Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012						

 $Q(\beta^{-})=2452 \ 3; \ S(n)=6336 \ 3; \ S(p)=7181 \ 4; \ Q(\alpha)=-1.25\times10^{3} \ 3 \ 2017Wa10$

 $S(2n)=14487 \ 3; \ S(2p)=1.615\times 10^4 \ 4 \ 2017Wa10$

Additional information 1.

Data are primarily from the 153 Eu(3n, γ) studies (1991Ba06). Several of the same levels are observed in the β^- decay of 156 Sm (1966Ha26 and others), and three levels reported from the 154 Eu(t,p) reaction.

Some model and theory calculations of possible interest:

1988Fr16: Survey of the properties of K=0 bands in strongly deformed nuclides.

1989HoZI: Empirical study of Newby energy shifts.

1990Af03: Interpretation of the level schemes of the Eu isotopes in terms of octupole deformation.

1992No04: Discussion of the ¹⁵⁶Eu level scheme. Authors conclude that there is no evidence for parity doublets and, hence, for octupole deformation.

1994No15: Thorough discussion of the residual p-n interaction in odd-odd nuclei.

1998Ja07: An excellent survey of nuclear-structure data for the odd-odd nuclides in the region from α =144 through α =194. Considerable discussion of the level structure of the odd-odd Eu isotopes in terms of reflection asymmetry (e.g., octupole

deformation) has appeared in the literature. 1990Af03 have interpreted the data on ¹⁵³Eu through ¹⁵⁶Eu in terms of octupole deformation, deducing values of the octupole-deformation parameter, β_3 . In their capture gamma-ray study, 1991Ba06 interpret some of the bands as being parity doublets. From $\Delta < r^2 >$ data for Eu isotopes from $\alpha = 151$ through $\alpha = 159$, however, 1990AlZK conclude that, while octupole deformation is likely present in ¹⁵²Eu and ¹⁵⁴Eu, it is not present in ¹⁵⁶Eu. In their review of the odd-odd nuclides, 1998Ja07 state that present theoretical results are not consistent with octupole deformation in ¹⁵⁶Eu. In the present evaluation, the evaluator has not used the ideas of reflection asymmetry to describe the ¹⁵⁶Eu levels.

¹⁵⁶Eu Levels

1991Ba06 rely heavily on those two-quasiparticle states expected to be among the lowest-lying in ¹⁵⁶Eu to assign configurations to the proposed bandheads.

From model calculations, 1991Ba06 give the computed mixing of configurations for each level. Some of the significant mixtures are noted for the associated bands or levels.

Additional information 2.

Cross Reference (XREF) Flags

Α	$^{153}Eu(3n.\gamma)$
л	Lu(JII, y)

B 156 Sm β^- decay

C ¹⁵⁴Eu(t.p)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments					
0.0#	0+	15.19 d 8	AB	%β ⁻ =100 J ^π : From atomic-beam, magnetic resonance (1981Ek03). The data would also be consistent with J≠0 if μ were negligibly small. π=+, from log ft=5.95 to 1 ⁺ , 22.6 level and mult=M1 for the γ from it to the g.s. Other: from γ(θ) following β ⁻ decay of oriented ¹⁵⁶ Eu nuclei, 1981Ch07 deduce J=1. T _{1/2} : Weighted average of 15.18 d <i>10</i> (1964Da08), 15.21 d 24 (1965CaZZ), 15.11 d 5 (1966Da19), 15.17 d 3 (1971Ba28), and 15.95 d <i>12</i> (1972Em01). Δ <r<sup>2>(¹⁵⁶Eu-¹⁵¹Eu)=0.72 fm² 4, from collinear LASER spectroscopy (1985Al06 and, from the same group, 1986Al33). For λ, which is≈ Δ<r<sup>2>, 1990Al34 report λ(¹⁵⁶Eu)-λ(¹⁵¹Eu)=0.693 fm² 7, from resonance ionization spectroscopy. From their compilation of optical isotope-shift data, 1987Au06 report λ(¹⁵⁶Eu)-λ(¹⁵¹Eu)=0.63 fm²</r<sup></r<sup>					

