Adopted Levels, Gammas

		Tvr	ie.	Author	History Citation	Literature Cutoff Date
		Full Evaluation		C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012
$Q(\beta^{-})=-7.38 \times 10^{3}$ $Q(\varepsilon)=1.27 \times 10^{3}$ Additional inform Additional inform In addition to the authors report	$0^{3} 3$; S(1 6; S(2n)= mation 1 mation 2 e 3450 a rt I _{α} =5×	a)= 1.007×10^4 3 = 1.775×10^4 3; a transition, 199 10^{-6} 2 % per c	8; S(p)=5 S(2p)=8. 2KaZP a lecay for	$.46 \times 10^{3} 3$; Q(a 40×10 ³ 3 2 and 1995KaZS this branch.	α)=3.48×10 ³ 3 2017Wa 017Wa10 report a weak α branch, w	with E α =3.03 MeV 7, from ¹⁵⁶ Er. These
					¹⁵⁶ Er Levels	
Model calculat 1977PIZX of and negative	tions rela r 1977Pl -parity b	ated to level end 05, 1978De02, ands are given	ergies and 1985Ra3 in the stu	d B(E2) include 1, and 1989Hs idy by 1980Zo	e 1976F115 and those relat 02. Results of model calcu 02. See also the model-ba	ted to yrast levels and backbending include alations of some properties of both the positive- sed discussions in 2009Pa17 and 2011Re06.
				Cross 1	Reference (XREF) Flags	
				A 1 B 1 C 1 D (¹⁴Cd(⁴⁸Ca,6nγ):2 ¹⁴Cd(⁴⁸Ca,6nγ):1 ⁵⁶Tm ε decay (83.8 s) HI,xnγ) 	
E(level) [†]	Jπ@	T _{1/2} #	XREF			Comments
0 ^{&}	0+	19.5 min <i>10</i>	ABCD		D0; $\%\alpha = 17 \times 10^{-6} 4$ 1975Al26, γ (t). Others: <1 966La11). These upper lin to observe a clear ingrowth ontaining both Er and Ho. the sum of $\%\alpha = 12 \times 10^{-6} 3$ $^{-6} 2$ for a 3.30-MeV α tra 1.0×10^{-6} per decay for th $.54$)=0.26 and $\Delta < r^2 > (158-2)$ evaluator). Iuation of data on nuclear .134 fm 32.	5 min (1965Gr34), <12 min (1965Zh02) and nits (see, e.g., 1965Zh02) come from an of β^+ activity from ¹⁵⁶ Ho in the decay of for a 3450 α transition (1996ByZY) and nsition (1992KaZP,1995KaZS). 2002KaZR e 3450 α . ·156)=0.29 fm ² (1987NeZW, obtained from rms charge radii, 2004An14 report
344.53 ^{&} 6	2+	34.0 ps 9	ABCD	$\mu \approx 0.80$ $J^{\pi}: E2 \gamma \text{ to } 0$ $\mu: \text{ From pert}$ in (HI,xn γ) ⁺ g.s. purbed $\gamma\gamma(\theta)$ for recoiling ()). This is the value given	nuclei in hyperfine magnetic fields (1970No01, in the evaluation by 1989Ra17.
797.39 <mark>&</mark> 8	4+	5.0 ps 3	ABCD	J^{π} : E2 γ to 2	2 ⁺ level and expected band	l structure.
930.07 ^b 16	0^{+}		A C	J^{π} : E0 transi	tion to the 0^+ g.s.	
930.48 ^{<i>d</i>} 7	2+		A C	J^{π} : E2 transi	tion to the g.s.	
1220.74 ⁰ 9 1243.01 <i>19</i>	2+		A C C	J^{π} : E0 comp J^{π} : γ 's to 2 ⁺	onent in the transition to t levels indicate $J^{\pi}=0^+,1,2,$	he 2^+ member of the g.s. band. 3, or 4^+ .
1303.54 ⁱ 11 1304.8? 4	3-		BC C	J^{π} : E1 γ to 2	2 ⁺ level and assumed band	structure.
1340.86 ^{&} 16 1351.33 ^e 9	6 ⁺ 3 ⁺	1.9 ps 3	ABCD A C	J^{π} : Stretched J^{π} : E2 γ to 2 Additional in	E2 to 4^+ and expected ba 2^+ , γ to 4^+ , and expected ba information 3.	and structure.
1381.9? 4			С			

