¹⁵⁶Tm ε decay (83.8 s) 1975Ag02,1980Zo02

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Parent: 156 Tm: E=0; $J^{\pi}=2^{-}$; $T_{1/2}=83.8 \text{ s } 18$; $Q(\varepsilon)=7373 28$; $\%\varepsilon+\%\beta^{+}$ decay=100.0

 156 Tm-J $^{\pi}$: Additional information 1.

 156 Tm- $T_{1/2}$: Additional information 2.

¹⁵⁶Tm-Q(ε): Additional information 3.

Additional information 4.

2003NaZX, using total-absorption γ spectroscopy, measured the Gamow-Teller strength distribution in the ¹⁵⁶Tm decay to ¹⁵⁶Er. This information is presented in graphical form only.

1975Ag02: ¹⁵⁶Tm source material produced by the (p,xn) reaction (E(p)=157 MeV) on natural Er, followed by isotope separation. Measured γ singles, γγ coincidences using two Ge(Li) detectors of volumes 30 cm³ and 40 cm³. ce spectra measured using a 150 mm²×3 mm Si(Li) detector. Report Eγ, Iγ, γγ, ce(K).

1980Zo02: 156 Tm produced via the 148 Sm(14 N,6n) reaction on isotope-separated targets. E(14 N)=109,113,119 MeV. Reaction products collected and transported to counting station using a He-jet system. γ spectra studied using 30 cm³ and 55 cm³ Ge(Li) detectors and a 1 cm³ planar Ge(Li) detector. ce spectra measured using a 2 cm²×3 mm Si(Li) detector. Measured γ singles, $\gamma\gamma$ coincidences and α (K)exp values.

¹⁵⁶Er Levels

The two published decay schemes differ substantially in that several levels are reported in only one scheme: there are 5 levels reported by 1975Ag02 only, 9 levels by 1980Zo02 only, and 11 levels reported by both. There is, however, only 1 γ that is differently placed.

The coincidences indicated on the level scheme drawing are from 1975Ag02.

No $\varepsilon + \beta^+$ intensities or log ft values are given on the level scheme drawing since the values deduced from the γ -intensity balances are clearly not meaningful. For example, they give $\log f^1 t \approx 8.1$ for some unique first-forbidden transitions; and the $\varepsilon + \beta^+$ intensities are comparable for ordinary and first-forbidden, unique transitions. These computed $\varepsilon + \beta^+$ intensities are most probably too large because, with a decay energy above 7 MeV, there are many higher-lying levels that are not observed, whose deexciting γ 's would influence the deduced intensity balance for a number of levels.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0&	0+	19.5 min <i>10</i>	$T_{1/2}$: From the Adopted Levels data set.
344.51 <mark>&</mark> 6	2+		
797.38 <mark>&</mark> 8	4+		
930.35 ^a 9	0_{+}		E(level): Level is unresolved from 2 ⁺ level.
930.46 ^b 7	2+		E(level): Level is unresolved from 0^+ level.
1220.80 ^a 9	2+		
1243.02 [#] 21			J^{π} : Assigned as the 3 ⁺ member of the γ -vibrational band by 1980Zo02, but this band member is placed elsewhere (at 1350 keV) in the level scheme in the high-spin study of 2011Re06. γ 's to 2 ⁺ levels indicate J^{π} values from 0 ⁺ to 4 ⁺ .
1303.52 ^c 11 1304.8? [@]	3-		
1340.88 [@] <i>17</i>	6+		
1351.31 ^b 9 1381.9? [@]	3+		J^{π} : From 1975Ag02 and the high-spin study of 2011Re06. Assigned as 4 ⁺ by 1980Zo02.
1406.1 <i>1</i>	4+		J^{π} : From the high-spin study of 2011Re06. Assigned as the 2 ⁺ member of an even-spin positive-parity band by 1980Zo02.
1517.89 ^{#c} 18 1546.72 ^a 11	(1 ⁻) 4 ⁺		

¹⁵⁶Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1570.74 ^d 15	2+	
1611.68 [#] c 22	5-	
	2-	
1663.40 ^{#b} 16		J^{π} : Assigned as the 5 ⁺ member of the γ -vibrational band by 1980Zo02, but this band member is placed elsewhere (at 1834 keV) in the level scheme in the high-spin study of 2011Re06. γ to 4 ⁺ level indicates J^{π} values from 2 ⁺ to 6 ⁺ .
1710.52 [#] 21		J^{π} : γ to 2^+ indicates J^{π} from 0^+ through 4^+ . ce data suggest an E0 component in this transition (1975Ag02).
1814.48 [#] e 22	4-	
1836.1? [@]		This level may be the same as the 1834 level reported in the high-spin study of 2011Re06.
1860.8 [#] d 6	(3^{+})	
1909.54 [#] <i>19</i>	2+,3,4+	J^{π} : Assigned as the 3 ⁻ member of some octupole-related states by 1980Zo02, but that 3 ⁻ level is placed at 1303 in the high-spin study of 2009Pa17.
2014.60 18		
2169.8 [#] 3		
2249.81 [@] 22		

[†] From least-squares fit to γ energies.