Continued on next page (footnotes at end of table)

¹⁵⁶Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments
				4.
				From an evaluation of data on nuclear rms charge radii, 2004An14 report $^{1/2}=5.124$ fm 32.
22.5176 [#] 5	1^{+}		AB	J^{π} : M1 to 0 ⁺ g.s.
47.6728 [#] 7	2^{+}		AB	J^{π} : (M1) to 1 ⁺ and expected band structure.
87.4897 [@] 3	1-	12.0 ns 3	AB	J^{π} : E1 to 0 ⁺ g.s.
103.5942 [#] 8	3+		Α	J^{π} : M1 to 2 ⁺ and expected band structure.
125.4568 [@] 7	2^{-}		AB	J^{π} : M1 to 1 ⁻ , E1 to 1 ⁺ and expected band structure.
145.6816 ^{&} 11	5+		A	J^{π} : E2 to 3 ⁺ and the expected presence of this state at low energy in the level scheme (1991Ba06). The g.s. is the other coupling of these two Nilsson orbitals.
149.6725 ^{<i>a</i>} 16	5-		Α	J^{π} : E1 from 4 ⁺ , M1 from 5 ⁻ and the expected presence of this state (1991Ba06). The other coupling of these two orbitals is assigned to the K ^{π} =0 ⁻ bandhead at 217 keV.
159.7111 [#] <i>12</i>	4+		Α	J^{π} : M1 to 3 ⁺ and expected band structure.
175.1500 ^b 10	4+		A	J^{π} : M1 to 3 ⁺ , E2 to 5 ⁺ and the expected presence of this state (1991Ba06). The other coupling of these two Nilsson orbitals is assigned to the 1 ⁺ bandhead at 291 keV (1991Ba06).
184.1966 [@] 8 214.9306 ^c 10	3- 4-		A A	J^{π} : M1 to 2 ⁻ , E1 to 2 ⁺ and the expected band structure. J^{π} : E1 to 4 ⁺ and the expected presence of the state with this configuration. The other coupling of these two Nilsson orbitals is assigned (1991Ba06) to the K ^{π} =1 ⁻ bandhead at 87 keV.
217.7761 ^d 15	0^{-}		Α	J^{π} : E1 to 1 ⁺ and expected band structure.
250.1646 [#] 19	5+		Α	J^{π} : M1 to 4 ⁺ and expected band structure.
258.1440 [@] 12	4-		Α	J^{π} : E1 to 3 ⁺ and expected band structure.
260.1834 ^e 14	4+		Α	J^{π} : M1 to 5 ⁺ , E1 from 3 ⁻ .
266.947 ^{<i>a</i>} 3	1^{-}		AB	J^{π} : E1 to 2 ⁺ , γ to 0 ⁺ g.s.
268.7468 ^{<i>a</i>} 11	2-		Α	J^{π} : E1 γ 's to 1 ⁺ and 3 ⁺ .
268.7478? ^D 15	5+		Α	J^{π} : M1 to 4 ⁺ and expected band structure.
291.3037 ^J 20	1+ 5-	≤0.2 ns	AB	J^{π} : log ft=5.30 from $J^{\pi}=0^+$ (¹⁵⁰ Sm g.s.).
313.0984° <i>16</i>	5 2±		A	J": EI to 5' and expected band structure.
324.6951 ^J 11	2-		A	J^* : EI γ 's to I and 3.
343.3202^{a} 19	3		A	J': El γ 's to 2' and 4'.
353.4406° 11 368.5352 ⁸ 19	3 (5 ⁻)		A A	J^{-1} : E1 to 4 ⁺ and the expected presence of this two-quasiparticle state. J^{π} : E1 to 4 ⁺ , M1 to 5 ⁻ and the expected presence of the state with this configuration. This state may be mixed with the 5 ⁻ member of the K ^{π} =4 ⁻ band at 214.9 keV (1991Ba06).
375.3660 ^f 20	3+		Α	J^{π} : E1 γ 's to 2 ⁻ and 4 ⁻ .
386.3223 ^d 22	4-		Α	J^{π} : E1 γ' s to 3 ⁺ and 5 ⁺ .
434.2302 ⁱ 19	3-		A C	XREF: C(448). J^{π} : L=0 in (t,p) on a $J^{\pi}=3^{-}$ target.
435.5835 ^h 20	4-		Α	J^{π} : E1 to 4 ⁺ and expected band structure.
441.635 ^f 7	4+		Α	J^{π} : E1 to 3 ⁻ and expected band structure.
513.2906 28	1-		A	Assigned as a member of a $K^{\pi}=0^{-}$ band by 1991Ba06 (in ¹⁵³ Eu(3n, γ)). See the discussion of this point in the ¹⁵³ Eu(3n, γ) data set. J ^{π} : M1 γ 's to 0 ⁻ and 2 ⁻ levels.
524 ⁱ 15	(4 ⁻)		С	E(level): From 1984La06, (t,p). J ^{π} : Possible member of the K ^{π} =3 ⁻ band at 434.2 keV.
675 16			С	E(level): From 1984La06, (t,p).