¹⁵⁶Er Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\#}$	XREF	Comments
1406.15 ^d 10	4+		A C	XREF: A(1404.7).
1476			D	J^{π} : γ' 's to 2^+ and 4^+ levels and expected band structure. J^{π} : Assigned as 5^- by 1985AzZY (HI,xn γ), but this assignment is not adopted by the evaluator. (See the comment in the (HI,xn γ) data set.).
1517.90 ⁱ 18	(1 ⁻)		С	E(level): Assigned by the evaluator as a member of this band based on the systematics of octupole-related states in the adjacent N=88 nuclides (see, e.g., 1980Zo02, ¹⁵⁶ Tm ε decay). J ^{π} : γ 's to 0 ⁺ and 2 ⁺ levels and assumed band structure.
1546.68 ^b 11	4+		A C	XREF: A(1545.4). J^{π} : E0 component in the transition to the 4 ⁺ member of the g.s. band.
1570.75 ⁸ 15	2+		С	J^{π} : E0 component in the transition to the 2 ⁺ member of the γ -vibrational band.
1611.77 ⁱ 20	5-		ABC	XREF: A(1610.8). I^{π} : γ to 4 ⁺ level and expected band structure.
1630.52 ⁿ 13	2-		BC	J^{π} : γ 's only to 2 ⁺ levels and assumed band structure.
1663.41 <i>16</i>			C	J^{π} : Previously tentatively assigned as the 5 ⁺ member of the γ -vibrational band, but a subsequent high-spin study (2011Re06) places this band member elsewhere in the level scheme. See the comment in the ¹⁵⁶ Tm ε Decay data set.
1710.54 21			С	J^{π} : γ to 2^+ level suggests J^{π} from 0^+ through 4^+ .
1814.48 ^{<i>n</i>} 21	4 ⁻		BC	J^{π} : γ to 4 ⁺ level and assumed band structure.
1835.2° /	(2^+)		AC	XREF: $C(1830.1?)$.
1000.08 U	(5)			J ^T . From expected band structure and γ to 2 level.
1885.9	$2^+ 3 4^+$		A	J^{*} : γ s to 4^{+} and 0^{+} levels and expected band structure.
1909.30 19 1050 2 $\frac{3}{2}$ 3	2,,,,,+ Q+	25 ns 6		y = y = 0.2 and $y = 0.0000$ (1060.1)
1939.2 3	0	2.5 ps 0	AD D	J ^{π} : Stretched E2 to 6 ⁺ and expected band structure. $\gamma(\theta)$ establishes the spin sequence 9 \rightarrow 8 for the 531.2 γ populating this level from the 2491.4, 9 ⁻ level.
1969.6 <mark>6</mark>	6+		Α	J^{π} : γ 's to 4 ⁺ and 6 ⁺ levels and expected band structure.
2014.52 18			C	Additional information 4.
2029.3 ¹ 3	7-		AB D	XREF: A(2028.1)D(2031.0). J^{π} : E1 γ to 6 ⁺ level, γ to 5 ⁻ level and proposed band structure.
2169.8 3	<i>i</i> -		С	Additional information 5.
2204.3" 4	6		ВД	XREF: D(2206.1). J ^{π} : E2 γ to 4 ⁻ , γ 's to 5 ⁻ and 6 ⁺ levels and expected band structure.
2249.83 22	(7+)		C	Additional information 6. $\overline{\mathcal{I}}_{\pi}$, \mathcal{I}_{π} is \mathcal{I}_{π}^{\pm} and \mathcal{I}_{π}^{\pm} and \mathcal{I}_{π}^{\pm} and \mathcal{I}_{π}^{\pm} and \mathcal{I}_{π}^{\pm}
2308.0°	(/*)		A	J^{π} : γ s to 5° and 6° levels and expected band structure.
2377.0^{a}	8'		A	J^{*} : γ 's to 6' levels and expected band structure.
2480.70	8-		Α	J^{n} : γ 's to 6^{+} and 8^{+} levels and expected band structure.
2489.9 ^J 4	9-	8 ps 5	AB D	XREF: A(2488.1)D(2491.4). J^{π} : $\gamma(\theta)$, in (HI,xn γ), establishes the spin sequence $9 \rightarrow 8$ for the 530.6 γ deexciting this level.
2601.2 ⁿ 4	8-		ΒD	XREF: D(2603.1). J^{π} : γ 's to 6 ⁻ and 7 ⁻ , probable nonstretched dipole to 8 ⁺ , and expected band
2622.18	10+			
2633.1 4	10'	1.4 ps <i>3</i>	AB D	XREF: A(2631.9)D(2634.7). J^{π} : Stretched E2 to 8 ⁺ and expected band structure. In (HI,xn γ), $\gamma(\theta)$ establishes the spin sequence 11 \rightarrow 10 for the 290.7 γ populating this level from the 2925.4, 11 ⁻ level.
2760.9 ^h	(8+)		Α	J^{π} : γ 's to 7^{-} and (7^{+}) levels and proposed band structure.
2903.3° 5	10-		ΒD	XREF: D(2905.2). J^{π} : γ' s to 8 ⁻ and 9 ⁻ , nonstretched dipole to 10 ⁺ , and expected band structure.
2923.6 ^j 4	11-	8.2 ps 7	ΒD	XREF: D(2925.4). J ^{π} : $\gamma(\theta)$ establishes the spin sequence 11 \rightarrow 10 for the 290.4 γ deexciting this level.

