¹⁵⁶₇₂Hf₈₄

¹⁵⁶Ta ε decay (0.36 s) 1993Li34,1989Ho12

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Parent: ¹⁵⁶Ta: E=102 7; $J^{\pi}=9^+$; $T_{1/2}=0.36$ s 4; $Q(\varepsilon)=12053$ SY; $\%\varepsilon+\%\beta^+$ decay=95.8 9

¹⁵⁶Ta-E: Additional information 1. ¹⁵⁶Ta-T_{1/2}: Additional information 2.

¹⁵⁶Ta-J^{π}: Additional information 3.

Additional information 4.

1993Li34: Source material produced in the 102 Pd(58 Ni,p3n) reaction, E(58 Ni)=290 MeV. Reaction products analyzed using a fragment mass analyzer and implanted in a double-sided Si-strip detector. Measured alpha and proton spectra, $T_{1/2}$.

1989Ho12: Produced by 102 Pd(58 Ni,p3n) reaction with velocity selection and position-time correlation of the α decays of implanted nuclei.

¹⁵⁶Hf Levels

E(level) J	π	Comments			
0.0 0 1959 <i>1</i> 8		om adopte	ed values.		
				ε, β^+ radiations	
E(decay)	E(level)	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments	
(10196 SY)	1959	4.5	39 13	$I(\varepsilon + \beta^+)$: Value assumes that all the intensity leading to this isomer (39% 13) is concentrated in this one transition. Thus, the listed log <i>ft</i> value may be a lower limit.	
(12155 <i>SY</i>)	0.0		0.0	56% 16 of the decay of this activity is associated with $\varepsilon + \beta^+$ decay that does not involve feeding of the 8 ⁺ isomeric level at 1959 keV. This decay presumably leads to population of the g.s., but the γ 's and intermediate levels involved are not yet known.	

[†] For absolute intensity per 100 decays, multiply by 0.958 9.