γ (156Er)

Iy normalization: calculated to give 100% feeding to the ground state for this decay scheme. The listed uncertainty includes only the contributions from the intensities in this scheme. However, there is probably a significant systematic error to be considered due to incompleteness of the decay scheme. With a decay energy of over 7 MeV, there will be ε decay to many levels above the highest one reported here. This incompleteness is supported by the unreasonable log ft values computed from the γ -intensity balances. This problem is somewhat mitigated by the fact that most of the decays will pass through the 344 keV 2⁺ level, rather than bypassing it to the ground state. A second significant error may come from the direct ε + β ⁺ feeding of the ground state. From systematics (1973Ra10) one expects log $f^1t \ge 8.5$ or an intensity $\le 4\%$ for this branch.

 γ 's that are only tentatively assigned to this decay by 1975Ag02, not reported by 1980Zo02, and not placed in the decay scheme are not included in this table. These γ 's are at 763.9, 974.9, 1415.2, 1545.5, and 1573.4 keV.

[‡] From ¹⁵⁶Er Adopted Levels.

[#] Level from 1980Zo02 only.

[@] Level from 1975Ag02 only.

[&]amp; Band(A): $K^{\pi}=0^{+}$ ground-state band.

^a Band(B): First excited $K^{\pi}=0^{+}$ band.

^b Band(C): $K^{\pi}=2^{+}$ γ -vibrational band.

^c Band(D): $K^{\pi}=0^{-}$ octupole band. From the systematics of octupole states in the neighboring N=88 nuclides, 1980Zo02 infer that these states form an octupole band. Note, however, that the configurational make-up of this band is thought to change at higher spin values (see, e.g., 1980Zo02 in (HI,xny) and the comment on the associated band in the Adopted Levels data set).

^d Band(E): $K^{\pi}=2^{+}$ band. Possible two-phonon βγ-vibration.

^e Band(F): Probable octupole-related states. From consideration of the systematics of octupole excitations in the N=88 nuclides in this mass region, as well as from results of a quadrupole-octupole coupling calculation, 1980Zo02 infer that these levels have octupole character.

$^{156} \text{Tm } \varepsilon \ \text{decay} \ (83.8 \ \text{s}) \qquad \textbf{1975Ag02,1980Zo02} \ (\text{continued})$