¹⁵⁶Er Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\#}$	XREF	Comments
2943.2 ^d	10^{+}		A	J^{π} : γ to 8 ⁺ and expected band structure.
2961.3 ^e	(9 ⁺)		Α	J^{π} : γ to (7 ⁺) level and expected band structure.
2998.1 ^h	10^{+}		Α	J^{π} : γ 's to 8^+ , 9^- and 10^+ levels and proposed band structure.
3042.4 <mark>b</mark>	10^{+}		Α	J^{π} : γ to 8 ⁺ level and expected band structure.
3081.5 ¹ 5	11^{-}		ΒD	XREF: D(3082.6).
				J^{π} : γ 's to 9 ⁻ and 10 ⁺ levels. Proposed initial band member.
3314.6 ^{<i>a</i>} 5	12+	1.5 ps 7	AB D	XREF: A(3312.8)D(3317.2). J^{π} : Stretched E2 to 10 ⁺ level and expected band structure.
3384.1 ⁰ 5	12-		ΒD	XREF: D(3386.5). J^{π} : E2 γ to 10 ⁻ level, γ to 11 ⁻ level and expected band structure.
3432.3 ^j 6	13-	3.3 ps 6	ΒD	XREF: D(3434.4). J^{π} : Stretched E2 to 11 ⁻ level, E1 to 12 ⁺ , and expected band structure.
3439.5 <mark>&</mark> 6	12+		ΒD	XREF: D(3441.7). J^{π} : γ to 10 ⁺ level and expected band structure.
3493.7 <mark>h</mark>	12+		A	J^{π} : γ to 10 ⁺ level and expected band structure.
3588.5 ^d	12^{+}		Α	J^{π} : γ to 10 ⁺ and expected band structure.
3599.3 ^e	(11^{+})		Α	J^{π} : γ to (9 ⁺) and expected band structure.
3627.7 ^ƒ	12^{+}		Α	J^{π} : γ to 10 ⁺ level and proposed band structure.
3651.3 ^b	12^{+}		Α	J^{π} : γ to 10 ⁺ level and expected band structure.
3673.6 ¹ 5	13-		B D	XREF: D(3675.1). I^{π} : γ 's to 11 ⁻ and 12 ⁻ levels and expected band structure.
3836.7 ^a 5	14+	1.6 ps 4	AB D	XREF: A(3834.6)D(3839.8). J^{π} : Stretched E2 to 12 ⁺ level and expected band structure.
3953.9 <mark>0</mark> 5	14-		BD	XREF: D(3956.8). J^{π} : E2 γ to 12 ⁻ level, γ to 13 ⁻ level and expected band structure.
4035.1 ^j 5	15-	2.0 ps 12	ΒD	XREF: D(4038.4). J^{π} : Stretched E2 to 13 ⁻ level and expected hand structure.
4087.6 ^h 16	14+		Α	J^{π} : γ to 12 ⁺ level and expected band structure.
4185.3 <i>f</i>	14+		A	J^{π} : γ' s to 12 ⁺ levels and proposed band structure.
4247.5 ^b	14+		Α	J^{π} : γ to 12 ⁺ level and expected band structure.
4269.8 ^e	(13 ⁺)		Α	J^{π} : γ to (11 ⁺) and expected band structure.
4280.7 ^d	14^{+}		Α	J^{π} : γ to 12^+ and expected band structure.
4309.9 ¹ 6	15-		ΒD	XREF: D(4312.3).
1200 10 6	1.6+			J^{π} : γ 's to 13 ⁻ and 14 ⁻ levels and expected band structure.
4380.4 ^a 0	10'		AB D	AREF: A(45/8.8)D(4584.9). I^{π_1} or to 14^+ level and expected band structure
4593.1 <mark>0</mark> 6	16-		ΒD	XREF: D(4596.6).
				J^{π} : E2 γ to 14 ⁻ level, γ to 15 ⁻ level and expected band structure.
4711.5 ^j 5	17-	1.6 ps 6	ΒD	XREF: D(4715.0). J^{π} : γ to 15 ⁻ level and expected band structure.
4764.0 ^h	16+		Α	J^{π} : γ to 14 ⁺ level and expected band structure.
4782.4 ^f 6	16+		AB D	XREF: A(4780.3)D(4786.1).
				J^{π} : γ to 14 ⁺ level, (D) γ to 15 ⁻ level and expected band structure.
4812.9 ^b	16+		Α	J^{π} : γ to 14 ⁺ level and expected band structure.
4967.4 ^e	(15^{+})		Α	J^{π} : γ to (13 ⁺) and expected band structure.
5000.7 ¹ 6	17^{-}		ΒD	XREF: D(5004.3).
5006 6 <mark>4</mark> 6	18+	1.2 ps 6	ARD	J [*] : γ s to 15 and 16 levels and expected band structure. XREF: A(5003.8)D(5010.5)
5000.0 0	10	1.2 PS 0		J^{π} : γ to 16 ⁺ and expected band structure.
5297.3 ⁰ 6	18-		ΒD	XREF: D(5301.0).

_

Adopted Levels, Gammas (continued)

¹⁵⁶Er Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\#}$	XREF	Comments
				J^{π} : γ 's to 16 ⁻ and 17 ⁻ levels and expected band structure.
5338.3 ^f 6	18+		AB D	XREF: A(5335.9)D(5342.2). I^{π} , F2 α to 16 ⁺ and expected band structure
5370.4 <mark>b</mark>	18+		A	J^{π} : γ to 16 ⁺ level and expected band structure.
5495 7 $\frac{j}{6}$ 6	19-	2.2 ns 8	B D	XREF: D(5499.8)
5155.7	1)	2.2 ps 0	00	J^{π} : γ to 17^{-1} level and expected band structure.
5537.1 ^h	18+		Α	J^{π} : γ to 16 ⁺ level and expected band structure.
5674.5 ^k 6	19-		ВD	XREF: D(5678.8).
				J^{π} : γ 's to 17 ⁻ levels, 18 ⁻ level and proposed band structure.
5716.7 ^a 7	20^{+}	0.8 ps 6	AB D	XREF: A(5713.8)B(5715.7)D(5721.5).
5707 ol (10-			J^* : E2 γ to 18' level and expected band structure.
5/8/.80	19		вр	XKEF: $D(5/91.8)$. I^{π} : $\alpha's$ to 17^{-} and 18^{-} levels and expected band structure.
$59312f_{6}$	20+		ARD	$3 \cdot y = 5 \cdot 17$ and $10^{-10} \cdot 10^{-10} \cdot$
6056.9 ^b	20+		Δ	I^{π} , γ to 18 ⁺ level and expected hand structure
6058.4 ⁰ 6	20-		B D	XREF: D(6062.3).
				J^{π} : γ 's to 18 ⁻ and 19 ⁻ levels and expected band structure.
6261.2 ^k 6	21^{-}		ΒD	XREF: D(6265.6).
6205 4	(20^{+})		٨	J^{n} : γ 's to 19 ⁻ levels, 20 ⁻ level and expected band structure.
$6356 4 \frac{1}{6} 6$	(20)		ת תק	YDEE : $D(6361 1)$
0350.47 0	21		עם	J^{π} : γ' s to 19 ⁻ levels and expected band structure.
6410.9 ^h	(20^{+})		A	J^{π} : γ to 18 ⁺ level and expected band structure.
6437.1 ^m 7	21-		ΒD	XREF: D(6441.1).
(100 0 / 0	a a+			J^{π} : γ 's to 19 ⁻ , 20 ⁻ and 21 ⁻ levels and expected band structure.
6489.3 ⁴ 8	22*		AB D	XREF: A(6485.8)D(6494.5). I^{π} : E2 α to 20 ⁺ level and expected band structure
6663.0f 7	22+		ARD	$3 \cdot 12 \times 30 \times 10^{-10}$ rever and expected band structure.
0005.0- 7	22			J^{π} : E2 γ to 20 ⁺ level and expected band structure.
6740.7 <mark>P</mark> 7	22-		ΒD	XREF: D(6744.9).
h				J^{π} : γ 's to 21 ⁻ and 20 ⁻ levels and expected band structure.
6822.9 ⁰	(22+)		Α	J^{π} : γ to 20 ⁺ level and expected band structure.
6867.5 ^K 7	23-		ВD	XREF: D(68/2.3). $I^{\pi_{\pm}}$ at to 21 ⁻ level and expected hand structure
7053.9 ^m 7	23-		ВD	XREF: D(7058.7).
				J^{π} : γ 's to 21 ⁻ and 23 ⁻ levels and expected band structure.
7109.7 ^j 7	23-		ΒD	XREF: D(7115.2).
7215 04 0	24+			J^{n} : γ' s to 22 ⁻ and 21 ⁻ levels and expected band structure.
7515.9 9	24		AD D	I^{π} : E2 γ to 22 ⁺ level and expected band structure.
7414.7 <mark>P</mark> 7	24-		ΒD	XREF: D(7420.1).
c				J^{π} : γ 's to 22 ⁻ , stretched dipole to 23 ⁻ , and expected band structure.
7444.1 ¹ 8	24+		AB D	XREF: A(7438.8)B(7443.0)D(7448.6).
7402 5 8	(24^{+})		вD	J [*] : γ to 22 ⁺ level and expected band structure.
7492.3 0	(24)			J^{π} : γ to 22 ⁺ level.
7600.8 ^k 8	25-		ΒD	XREF: D(7607.5).
111				J^{π} : γ to 23 ⁻ level and expected band structure.
7649.4 ^m 7	25-		ΒD	XREF: D(7655.2). I^{π_1} or 23^{-} and 24^{-} levels and expected hand structure
7979.9 8			ΒD	x = 100000000000000000000000000000000000
8082.2 ^{<i>a</i>} 8	26+		AB D	XREF: A(8079)D(8087.7).

