156 Ta ε decay (106 ms) 2011Da12

History Citation Author Literature Cutoff Date Full Evaluation C. W. Reich NDS 113, 2537 (2012) 1-Mar-2012

Parent: 156 Ta: E=0; J^{π} =(2⁻); $T_{1/2}$ =106 ms 4; $Q(\varepsilon)$ =12053 SY; $\%\varepsilon+\%\beta^+$ decay=29 3

 156 Ta-E: From 2011AuZZ. 156 Ta-T_{1/2}: From 2011Da12.

 156 Ta-J $^{\pi}$: From the adopted values.

Additional information 1.

Source material produced from the ¹⁰⁶Cd(⁵⁸Ni,p3n) reaction, E(⁵⁸Ni)=290, 300 MeV, on a 1.1-mg/cm²-thick self-supporting ¹⁰⁶Cd target, 96.5% enrichment. Reaction products were separated in the gas-filled separator RITU then implanted in the double-sided Si-strip detectors of the GREAT spectrometer. Report E(p), %p, $T_{1/2}$, E α and % α . From the relative intensities of the proton peak from 156 Ta decay and the α peak from 156 Hf decay, 2011Da12 deduce a value for the p and α branching from the ¹⁵⁶Ta state.

2011Da12 report that the 156 Hf g.s. is fed in the decay of 106 ms 156 Ta and that the 8^+ α -decaying state is not, but provide no information on the radiations or on the levels that are populated.

The p branching from this level is 71% 3 (2011Da12).