γ ⁽¹⁵⁶Er) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^f	Comments
290.68 14	0.44 7	1220.80	2+	930.35	0+	[E2]	0.0760	$\alpha(K)$ =0.0553 8; $\alpha(L)$ =0.01605 23; $\alpha(M)$ =0.00376 6; $\alpha(N+)$ =0.000973 14 $\alpha(N)$ =0.000860 13; $\alpha(O)$ =0.0001102 16; $\alpha(P)$ =2.83×10 ⁻⁶ 4
312.4 ^{bh} 4 326.00 10	0.3 <i>I</i> 0.28 <i>4</i>	1243.02 1546.72	4+	930.46 1220.80		[E2]	0.0538	$\alpha(K)$ =0.0401 6; $\alpha(L)$ =0.01059 15; $\alpha(M)$ =0.00247 4; $\alpha(N+)$ =0.000641 9 $\alpha(N)$ =0.000565 8; $\alpha(O)$ =7.33×10 ⁻⁵ 11;
344.55 7	100 3	344.51	2+	0	0+	E2	0.0457	$\alpha(P)=2.10\times10^{-6}$ 3 $\alpha(K)=0.0345$ 5; $\alpha(L)=0.00871$ 13; $\alpha(M)=0.00202$ 3; $\alpha(N+)=0.000527$ 8 $\alpha(N)=0.000464$ 7; $\alpha(O)=6.05\times10^{-5}$ 9; $\alpha(P)=1.82\times10^{-6}$ 3 I _y : Listed uncertainty is assumed by the evaluator. Mult.: From $\gamma(\theta)$ in (HI,xn γ) (1973Be43), mult=Q. RUL eliminates M2.
350.0 [@] 5	0.20 8	1570.74	2+	1220.80	2+	[M1,E2]	0.066 23	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.054 \ 2I; \ \alpha(\mathrm{L}) \! = \! 0.0096 \ I4; \\ \alpha(\mathrm{M}) \! = \! 0.0022 \ 3; \ \alpha(\mathrm{N}+) \! = \! 0.00057 \ 8 \\ \alpha(\mathrm{N}) \! = \! 0.00050 \ 7; \ \alpha(\mathrm{O}) \! = \! 6.9 \times 10^{-5} \ I3; \\ \alpha(\mathrm{P}) \! = \! 3.1 \times 10^{-6} \ I4 \end{array}$
*406.9 [@] 3 420.78 9	0.11 <i>4</i> 1.8 <i>3</i>	1351.31	3+	930.46	2+	E2	0.0260	$\alpha(K)$ =0.0202 3; $\alpha(L)$ =0.00445 7; $\alpha(M)$ =0.001025 15; $\alpha(N+)$ =0.000268 4 $\alpha(N)$ =0.000236 4; $\alpha(O)$ =3.14×10 ⁻⁵ 5; $\alpha(P)$ =1.100×10 ⁻⁶ 16 Additional information 10.
423.40 <i>17</i> *429.90 [@] <i>15</i>	0.51 8	1220.80	2+	797.38	4+	[E2]	0.0256	$\alpha(K)$ =0.0199 3; $\alpha(L)$ =0.00437 7; $\alpha(M)$ =0.001004 15; $\alpha(N+)$ =0.000263 4 $\alpha(N)$ =0.000231 4; $\alpha(O)$ =3.08×10 ⁻⁵ 5; $\alpha(P)$ =1.083×10 ⁻⁶ 16
451.5 ^h 4	< 0.15	1381.9?		930.35	0^{+}			
452.85 7	20.1 10	797.38	4+	344.51		E2	0.0213	$\alpha(K)$ =0.01677 24; $\alpha(L)$ =0.00353 5; $\alpha(M)$ =0.000808 12; $\alpha(N+)$ =0.000212 3 $\alpha(N)$ =0.000186 3; $\alpha(O)$ =2.50×10 ⁻⁵ 4; $\alpha(P)$ =9.19×10 ⁻⁷ 13 Additional information 5.
475.63 11	1.06 9	1406.1	4+	930.46	2+			
484.85 ^{ch} 15	0.53 7	1836.1?		1351.31	3 ⁺			
507.4 ^h 4	< 0.2	1304.8?		797.38	4+			
543.50 [@] 15	0.32 6	1340.88	6+	797.38	4+	E2	0.01331	$\alpha(K)$ =0.01069 <i>15</i> ; $\alpha(L)$ =0.00203 <i>3</i> ; $\alpha(M)$ =0.000463 <i>7</i> ; $\alpha(N+)$ =0.0001219 <i>18</i> $\alpha(N)$ =0.0001068 <i>15</i> ; $\alpha(O)$ =1.456×10 ⁻⁵ <i>21</i> ; $\alpha(P)$ =5.96×10 ⁻⁷ 9 Mult.: From $\alpha(K)$ exp=0.0110 <i>17</i> , in (HI,xny) (1974Go14).
553.98 <i>13</i>	1.04 9	1351.31	3+	797.38	4+			C. P. C. C. C. C. W.
557.9 ^b 4	0.4 2	1909.54	2+,3,4+	1351.31	3+			

$^{156}{ m Tm}~arepsilon$ decay (83.8 s) 1975Ag02,1980Zo02 (continued)