Adopted Levels, Gammas (continued)

¹⁵⁶Er Levels (continued)

E(level) [†]	J ^π @	XREF	Comments
8101.3 <i>P</i> 8	26-	ΒD	J^{π} : E2 γ to 24 ⁺ level and expected band structure. XREF: D(8106.8).
8210.9 ^{<i>f</i>} 8	26+	AB D	J^{π} : γ to 24 ⁻ level and expected band structure. XREF: A(8206)D(8215.6).
8289.3 ^k 10	27-	ΒD	J^{A} : γ to 24 ⁺ level and expected band structure. XREF: D(8297.3).
8325.0 <i>10</i> 8393.9 ^m 8	27-	B D B D	XREF: D(8331). XREF: D(8400.3).
8848.8 ^c 8	28+	ΒD	J^{π} : E2 γ to 25 ⁻ level, γ 's to 25 ⁻ and 26 ⁻ levels, and expected band structure. XREF: D(8854.5).
8867.1 ^p 9	28-	ΒD	XREF: D(8873.0). J^{π} : γ to 26 ⁻ level and expected band structure.
8902.5 9		ΒD	XREF: D(8908.6). I^{π} : From (HI xny) I^{π} =(28 ⁺) 2009Pa17 do not list a I^{π} value for this state
8965.0 ^a 9	28+	ΒD	XREF: D(8971.9). J^{π} : E2 γ to 26 ⁺ level and expected band structure.
9068.2 ^{<i>f</i>} 9	28+	ΒD	XREF: D(9073.8). J^{π} : γ to 26 ⁺ level and expected band structure.
9197.7 ^k 12	29-	BD	XREF: D(9204.9). I^{π} : γ to 27 ⁻ level and expected band structure.
9288.3 ^m 8	29-	ΒD	XREF: D(9295.0). $I^{x} \cdot v^{z}$ so 27^{-2} and 28^{-2} level fed by E1 v from 30^{+2} and expected hand structure
9647.9 [°] 8	30+	BD	XREF: D(9654.2). I^{π} , E1 \propto to 20^{-1} level and E2 \propto to 28^{+1} level and proposed hand structure
9693.5 <mark>P</mark> 9	30-	BD	XREF: D(9700.4). I^{π} , γ to 2^{π} level and expected band structure
9864 ^a	30+	D	 XREF: D(9871). E(level): Level not reported by 2009Pa17. These authors do not report levels in this band above 28⁺.
10106 1 ^k 73	31-	вD	J^{π} : γ to 28 ⁺ level and expected band structure. XREF: D(10115.9)
10182.3 ^m 9	31-	B D	J^{π} : γ to 29 ⁻ level and expected band structure. XREF: D(10189.9).
10414 6 ^C 18	32+	חק	J^{π} : γ to 29 ⁻ and 30 ⁻ levels and expected band structure.
$10414.0 \ 18$ $10532.2^{p} \ 10$	32- 32-	B D B D	XREF: D(10539.5).
10926.5 ^m 10	33-	BD	J^{π} : γ to 30 ⁻ level and expected band structure. XREF: D(10934.8). I^{π} : E2 γ to 31 ⁻ level and expected band structure.
11097.0 ^c 11	34+	ΒD	XREF: D(11103.6). J^{π} : γ to 32 ⁺ level and proposed band structure.
11187.1 ^k 15	33^{-} (34 ⁺)	B R D	J^{π} : γ to 31 ⁻ and expected band structure.
11453.2 ^{<i>p</i>} 11	34-	B D	J^{π} : γ to 32 ⁺ level. XREF: D(11460.5).
11577.6 <i>11</i>	34-	ΒD	J^{-1} : γ to 32^{-1} level and expected band structure. XREF: D(11586.3).
11817.1 12	35+	ΒD	J^{*} : γ to 32 level, γ from 36 ⁻ level. XREF: D(11824.2).
11974.6 ^m 12	(35 ⁻)	В	J ^{n} : M1+E2 γ to 34 ⁺ level. Fed by M1+E2 γ from 36 ⁺ . J ^{π} : γ to 33 ⁻ level.