Continued on next page (footnotes at end of table)

¹⁵⁶Eu Levels (continued)

- [†] From the ¹⁵³Eu(3n, γ) data, except two values from the ¹⁵⁴Eu(t,p) reaction.
- ^{\ddagger} For excited states, from ¹⁵⁶Sm decay (1968An09).
- [#] Band(A): $K^{\pi}=0^+$ g.s. band. configuration= $\pi 5/2[413]-v5/2[642]$. For the even-spin members, $\alpha=7.93$ keV, $\beta=+2.86$ eV. For the odd-spin members, $\alpha=8.09$ keV, $\beta=+1.26$ eV. The energies of the odd-spin members are shifted upward from where they would be expected to be in a "normal" band by ≈ 6.5 keV (related to the Newby shift).
- [@] Band(B): $K^{\pi}=1^{-}$ band. configuration= $\pi 5/2[413]-\nu 3/2[521]$. $\alpha=9.66$ keV, $\beta=-4.6$ eV, $A_2=+69$ eV.
- [&] Band(C): $K^{\pi}=5^+$ bandhead. configuration= $\pi 5/2[413]+\nu 5/2[642]$.
- ^{*a*} Band(D): $K^{\pi}=5^{-}$ bandhead. configuration= $\pi 5/2[532]+\nu 5/2[642]$.
- ^b Band(E): $K^{\pi}=4^{+}$ band. configuration= $\pi 5/2[532]+\nu 3/2[521]$. $\alpha = 9.36$ keV.
- ^c Band(F): $K^{\pi}=4^{-}$ band. configuration= $\pi 5/2[413]+\nu 3/2[521]$. $\alpha = 9.82$ keV.
- ^d Band(G): $K^{\pi}=0^{-}$ band. configuration= $\pi 5/2[532]-\nu 5/2[642]$.
- ^{*e*} Band(H): $K^{\pi} = 4^{+}$ bandhead. configuration= $\pi 3/2[411] + \nu 5/2[642]$.
- ^{*f*} Band(I): $K^{\pi}=1^+$ band. configuration= $\pi 5/2[532]-\nu 3/2[521]$. $\alpha=8.39$ keV, $A_2=+19.5$ eV. To explain the relatively low log *ft* value of the β^- transition to the bandhead, 1991Ba06 propose that there is an admixture of the configuration $\pi 7/2[523]-\nu 5/2[523]$ in this band.
- ^g Band(J): $K^{\pi}=5^{-}$ band. configuration= $\pi 5/2[413]+\nu 5/2[523]$. 1991Ba06 propose that there is an admixture of the 5⁻ member of the $K^{\pi}=4^{-}$ band having configuration= $\pi 5/2[413]+\nu 3/2[521]$.
- ^{*h*} Band(K): $K^{\pi}=3^{-}$ band. configuration= $\pi 3/2[411]+\nu 3/2[521]$. $\alpha=10.27$ keV.
- ^{*i*} Band(L): $K^{\pi}=3^{-}$ band. configuration= $\pi5/2[413]-\nu11/2[505]$. 1991Ba06 propose some admixture of the configuration $\pi3/2[411]+\nu3/2[521]$ in order to account for the γ decay of the band members.