γ ⁽¹⁵⁶Er) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{^{\sharp}e}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.#	α^f	Comments
585.938 8	<17.08	930.35	0+	344.51 2+	[E2]	0.01106	$\alpha(K)=0.00895 \ 13; \ \alpha(L)=0.001643 \ 23;$ $\alpha(M)=0.000372 \ 6; \ \alpha(N+)=9.83\times10^{-5}$ 14 $\alpha(N)=8.60\times10^{-5} \ 12; \ \alpha(O)=1.180\times10^{-5}$ $17; \ \alpha(P)=5.01\times10^{-7} \ 7$ $I_{\gamma}: Only a minor part of this I_{\gamma} is from$
585.93 ^g 8	17.0 ^g 9	930.46	2+	344.51 2+	E2	0.01106	this level (1975Ag02). $\alpha(K)=0.00895\ 13;\ \alpha(L)=0.001643\ 23;\ \alpha(M)=0.000372\ 6;\ \alpha(N+)=9.83\times10^{-5}\ 14$ $\alpha(N)=8.60\times10^{-5}\ 12;\ \alpha(O)=1.180\times10^{-5}\ 17;\ \alpha(P)=5.01\times10^{-7}\ 7$ I _y : The major part of this Iy is from this level (1975Ag02). Additional information 7.
608.84 <i>13</i> 640.44 <i>18</i>	1.70 <i>14</i> 0.58 <i>9</i>	1406.1 1570.74	4 ⁺ 2 ⁺	797.38 4 ⁺ 930.46 2 ⁺	E0+M1+E2	0.11 3	$\alpha(K) \exp = 0.088 \ 26$
040.44 18	0.38 9	13/0./4	Σ'	930.40 2	E0+M1+E2	0.11 3	$\alpha(K)$ exp=0.088 20 α : Computed from $\alpha(K)$ exp and theoretical $\alpha/\alpha(K)$ ratios. $\alpha(K)$ exp: From 1975Ag02.
699.9 2	1.47 <i>17</i>	1630.50	2-	930.46 2+	[E1]	0.00274	$\alpha(K)=0.00233 \ 4; \ \alpha(L)=0.000320 \ 5; \ \alpha(M)=7.01\times10^{-5} \ 10; \ \alpha(N+)=1.87\times10^{-5} \ 3 \ \alpha(N)=1.628\times10^{-5} \ 23; \ \alpha(O)=2.34\times10^{-6} \ 4; \ \alpha(P)=1.264\times10^{-7} \ 18$
749.0 2	0.61 14	1546.72	4+	797.38 4+	E0+M1+E2	0.044 19	$\alpha(K)\exp=0.037 \ 16$ α : Computed from $\alpha(K)\exp$ and theoretical $\alpha/\alpha(K)$ ratios. $\alpha(K)\exp$: From 1975Ag02.
773.0 ^c 3	0.23 6	1570.74	2+	797.38 4+	[E2]	0.00582	$\alpha(K)$ =0.00480 7; $\alpha(L)$ =0.000791 11; $\alpha(M)$ =0.0001773 25; $\alpha(N+)$ =4.71×10 ⁻⁵ 7 $\alpha(N)$ =4.11×10 ⁻⁵ 6; $\alpha(O)$ =5.75×10 ⁻⁶ 8; $\alpha(P)$ =2.72×10 ⁻⁷ 4
814.3 ^a 2	0.68 15	1611.68	5-	797.38 4+	[E1]	0.00202	$\alpha(K)=2.72\times10^{-4}$ $\alpha(K)=0.001723\ 25;\ \alpha(L)=0.000235\ 4;$ $\alpha(M)=5.15\times10^{-5}\ 8;$ $\alpha(N+)=1.378\times10^{-5}\ 20$ $\alpha(N)=1.196\times10^{-5}\ 17;\ \alpha(O)=1.720\times10^{-6}$ $24;\ \alpha(P)=9.40\times10^{-8}\ 14$
	0.19 8						
866.02 ^a 14 876.20 14	0.53 <i>7</i> 2.7 2	1663.40 1220.80	2+	797.38 4 ⁺ 344.51 2 ⁺	E0+E2(+M1)	0.043 12	$\alpha(K)$ exp=0.036 10 α : Computed from $\alpha(K)$ exp and theoretical $\alpha/\alpha(K)$ ratios. $\alpha(K)$ exp: Average of 0.042 11 (1975Ag02) and 0.032 8 (1980Zo02).
898.5 ^{gd} 2	1.50 ^g 14	1243.02		344.51 2+			
898.5 <i>gd</i> 2 930	1.50 ^g 14	2249.81 930.35	0+	1351.31 3 ⁺ 0 0 ⁺	E0		I_{γ} : The ce lines of this transition and
730		730.33	U	0 0	Eu		those of the 930.46 γ from the 930-keV, 2 ⁺ level form a doublet structure. However, since this is an E0

γ ⁽¹⁵⁶Er) (continued)