¹⁵⁶Er Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
11976	(36^{+})	D	XREF: D(11983).
			J^{π} : γ to 34^+ level.
12035.4 ^c 12	36+	ΒD	XREF: D(12043.0).
			J^{π} : E2 γ to 34 ⁺ level and proposed band structure.
12139.6 11	(35 ⁻)	В	J^{π} : γ from 36 ⁻ level, γ to 33 ⁻ level.
12423.1 ^p 11	36-	ΒD	XREF: D(12431.2).
			J^{π} : γ 's to 34 ⁻ levels and expected band structure.
12668.2	(38^{+})	D	XREF: D(12676.1).
			E(level): From the energy of the 36^+ level and the listed E γ value. E(level)=12676.1 is listed in
			$(\mathrm{HI},\mathrm{xn}\gamma).$
12050 00 12	20-		$J'': \gamma$ to (30') level.
13058.2 ^P 13	38	ВД	XKEF: $D(15000.3)$.
13202 5 ^C 13	28+	חק	J^{-1} ; γ to 50 level and expected band structure.
15202.5 15	30	עם	AREF. $D(15211.5)$. I^{π} : E2 α to 36^+ level and proposed band structure
13402 3 13	38+	R	J^{π} : E2 γ to 36 ⁺
13402.5 15 13867 0 [°] 14	40^{+}	BD	XREF: D(13876 5)
15007.0 17	10	22	J^{π} : E2 γ to 38 ⁺ level and proposed band structure.
14034.3 13	(40^{+})	ΒD	XREF: D(14044.0).
	. ,		J^{π} : γ 's to 38 ⁺ levels.
14421.6 ^c 14	42^{+}	ΒD	XREF: D(14431.9).
			J^{π} : E2 γ to 40 ⁺ level and proposed band structure.
			Band termination point. Above this level, the states are presumed (2009Pa17) to include excitations of the ¹⁴⁶ Gd core.
			J^{π} : State represents the full alignment of the ten valence nucleons outside the ¹⁴⁶ Gd core.
			Configuration is $(\pi h_{11/2}^4, 16+) \otimes [(i_{12/2}^2, 12+)(\nu f_{7/2}, h_{9/2})_{14+}^4)]_{26+}$.
15478.7 [‡] 15	(43^{-})	ВD	XREF: $D(15489.4)$
10 17 017 10	(10)		J^{π} : (E1) γ to 42 ⁺ level. (43 ⁺) proposed in (HI,xn γ).
15764 [‡] 2	$(44)^+$	В	J^{π} : E2 γ to 42 ⁺ level.
15814 [‡] 2	$(44)^+$	В	J^{π} : E2 γ to 42 ⁺ level.
15986 [‡] 2		В	
16043 [‡] 2	$(44)^{+}$	В	J^{π} : E2 γ to 42 ⁺ level.
16375 [‡] 2	· ·	В	
16583 [‡] 2	$(44)^+$	В	J^{π} : E2 γ to 42 ⁺ level.

[†] From the ¹⁵⁶Tm ε decay and heavy-ion data, where they are determined by least-squares fits to the γ energies.

[‡] Level is expected to involve excitations from the ¹⁴⁶Gd core.

[#] Unless otherwise noted, the values are from the (HI,xn γ) studies and were obtained using the Doppler-shift recoil-distance technique.

^(a) For the levels seen only in the high-spin studies, the values are from the multipolarities of the γ transitions, where known, the γ branching of the levels, and the assumption of generally increasing spin with increasing excitation energy.

& Band(A): $K^{\pi}=0^+$ g.s. band. Band crossed by an aligned (i_{13/2}) two-quasineutron (AB) éxcitation near h ω =0.30 MeV (above J=10).

^{*a*} Band(a): Aligned $i_{13/2}$ two-quasineutron (AB) band.

^{*b*} Band(B): First excited $K^{\pi}=0^+$ band.

^{*c*} Band(C): Band based on a 28⁺ level. Proposed extension of Bands(B) and (E), both of which experience band crossings near $\hbar\omega$ =0.39 MeV (J^π≈28⁺). Above $\hbar\omega$ ≈0.4 MeV, band seems noncollective in nature. Possible weakly deformed oblate triaxial terminating band (2009Pa17).

^{*d*} Band(D): γ -vibrational band, α =0 branch.

¹⁵⁶Er Levels (continued)

^{*e*} Band(d): γ -vibrational band, α =1 branch.

- ^{*f*} Band(E): Band based on 12⁺. Band possibly results from the coupling of the aligned $i_{13/2}$ two-quasineutron (AB) band and the γ -vibrational band. The evaluator has assumed that this band is the same as the "positive-parity, even-spin band" proposed in the (HI,xn γ) study.
- ^{*g*} Band(F): $K^{\pi}=2^+$ band. Possible two-phonon $\beta\gamma$ vibration.
- ^{*h*} Band(G): Band based on an 8⁺ level. Possible aligned $((\nu h_{9/2})(\nu f_{7/2}))_{2+}$ configuration.
- ⁱ Band(H): Odd-spin negative-parity band. Probable octupole-based excitation. Undergoes a backbend near hω=0.2 MeV (J>7).
- ^j Band(h): Probable $-\pi$ prolate two-neutron quasiparticle band. Associated with the band crossing of Band(h).
- ^k Band(I): Odd-spin negative parity band based on 19⁻. Band associated with Bands(H) and (h).
- ¹ Band(J): Odd-spin negative-parity band based on 11⁻.
- ^m Band(j): Band associated with Band(J).
- ^{*n*} Band(K): Even-spin negative-parity band. Probable octupole-based excitation. Undergoes a backbend near $h\omega=0.2$ MeV (J>8).
- ^o Band(k): Probable -π prolate two-neutron quasiparticle band. Associated with the band crossing of Band(K).

^{*p*} Band(L): Probable extension of Band(K).