$\gamma(^{156}\text{Eu})$

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{#@}	α &	$I_{(\gamma+ce)}$	Comments
22.5176	1^{+}	22.525 6	100	0.0	$\overline{0^+}$	M1	22.6		
47.6728	2^{+}	25.1550 5	100	22.5176	1^{+}	(M1)	16.31		
87.4897	1-	39.7805 ^{<i>a</i>} 4	<6	47.6728	2+	[E1]	0.606		I_{γ} : Most of the intensity of this doublet is placed elsewhere in the level scheme (see the discussion in the ¹⁵³ Eu(3n, γ) data set).
		64.9725 4	7.8 9	22.5176	1+	E1	0.900		B(E1)(W.u.)= $4.28 \times 10^{-6} + 42 - 15$ B(E1)(W.u.): The range of values includes the uncertainty reghardingstribution of the 39 γ to the decay of this level.
		87.4897 <i>3</i>	100 3	0.0	0+	E1	0.407		B(E1)(W.u.)=1.83×10 ⁻⁵ +17-6 B(E1)(W.u.): The range of values includes the uncertainty reglarding
103.5942	3+	55.9208 6	100	47.6728	2^{+}	M1	9.88		
125.4568	2-	37.9681 7	100 8	87.4897	1-	M1	4.82		
		102.9361 15	46 11	22.5176	1^{+}	E1	0.262		
145.6816	5+	42.0879 8	100	103.5942	3+	E2	76.6		
149.6725	5-	(3.99)		145.6816	5+	[E1]			E_{γ} : Computed from level energies. Placement deduced to explain decay of 149 level (1991Ba06).
159.7111	4^{+}	56.1179 20	100 13	103.5942	3+	M1	9.78		
		112.0381 13	14.6 18	47.6728	2^{+}	[E2]	1.607		Mult.: Mult=M1,E2 from ce data, but placement requires E2.
175.1500	4+	29.478 5		145.6816	5+	E2	444	$1.58 \times 10^2 4$	
		71.5555 5	100 7	103.5942	3+	M1	4.84		
		127.478 <i>3</i>	9.4 20	47.6728	2^{+}	[E2]	1.015		Mult.: Mult=M1,E2 from ce data, but placement requires E2.
184.1966	3-	58.7402 6	100 8	125.4568	2^{-}	M1	8.58		
		136.5234 29	26 7	47.6728	2^{+}	E1	0.1222		
214.9306	4-	39.7805 ^a 4	100	175.1500	4+	E1	0.606		
217.7761	0^{-}	195.2586 15	100	22.5176	1^{+}	E1	0.0467		
250.1646	5+	90.4564 18	100 16	159.7111	4+	M1	2.46		
		146.563 4	17 4	103.5942	3+	E2	0.622		
258.1440	4-	73.9501 14	100 8	184.1966	3-	M1	4.40		
		132.6885 23	17 4	125.4568	2-	E2	0.881		
		154.5454 20	69 9	103.5942	3+	E1	0.0874		
260.1834	4+	85.0345 15	18 <i>3</i>	175.1500	4+	M1	2.94		
		110.5106 8	100 3	149.6725	5-	E1	0.217		
		114.5018 16	14.8 17	145.6816	5+	M1	1.253		
266.947	1-	219.277 <i>3</i>	100 7	47.6728	2+	E1	0.0344		
		266.937 6	38 7	0.0	0^{+}				
268.7468	2-	165.1527 7	40 <i>3</i>	103.5942	3+	E1	0.0734		
		246.223 4	100 10	22.5176	1^{+}	E1	0.0254		
268.7478?	5+	93.5972 ^b 12	100	175.1500	4+	M1	2.23		
291.3037	1^{+}	165.8452 24	60 10	125.4568	2^{-}	E1	0.0723		$B(E1)(W.u.) \ge 7.4 \times 10^{-5}$
		203.818 <i>3</i>	100 80	87.4897	1-	E1	0.0417		$B(E1)(W.u.) \ge 6.7 \times 10^{-5}$