E_{γ}^{\dagger}	I_{γ} ‡ e	$E_i(level)$	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	α^f	Comments
								transition, all of the γ intensity is assigned to the 930.42 γ . Mult.: $\alpha(K)$ exp for 930+930.4 corresponds to M1 or M1,E2, and is interpreted as arising from an E0 transition and an E2 γ .
930.42 9	5.9 4	930.46	2+	0	0+	E2	0.00390	Additional information 6. $\alpha(K)=0.00325$ 5; $\alpha(L)=0.000507$ 7; $\alpha(M)=0.0001130$ 16; $\alpha(N+)=3.01\times10^{-5}$ 5
								$\alpha(N)=2.62\times10^{-5}$ 4; $\alpha(O)=3.71\times10^{-6}$ 6; $\alpha(P)=1.85\times10^{-7}$ 3 Mult.: $\alpha(K)$ exp for 930+930.4 corresponds to M1 or M1,E2, and is interpreted as arising from an E0 transition and an E2 γ .
959.00 9	10.3 6	1303.52	3-	344.51	2+	E1	1.48×10^{-3}	Additional information 8. $\alpha(K)=0.001262$ 18; $\alpha(L)=0.0001705$ 24; $\alpha(M)=3.73\times10^{-5}$ 6; $\alpha(N+)=1.000\times10^{-5}$ 14
								$\alpha(N)=8.68\times10^{-6}\ 13;\ \alpha(O)=1.252\times10^{-6}\ 18;\ \alpha(P)=6.91\times10^{-8}\ 10$ Additional information 9.
1006.86 16	3.6 3	1351.31	3 ⁺	344.51		FF11	1 22 10=3	(IV) 0.001121 IC (IV) 0.0001524 22
1017.1 ^a 2	1.27 17	1814.48	4-	797.38	4'	[E1]	1.33×10^{-3}	$\alpha(K)$ =0.001131 16; $\alpha(L)$ =0.0001524 22; $\alpha(M)$ =3.34×10 ⁻⁵ 5; $\alpha(N+)$ =8.94×10 ⁻⁶ 13
								$\alpha(N)=7.76\times10^{-6} \ II; \ \alpha(O)=1.120\times10^{-6} \ I6; \ \alpha(P)=6.20\times10^{-8} \ 9$
1061.3 ^{&} 4	1.0 3	1406.1	4+	344.51	2+			E_{γ} : γ is questionable, since it was not reported by 1975Ag02 and weaker lines were reported by them in this energy region.
1084.4 3	0.25 8	2014.60		930.35	0^+			
^x 1160.5 [@] 4 1173.34 <i>19</i>	0.19 <i>6</i> ≈0.5	1517.89	(1-)	344.51	2+	[E1]	1.04×10^{-3}	$\alpha(K)$ =0.000873 13; $\alpha(L)$ =0.0001169 17;
								$\alpha(M)=2.56\times10^{-5} \ 4; \ \alpha(N+)=2.02\times10^{-5} \ 3$
								α (N)=5.95×10 ⁻⁶ 9; α (O)=8.60×10 ⁻⁷ 12; α (P)=4.80×10 ⁻⁸ 7; α (IPF)=1.332×10 ⁻⁵ 20
1202.2 2	1.05 15	1546.72	4+	344.51	2+	[E2]	0.00232	$\alpha(K)$ =0.00195 3; $\alpha(L)$ =0.000287 4; $\alpha(M)$ =6.36×10 ⁻⁵ 9; $\alpha(N+)$ =2.24×10 ⁻⁵
								$\alpha(N)=1.479\times10^{-5}\ 21;\ \alpha(O)=2.11\times10^{-6}\ 3;\ \alpha(P)=1.112\times10^{-7}\ 16;\ \alpha(IPF)=5.36\times10^{-6}$ 8
1220.83 17	3.5 3	1220.80	2+	0	0+	[E2]	0.00226	$\alpha(K)$ =0.00189 3; $\alpha(L)$ =0.000278 4; $\alpha(M)$ =6.16×10 ⁻⁵ 9; $\alpha(N+)$ =2.39×10 ⁻⁵
								α (N)=1.431×10 ⁻⁵ 20; α (O)=2.05×10 ⁻⁶ 3; α (P)=1.079×10 ⁻⁷ 16; α (IPF)=7.43×10 ⁻⁶ 11
1226.1 ^h 3	1.40 14	1570.74	2+	344.51				
1286.05 14	3.1 4	1630.50	2-	344.51 Conti	2 ⁺ nued	[E1] on next pa	9.29×10 ⁻⁴ age (footnotes	$\alpha(K)$ =0.000742 11; $\alpha(L)$ =9.90×10 ⁻⁵ 14; at end of table)

γ (156Er) (continued)