$\gamma(^{156}\text{Er})$

The unplaced γ' s observed in the ¹⁵⁶Tm ε decay are not included here.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
344.53	2+	344.55 7	100	0 0+	E2	0.0457	B(E2)(W.u.)=65.7 18 Mult.: From $\gamma(\theta)$ in (HI,xn γ), mult=Q. RUL eliminates M2. This transition is the basis for normalizing the γ and ce intensities to obtain $\alpha(K)$ exp values for the other transitions in both the ¹⁵⁶ Tm ε Decay and the (HI,xn γ) studies.
797.39	4+	452.85 7	100	344.53 2+	E2	0.0213	B(E2)(W.u.)=117 7
930.07	0^{+}	≈585.9 [#] 930	100	$\begin{array}{ccc} 344.53 & 2^+ \\ 0 & 0^+ \end{array}$	E0		E_{γ} , I_{γ} : The major part of this γ depopulates the 930.48, 2 ⁺ level. Mult.: Unresolved ce lines interpreted as including an E0 component.
930.48	2+	585.93 [#] 8 930.42 <i>9</i>	≤100 35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E2 E2	0.01106 0.00390	E_{γ} , I_{γ} : a minor part of this γ depopulates the 930.07, 0 ⁺ level. Mult.: Unresolved lines interpreted as including an E2 component.
1220.74	2+	290.68 <i>14</i> 423.40 <i>17</i>	13 2 15 2	930.07 0^+ 797.39 4^+			
1242.01		876.20 <i>14</i> 1220.83 <i>17</i>	77 6 100 9	$344.53 \ 2^{+} \ 0 \ 0^{+} \ 220.40 \ 2^{+}$	E0+E2(+M1)	0.043 12	α : Computed from α (K)exp and theoretical α/α (K) ratios.
1243.01		312.44	20 /	930.48 2			
1303.54	3-	959.00 9	≤100 100	$344.53 \ 2^+$ $344.53 \ 2^+$	E1	0.00148	
1304.8?	U	507.4 ^{<i>a</i>} 4	100	797.39 4+	21	0100110	
1340.86	6+	543.50 15	100	797.39 4+	E2	0.01331	B(E2)(W.u.)=124 20
1351.33	3+	420.78 9	50 8	930.48 2+	E2	0.0260	
		553.98 <i>13</i>	29 <i>3</i>	797.39 4+			
		1006.86 16	100 8	344.53 2+			
1381.9?		451.5 ^{<i>a</i>} 4	100	930.48 2+			
1406.15	4+	475.63 11	62 5	930.48 2+			
		608.84 <i>13</i>	100 8	797.39 4+			
	<i>(</i> 1 -)	1061.3 4	59 18	344.53 2+			
1517.90	(1^{-})	1173.34 19	≈23	344.53 2+			
1546 60	4+	1518.0 4	100 23	0 0'			
1546.68	4	326.00 10	274	1220.74 2 ⁺	E0. M1. E2	0.044.10	
		1202.2.2	58 15	797.394°	E0+M1+E2	0.044 19	α : Computed from $\alpha(\mathbf{K})$ exp and theoretical $\alpha/\alpha(\mathbf{K})$ ratios.
1570 75	2+	1202.2 2	100 14	$344.33 2^{\circ}$			
1570.75	2.	550.0 5 640.44.18	14 0	1220.74 2 ⁺	E0 + M1 + E2	0.11.2	$\alpha_{\rm c}$ Computed from $\alpha({\rm K})$ and theoretical $\alpha/\alpha({\rm K})$ ratios
		$040.44 \ 10$	410	$930.48 2^{+}$	E0+M1+E2	0.11 5	α : Computed from $\alpha(\mathbf{K})$ exp and theoretical $\alpha/\alpha(\mathbf{K})$ ratios.
		1226 1 3	10 4	344 53 2+			
1611 77	5-	81/ 3 2	100 10	707 30 4+			
1630.52	2-	600 0 2	47.5	930 48 2+			
1050.52	2	1286.05 14	100 13	344.53 2 ⁺			

From ENSDF

						Adopted	Levels, G	Gammas (cont	tinued)
							$\gamma(^{156}\text{Er})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α^{\ddagger}	Comments
1663.41		866.02 14	100	797.39	4 ⁺				
1710.54		1366.0 2	100	344.53	2+				
1814.48	4-	1017.1 2	100	797.39	4+				
1835.2	5+	483.7		1351.33	3+				E_{γ} : From the heavy-ion study of 2011Re06. Eγ=484.85 15 is reported in ¹⁵⁶ Tm ε Decay, but the evaluator has chosen the listed value for purposes of internal consistency.
		1038.0		797.39	4+				
1860.8	(3 ⁺)	1516.3 6	100	344.53	2+				
1885.9	6+	479.7		1406.15	4+				
		544.7		1340.86	6+				
		1088.4		797.39	4+				
1909.56	2+,3,4+	557.9 4	21 11	1351.33	3+				
1050 0	o.+	1565.1 2	100 16	344.53	2+	53		0.00070	
1959.2	8 ⁺	618.3 3	100	1340.86	6 ⁺	E2		0.00972	$B(E2)(W.u.)=50\ 12$
1969.6	0'	422.9		1240.08	4' (+				
		028.0		1340.80	0 4+				
2014.52		1084.4 <i>3</i>	16 5	930.07 (0^{+}				E_{γ} : 1975Ag02 provide no information on whether this γ goes to the 0 ⁺ or the 2 ⁺ level at 930 keV
		1670.0 2	100 12	344.53	2+				
2029.3	7-	417.3 6	16.7 17	1611.77	5-				
		688.6 <i>3</i>	100 8	1340.86	6+	E1			
2169.8		1825.3 <i>3</i>	100	344.53	2+				
2204.3	6-	390.0 6	<45	1814.48	4-	E2			
		592.1 6	<45	1611.77	5-				
		863.5 6	100 9	1340.86	6+				
2249.83		898.5 [#] 2	100	1351.33	3+				
2368.6	(7^{+})	533.5		1835.2	5+				
		1027.8		1340.86	6+				
2377.0	8+	490.6		1885.9	6+				
		1036.3		1340.86	6+				
2480.7	8+	510.9		1969.6	6+				
		521.8		1959.2	8				
2480.0	0-	1139.7	22.2	1340.86	0' 7-	E2		0.0204	$P(E_{2})/W_{cr} = 12.9$
2489.9	9	460.8 0	23 2	2029.3	/ 0+	E_2	.0.16	0.0204	B(E2)(W.u.) = 13.8 $B(E1)(W.u.) = 0.0001(-10, D(M2)(W.u.) = 1.0, 10^{2})$
		530.0 5	100 0	1959.2	8	E1(+W12)	<0.10	0.0000 11	B(E1)(W.u.)=0.00016 10; B(M2)(W.u.)<1.0×10 ⁻ B(E1)(W.u.) value computed for %M2=0. Mult., δ : From α (K)exp<0.0061 in (HI,xn γ).
2601.2	8-	396.7 6	100 10	2204.3	6-				
		572.0 6	<48	2029.3	7-				
		641.7 6	<48	1959.2	8+	(D)			
2633.1	10^{+}	674.1 <i>3</i>	100	1959.2	8+	E2		0.00793	B(E2)(W.u.)=58 13
2760.9	(8 ⁺)	392.4		2368.6	(7^{+})				