From ENSDF

$\gamma(^{156}\text{Eu})$ (continued)

291 313 324	(level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{#@}	α ^{&}	
313 324	1.3037	1+	244.0 8	10 4	47.6728	2^{+}	[M1.E2]	0.132 21	
313 324			268.5 8	11 4	22.5176	1+	[M1.E2]	0.100 18	
313 324			291.0 8	13.5	0.0	0^{+}	[M1]	0.0954 15	B(M1)(W.u.)>2.
324	3.0984	5-	137.9447 29	54 6	175.1500	4+	[]		_()()
324			167.4175 13	100 78	145.6816	5+	E1	0.0705	
	4.6951	2^{+}	140.4983 8	33 5	184.1966	3-	E1	0.1130	
			237.218 6	100 15	87.4897	1-	E1	0.0280	
			302.177 7	19.8 19	22.5176	1+	M1	0.0863	
343	3.3202	3-	183.6048 23	39 4	159.7111	4+	E1	0.0550	
			295.6528 26	100 11	47.6728	2^{+}	E1	0.0158 9	
353	3.4406	3-	138.5097 5	38.9 17	214.9306	4^{-}	M1	0.731	
			178.2918 11	100 8	175.1500	4+	E1	0.0595	
368	8.5352	(5^{-})	99.7855 20	50 12	268.7478?	5+			
			193.3852 26	88 13	175.1500	4^{+}	E1	0.0479	
			218.885 7	100 15	149.6725	5-	M1	0.205	
375	5.3660	3+	117.2242 20	15 <i>3</i>	258.1440	4^{-}	E1	0.185	
			191.177 <i>13</i>	5.0 9	184.1966	3-			
			249.900 4	100 19	125.4568	2^{-}	E1	0.0244	
380	6.3223	4-	43.0076 8	45 6	343.3202	3-			I_{γ} : If this placer
			136.1584 <i>13</i>	16.1 24	250.1646	5^{+}	E1	0.1231	/
			282.717 5	100 11	103.5942	3+	E1	0.0178	
434	4.2302	3-	80.7893 28	74 16	353.4406	3-	M1	3.41	
			174.0466 19	100 13	260.1834	4^{+}	E1	0.0635	
			259.082 5	52 10	175.1500	4+	E1	0.0223	
43	5.5835	4-	82.1396 28	24 5	353.4406	3-			
			220.6563 24	100 11	214.9306	4-	M1	0.201	
			260.425 7	75 9	175.1500	4^{+}	E1	0.0220	
44	1.635	4+	257.438 7	100	184.1966	3-	E1	0.0226	
513	3.2906	1-	244.540 <i>3</i>	97 19	268.7468	2^{-}	M1	0.1521	
			205 517 6	100.8	217 7761	0^{-}	M1	0.0915	
			295.517 0	100 0	217.7701	0	1411	0.0715	
			387.863 12	28 4	125.4568	2^{-}	E2	0.0270	

 $.8 \times 10^{-4}$

ement is correct, the intensity is too large (1991Ba06).

Comments

[†] From the ¹⁵³Eu(3n, γ) data. Other: ¹⁵⁶Sm β^- decay. [‡] From the ¹⁵³Eu(3n, γ) data, unless otherwise noted. Other: ¹⁵⁶Sm β^- decay. [#] From ce data from ¹⁵³Eu(3n, γ) data primarily and ¹⁵⁶Sm β^- decay.

[@] Additional information 3.

 $^{\&}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed.

S

^b Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁵⁶₆₃Eu₉₃

6

¹⁵⁶Eu₉₃

7

 $^{156}_{63}\mathrm{Eu}_{93}$ -7

Adopted Levels, Gammas

 $^{156}_{63}\mathrm{Eu}_{93}$

¹⁵⁶₆₃Eu₉₃

Band(L): $K^{\pi}=3^{-}$ band (4⁻) 524

3- 434.2302

¹⁵⁶₆₃Eu₉₃