¹⁵⁶Ho IT decay (9.5 s) 1999KaZV,1995KaZS

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Parent: ¹⁵⁶Ho: E=52.37; $J^{\pi}=1^-$; $T_{1/2}=9.5$ s *15*; %IT decay=100.0 Additional information 1.

State produced primarily in the decay of ¹⁵⁶Er. Numerous studies of this decay have been reported. For a description of these studies, see the ¹⁵⁶Er Decay Data set.

¹⁵⁶ Ho	Levels
-------------------	--------

E(level)	Jπ†	T _{1/2}	Comments
0	4 ⁻	56 min <i>1</i>	 T_{1/2}: From the adopted values. %IT=?; %ε+%β⁺=? Probable conf=π5/2[402]-v3/2[521], the Σ=0 coupling of two orbitals. The g.s. represents the Σ=1 coupling of these two. T_{1/2}: From 1995KaZS, (ce(L)(52γ),t).
52.37	1 ⁻	9.5 s <i>15</i>	

[†] From the adopted values.

$\gamma(^{156}\text{Ho})$

I γ normalization: The IT-decay branching is presently unmeasured. From the intensity balance at this level, the evaluator infers that the intensity of a possible $\varepsilon + \beta^+$ decay branch is small. Also, if log *ft* of a possible β transition to the ¹⁵⁶Dy g.s. is assumed to be>6.0, then $\varepsilon + \beta^+ < 1$. The evaluator has assumed that %IT=100.

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α‡	$I_{(\gamma+ce)}^{\dagger}$	Comments
52.37	0.0240	52.37	1-	0 4-	M3	4.17×10 ³	100	ce(L)/(γ +ce)=0.740 8; ce(M)/(γ +ce)=0.205 4; ce(N+)/(γ +ce)=0.0541 11 ce(N)/(γ +ce)=0.0480 10; ce(O)/(γ +ce)=0.00592 12; ce(P)/(γ +ce)=0.000135 3 I $_{\gamma}$: Computed from α and the listed I(γ +ce) value. Mult.: From L and M subshell ratios (1975Al26,1982Vy06) in ¹⁵⁶ Er ε decay.

[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵⁶Ho IT decay (9.5 s) 1999KaZV,1995KaZS