 $^{156}_{68}\mathrm{Er}_{88}$ -9

From ENSDF

¹⁵⁶₆₈Er₈₈-9

γ (¹⁵⁶Er) (continued)

E_i (level)	J_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult. [†]	δ	α^{\ddagger}	Comments
2760.9	(8 ⁺)	731.4		2029.3 7-				
2903.3	10-	270.4 6	41 4	2633.1 10+	E1			Mult.: $\Delta J=0$ transition.
		301.8 6	74 7	2601.2 8-	E2			
2022 (11-	413.7 6	100 10	2489.9 9-		-0.055	0.0010.10	$\mathbf{D}(\mathbf{r}_1) \langle \mathbf{M}_1 \rangle = 0.00040.5 \mathbf{D}(\mathbf{M}_2) \langle \mathbf{M}_1 \rangle = \mathbf{r}_1^2$
2923.6	11	290.4 3	58 3	2633.1 10	E1(+M2)	≤0.055	0.0210 10	B(E1)(W.u.)=0.00042 5; B(M2)(W.u.) 6</td
								B(E1)(w.u.) value computed for $\%$ M2=0. Mult δ : From $\alpha(K)$ exp=0.020.7 and $\alpha(\theta)$ in (HI xma)
		433.6.3	100.6	2489 9 9-	F2		0.0240	$B(F2)(W_{11}) = 56.7$
2943.2	10^{+}	565.8	100 0	2377.0 8+	112		0.0210	B(E2)(11.0.)=50 /
2961.3	(9^{+})	592.7	100	$2368.6(7^+)$				
2998.1	10+	237.2		2760.9 (8+)				
		364.6		2633.1 10+				Transition may be a mixed E2/M1 transition with a large negative mixing ratio (2011Re06).
		508.6		2489.9 9-				<i>6</i> (<i>)</i>
3042.4	10^{+}	561.7	100	2480.7 8+				
3081.5	11-	447.9 6	79 7	2633.1 10+				
		591.6 [@] 6	100 [@] 11	2489.9 9-				
3314.6	12^{+}	681.8 <i>3</i>	100	2633.1 10+	E2		0.00773	B(E2)(W.u.)=51 24
3384.1	12-	460.9 6	16 2	2923.6 11-				
		480.9 6	100 10	2903.3 10-	E2			
3432.3	13-	118.3 6	<2.4	3314.6 12+	E1		0.208 4	B(E1)(W.u.)<0.0010
a (ao 7		508.4 3	100 5	2923.6 11-	E2		0.01575	B(E2)(W.u.)=98 20
3439.5	12+	806.8 6	100	2633.1 10+				
3493.7	12+	495.6	100	2998.1 10				
3588.5	12'	645.2	100	$2943.2 10^{+}$				
3399.3 3627 7	(11^{+}) 12 ⁺	038.0 684.3	100	$2901.3 (9^{\circ})$ $2043.2 10^{+}$				
3651.3	12	608.9	100	$2943.2 \ 10^{+}$ $3042.4 \ 10^{+}$				
3673.6	12	289.8.6	<36	$3384 \ 1 \ 12^{-10}$				
5075.0	15	501.6° 6	$100^{@} 11$	3081.5 11-				
3836 7	14^{+}	30756	737	3/30 5 12+				
5650.7	17	522 2 3	100	$3314.6 12^+$	F2		0.01472	$B(F2)(W_{H}) = 1.7 \times 10^2 5$
3953 9	14-	522.0.6	<8	3432.3 13-	E2		0.01472	$D(E2)(W.u.) = 1.7 \times 10^{-5}$
5755.7	11	569.8.3	100.8	$3384.1 \ 12^{-10}$	E2			
4035.1	15^{-}	602.5 3	100 0	3432.3 13-	E2		0.01034	B(E2)(W.u.) = 7.E + 1.5
4087.6	14^{+}	593.9	100	3493.7 12+				
4185.3	14^{+}	557.3		3627.7 12+				
		870.4		3314.6 12+				
4247.5	14^{+}	596.2	100	3651.3 12+				
4269.8	(13^{+})	670.5	100	3599.3 (11 ⁺)				
4280.7	14^{+}	692.1	100	3588.5 12+				
4309.9	15-	356.3 6	<30	3953.9 14-				
		636.2 <i>6</i>	100 9	3673.6 13-				

