¹⁵⁶₆₄Gd₉₂-1

¹⁵⁶Dy 2ε decay 2011Be18,2011El05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Parent: ¹⁵⁶Dy: E=0; $J^{\pi}=0^+$; $T_{1/2} \ge 1.8 \times 10^{14}$ y; $Q(2\varepsilon)=2005.95$ 10; %2 ε decay=?

¹⁵⁶Dy-T_{1/2}: Nuclide nominally stable. The listed value is the smallest one given by 2011Be18 and is for the transition to the 2⁺, 89 keV level in ¹⁵⁶Gd. For a discussion of decay modes of the ¹⁵⁶Dy g.s., see the ¹⁵⁶Dy Adopted Levels.

¹⁵⁶Dy-Q(2ε): From 2011El05. 2011AuZZ list 2012 6.

Additional information 1.

Papers report the results of a search for the double-"beta" decay of ¹⁵⁶Dy. These studies obtain only upper limits for the intensities of the branches to the various ¹⁵⁶Gd levels.

- 2011Be18: Search for double β decay of ¹⁵⁶Dy, using an ultra-low background HPGe detector (volume≈244 cm³) located deep underground in the Gran Sasso National Laboratory. Detector passively shielded by a shield consisting of low-radioactivity Pb, Cu and borated polyethylene. Sample consisted of high-purity (99.98%) Dy₂O₃ of mass 322 g. Sample counted for≈2512 h. Radioactive contaminants in the sample and their associated γ 's were identified. Inspection of regions of the γ -ray spectrum where ¹⁵⁶Gd γ 's were expected to be present revealed no statistically significant peaks. These data provide only lower limits for the half-lives of possible 2 β processes leading to ¹⁵⁶Gd.
- 2011E105: Used Penning-trap mass spectrometry to determine the ¹⁵⁶Dy-¹⁵⁶Gd mass difference. Together with this difference, and using theoretical electron wave functions and double-hole binding energies, authors calculate possible resonance-enhancement in the neutrinoless double electron capture in ¹⁵⁶Dy. They identify four excited states in ¹⁵⁶Gd as candidates for resonance enhancement and list computed enhancement factors.

156Gd Levels

Listed $T_{1/2}$ values are measured ones only and represent lower limits (at the 90% confidence level) for the transition from the ¹⁵⁶Dy g.s. 2011Be18 also list values for various resonant processes in double β decay, but these are not listed here. Numerous studies present calculated $T_{1/2}$ values for double- β -decay, based on various assumptions. Some of the more recent of these include: 2010Ra06; 2009Ra26; 2011Kr07; and 2002Hi09. These values are not listed here. See these papers for them. These calculated $T_{1/2}$ values are generally several orders of magnitude greater than the presently measured lower limits.

E(level) [†]	$J^{\pi \#}$	Comments
0	0+	$T_{1/2}(\epsilon\beta^+(2\nu+0\nu))$ to this level $\ge 1.9 \times 10^{16}$ y.
89.0	2+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(\epsilon\beta^+(2\nu+0\nu)) \ge 1.9 \times 10^{16}$ y; $T_{1/2}(2\epsilon, 2\nu) \ge 1.8 \times 10^{14}$ y; $T_{1/2}(2\epsilon, 0\nu) \ge 1.5 \times 10^{14}$ y.
1049.5	0+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 7.1 \times 10^{16}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 6.4 \times 10^{16}$ y.
1129.4	2+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 1.4 \times 10^{16}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 1.4 \times 10^{16}$ y.
1154.1	2+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 4.7 \times 10^{15}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 4.1 \times 10^{15}$ y.
1168.2	0+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 8.9 \times 10^{15}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 8.0 \times 10^{15}$ y.
1715.2	0^{+}	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 3.0 \times 10^{16}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 2.8 \times 10^{16}$ y.
1771.1	2+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 1.0 \times 10^{16}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 8.9 \times 10^{15}$ y.
1827.8	2+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 1.9 \times 10^{16}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 1.9 \times 10^{16}$ y.
1851.2	0^+	For the transition to this level, the following $T_{1/2}$ values are reported: $T_{1/2}(2\varepsilon, 2\nu) \ge 1.5 \times 10^{15}$ y; $T_{1/2}(2\varepsilon, 0\nu) \ge 1.5 \times 10^{15}$ y.
1914.8 [‡]	2+	Proposed as a candidate for resonance-enhanced double β decay by 2011Be18, but not by 2011El05.
1946.4 [‡]	1-	Calculated enhancement factor for $0\nu 2\varepsilon$ decay = 4.1×10^6 (2011El05).

Continued on next page (footnotes at end of table)

¹⁵⁶₆₄Gd₉₂-2

156 Dy 2ε decay 2011Be18,2011El05 (continued)

¹⁵⁶Gd Levels (continued)

E(level) [†]	J π #	Comments
1952.3 [‡] 1988.5 [‡]	0^{-} 0^{+}	Calculated enhancement factor for $0\nu 2\varepsilon$ decay = 1.7×10^{6} (2011El05). Calculated enhancement factor for $0\nu 2\varepsilon$ decay = 2.5×10^{6} (2011El05).
2003.8 [‡]	2^{+}	Calculated enhancement factor for $0\nu 2\varepsilon$ decay = 7.7×10^8 (2011El05).

[†] Nominal values, from the adopted values. Only those levels expected to be populated in the double- β decay of ¹⁵⁶Dy are given. [‡] Level proposed as a candidate for resonance-enhanced neutrinoless double-electron capture decay.

[#] From the adopted values.

$\gamma(^{156}\text{Gd})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
89.0	89.0	2^{+}	0	0^+	
472.7	1715.2	0+			The final state implied by this γ is not listed among the candidate levels given in 2011Be18.
697.0	1851.2	0^{+}	1154.1	2^{+}	
960.5	1049.5	0^{+}	89.0	2^{+}	
1040.5	1129.4	2^{+}	89.0	2^{+}	
1079.2	1168.2	0^{+}	89.0	2^{+}	
1154.1	1154.1	2^{+}	0	0^{+}	
1682.2	1771.1	2^{+}	89.0	2^{+}	
1738.9	1827.8	2^{+}	89.0	2^{+}	

[†] Nominal value, from the adopted values, to indicate the region of the γ spectrum studied to identify the presence of the searched-for 2β transition.

¹⁵⁶Dy 2ε decay 2011Be18,2011El05

Decay Scheme

¹⁵⁶₆₄Gd₉₂