +ce)=0.00592 12; ce(P)/(γ +ce)=0.000135 3 I $_{\gamma}$: Computed from α and the listed I(γ +ce) value. Mult.: From L and M subshell ratios (1975A126,1982Vy06). I($_{\gamma+ce}$): Value is I _e for this transition (1999KaZV).
65.16 ^a	≈0.65	117.58	1+	52.37 1-	E1		0.977		$\alpha(K)=0.801 \ 12; \ \alpha(L)=0.1375 \ 20; \ \alpha(M)=0.0304 \ 5; \ \alpha(N+)=0.00781 \ 11$

ω

¹⁵⁶ Er ε decay 1999KaZV,2003KaZQ (continued)								
γ ⁽¹⁵⁶ Ho) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^{&}	Comments
82 18 ⁴	123	82 23	2-	0	4-	F2	5.98	$\alpha(N)=0.00688 \ 10; \ \alpha(O)=0.000900 \ 13; \ \alpha(P)=3.45\times10^{-5} \ 5$ E _{γ} : Placement is that of 1999KaZV, but 2003KaZQ question its association with the ¹⁵⁶ Er decay. Mult.: From 1999KaZV. $\alpha(K)=1.688 \ 24; \ \alpha(L)=3.29 \ 5; \ \alpha(M)=0.796 \ 12; \ \alpha(N+)=0.200 \ 3$
02.10	1.2 5	02.23	2	0	-	L2	5.70	α(N)=0.179 3; α(O)=0.0211 3; α(P)=7.16×10-5 10 1999KaZV place this γ from the 82.2 level. However, 2003KaZQ do not definitely assign this γ to the ¹⁵⁶ Er decay. Mult.: From 1999KaZV.
133.51	4.7 5	215.74	1-	82.23	2-	M1	1.145	$\alpha(K)=0.963 \ 14; \ \alpha(L)=0.1425 \ 20; \ \alpha(M)=0.0315 \ 5; \ \alpha(N+)=0.00843 \ 12$ $\alpha(N)=0.00730 \ 11; \ \alpha(O)=0.001062 \ 15; \ \alpha(P)=5.96\times10^{-5} \ 9$ L: From 1999KaZV, 1975A126 (and 1982Vv06) report Iv=4.4 14.
185.89	5.0 7	268.12	1	82.23	2^{-}			I_{γ} : From 1999KaZV. 1982Vy06 report I_{γ} =1.5 6.
221.33 [‡] 5	2.7 3	303.52		82.23	2^{-}			
253.86	1.3 <i>3</i>	504.95		251.09				
320.55 [‡]	1.25 25	571.64		251.09				
352.0 10	1.6 8	434.2	1	82.23	2-			I_{γ} : From 1982Vy06.
387.37+	4.6 5	504.95		117.58	1^{+}			

[†] From 2003KaZQ, unless noted otherwise.

[‡] γ reported by 2003KaZQ, but not explicitly placed by them. Placement is that of the evaluator. [#] From ce data of 1975Al26, unless noted otherwise. [@] For absolute intensity per 100 decays, multiply by 0.26 3.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{156}_{67}\mathrm{Ho}_{89}$ -4

From ENSDF

¹⁵⁶₆₇Ho₈₉

¹⁵⁶₆₇Ho₈₉