${\rm E}_{\gamma}{}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	α^f	Comments
1366,0 ^a 2	1.8 3	1710.52		344.51	2+			$\alpha(M)=2.17\times10^{-5} 3;$ $\alpha(N+)=6.63\times10^{-5} 10$ $\alpha(N)=5.04\times10^{-6} 7; \alpha(O)=7.29\times10^{-7}$ $11; \alpha(P)=4.08\times10^{-8} 6;$ $\alpha(IPF)=6.05\times10^{-5} 9$
x1405.0 5	0.5 1	1710.52		344.31	2			Placed from the 1406 level by 1980Zo02, but this level has subsequently been assigned as 4^+ in the high-spin study of 2011Re06. 1975Ag02 do not place this γ , stating that it is not firmly associated with this decay.
1516.3 ^a 6	1.4 5	1860.8	(3+)	344.51	2+	[M1,E2]	0.0020 4	associated with this decay. $\alpha(K)=0.0016 \ 4; \ \alpha(L)=0.00022 \ 5;$ $\alpha(M)=4.9\times10^{-5} \ 10;$ $\alpha(N+)=9.9\times10^{-5} \ 12$ $\alpha(N)=1.15\times10^{-5} \ 24; \ \alpha(O)=1.7\times10^{-6}$ $4; \ \alpha(P)=9.3\times10^{-8} \ 22;$ $\alpha(IPF)=8.6\times10^{-5} \ 9$ I_{γ} : From 1980Zo02. 1975Ag02 report a single value (3.2 6) for the
1518.0 4	2.2 5	1517.89	(1-)	0	0+	[E1]	8.62×10 ⁻⁴	combined 1516.3 and 1518.0 γ 's. α (K)=0.000558 8 ; α (L)=7.40×10 ⁻⁵ 11 ; α (M)=1.619×10 ⁻⁵ 23 ; α (N+)=0.000214 3 α (N)=3.77×10 ⁻⁶ 6 ; α (O)=5.46×10 ⁻⁷ 8 ; α (P)=3.08×10 ⁻⁸ 5 ; α (IPF)=0.000210 3 I $_{\gamma}$: From 1980Zo02. 1975Ag02 report a single value (3.2 6) for the combined 1516.3 and 1518.0 γ 's.
^x 1529.3 [@] 4 1565.1 ^a 2	0.47 <i>13</i> 1.9 <i>3</i>	1909.54	2+,3,4+	344.51	2+			
*1663.9 3 1670.0 2 *1677.2 5 *1711.7 10 *1722.5 8 *1738.7 10 *1760.5 8 *1767.3 8 *1779.4 9	1.35 21 1.6 2 0.28 9 0.25 9 0.36 9 0.28 9 0.43 13 0.19 8	2014.60		344.51	2+			
1825.3 ^a 3	0.95 14	2169.8		344.51	2+			

 $^{^{\}dagger}$ From weighted average of values of 1975Ag02 and 1980Zo02.

[‡] From weighted average of values of 1975Ag02 and 1980Zo02.

[#] Except for the 344 and 543 γ 's, the assignments are those of 1975Ag02 and 1980Zo02 and are based on the $\alpha(K)$ exp values. In deducing these values, the normalization of the ce and γ intensity scales was done using the theoretical $\alpha(K)$ value for the 344 γ , assuming a pure E2 multipolarity.

γ (156Er) (continued)

- [@] From 1975Ag02 only.
- & From 1980Zo02 only.
- ^a Placed only by 1980Zo02; but observed in both studies.
- ^b Only tentatively assigned to this decay by 1980Zo02 and not reported by 1975Ag02.
- ^c Only tentatively assigned to this decay by 1975Ag02 and not reported by 1980Zo02.
- d γ placed from 1243-keV level by 1980Zo02 and from 2249-keV level by 1975Ag02.
- ^e For absolute intensity per 100 decays, multiply by 0.86 2.
- f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^g Multiply placed with undivided intensity.
- ^h Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

¹⁵⁶Tm ε decay (83.8 s) 1975Ag02,1980Zo02

Decay Scheme

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ Oecay (Uncertain) Coincidence

Legend

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

19.5 min 10

 $^{156}_{68}\mathrm{Er}_{88}$

156 Tm ε decay (83.8 s) 1975Ag02,1980Zo02

Decay Scheme (continued)

Legend

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

$^{156}\mathrm{Tm}\;\varepsilon\;\mathrm{decay}\;(83.8\;\mathrm{s})$ 1975Ag02,1980Zo02