 $^{156}_{68}\mathrm{Er}_{88}$ -10

γ (¹⁵⁶Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
4380.4	16^{+}	543.8.3	100	3836.7 14+			
4593.1	16-	557.3 6	<11	4035.1 15-			
		639.4 6	100 10	3953.9 14-	E2		
4711.5	17-	676.4 <i>3</i>	100	4035.1 15-	[E2]	0.00787	B(E2)(W.u.)=50 19
4764.0	16^{+}	676.4	100	4087.6 14+			
4782.4	16^{+}	501.6		4280.7 14+			E_{γ} : From 2011Re06 only. γ not reported in the other high-spin studies.
		596.7		4185.3 14+			E_{γ} : From 2011Re06 only. γ not reported in the other high-spin studies.
		747.06	100 10	4035.1 15-	(D)		, . <u> </u>
		946.4 6	<20	3836.7 14+			
4812.9	16^{+}	565.4	100	4247.5 14+			
4967.4	(15^{+})	697.6	100	4269.8 (13 ⁺)			
5000.7	17^{-}	407.8 <i>6</i>	<37	4593.1 16-			
		691.0 <i>6</i>	100 11	4309.9 15-			
		965.3 6	<37	4035.1 15-			
5006.6	18^{+}	626.3 <i>3</i>	100	4380.4 16+	[E2]	0.00942	$B(E2)(W.u.)=1.0\times10^2 5$
5297.3	18^{-}	585.96	<15	4711.5 17-			
		703.7 6	100 10	4593.1 16-			
5338.3	18^{+}	556.06	100 10	4782.4 16+	E2		
		626.9 <i>6</i>	19.8 <i>23</i>	4711.5 17-	(D)		
		957.96	<12	4380.4 16+			
5370.4	18^{+}	557.5	100	4812.9 16+			
5495.7	19-	783.9 <i>3</i>	100	4711.5 17	[E2]	0.00564	B(E2)(W.u.)=17 7
5537.1	18^{+}	773.1	100	4764.0 16 ⁺			
5674.5	19-	376.6 6	<91	5297.3 18-			
		673.6 6	<91	5000.7 17-			
		964.0 6	100 9	4711.5 17-			
5716.7	20+	710.2 3	100	5006.6 18+	E2	0.00704	B(E2)(W.u.)=8.E+1.6
5787.8	19-	490.8 6	<30	5297.3 18-			
		/8/.5 6	100 9	5000.7 17-			
5001 0	20+	1076.2.6	<30	4/11.5 1/-			
5931.2	201	435.1 6	<12	5495.7 19			
		593.0 6	100 10	5338.3 18			
(05(0	20^{+}	924.8 0	<12	5000.0 18			
6056.9	20.	686.5 562.0 6	100	53/0.4 18			
0058.4	20	302.9 0 760 8 6	<24	5495.7 19			
6261.2	21-	700.8 0	100 10	5297.5 18 6058 4 20-			
0201.2	21	202.3 0	<40	$5674.5 \ 10^{-1}$			
		J07.10 765.5.6	<40 100 <i>14</i>	5405 7 10 ⁻			
6295 /	(20^{+})	758.3	100 14	5537 1 18 ⁺			
6356 /	21-	68166	<30	5674 5 10 ⁻			
0550.4	∠ 1	85976	100.9	5495 7 10-			
6410.9	(20^{+})	873.8	100 9	5537 1 18+			
0110.7	(20)	075.0	100	5557.1 10			

γ (¹⁵⁶Er) (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
6437.1	21^{-}	176.1 6	<29	6261.2 21-		
		378.5 6	<29	6058.4 20-		
		649.8 6	100 11	5787.8 19-		
6489.3	22^{+}	772.9 6	100	5716.7 20+	E2	
6663.0	22^{+}	306.7 6	<11	6356.4 21-		
		731.7 6	100 10	5931.2 20+	E2	
6740.7	22^{-}	384.5 6	<33	6356.4 21-		
		479.6 6	<33	6261.2 21-		
		682.9 <i>6</i>	100 10	6058.4 20-		
6822.9	(22^{+})	766.0	100	6056.9 20+		
6867.5	23-	605.9 6	100	6261.2 21-		
7053.9	23-	186.0 <i>6</i>	<19	6867.5 23-		
		617.4 6	100 10	6437.1 21-		
		793.0 <mark>&</mark> 6	<19 ^{&}	6261.2 21-		
7109.7	23-	369.8 6		6740.7 22-		
		752.0 6		6356.4 21-		
7315.9	24^{+}	826.9 6	100	6489.3 22+	E2	
7414.7	24-	547.2 6	<16	6867.5 23-	(D)	
		673.9 6	100 10	6740.7 22-		
7444.1	24+	780.9 6	100	6663.0 22+		
7492.5	(24^{+})	1003.1 6	100	6489.3 22+		
7600.8	25^{-}	733.3 6	100	6867.5 23-		
7649.4	25-	234.6 6	<20	7414.7 24-		
		539.2 6	<20	7109.7 23-		
		595.8 6	100 10	7053.9 23-		
		783 ^a		6867.5 23-		E_{γ} : From (HI,xn γ). γ not reported in the high-spin study (2009Pa17).
7979.9		487.1 6		7492.5 (24 ⁺)		
	1	536.1 6		7444.1 24+		
8082.2	26+	589.9 6	<22	7492.5 (24+)		
		766.7 ^{&} 6	100 ^{&} 11	7315.9 24+	E2	
8101.3	26-	686.8 <i>6</i>	100	7414.7 24-		
8210.9	26^{+}	766.5 6	100	7444.1 24+		
8289.3	27-	688.5 <i>6</i>	100	7600.8 25-		
8325.0		345 1		7979.9		
8393.9	27-	292.4 6	<13	8101.3 26-		
		744.2 [@] 6	100 [@] 10	7649.4 25-	E2	Note: γ is doubly placed.
		793.0 <mark>&</mark> 6	14 ^{&} 1	7600.8 25-		
8848.8	28^{+}	637.4 6	<36	8210.9 26+		
		766.7 <mark>&</mark> 6	100 <mark>&</mark> 11	8082.2 26+		
8867.1	28-	766.0 6	100	8101.3 26-		
8902.5		577.5 6		8325.0		
		821.0		8082.2 26+		E_{γ} : From (HI,xn γ). 2009Pa17 do not report this γ .

 $^{156}_{68}\mathrm{Er}_{88}$ -12

¹⁵⁶₆₈Er₈₈-12

γ (¹⁵⁶Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
8965.0	28^{+}	882.9 6	100	8082.2 26+	E2	
9068.2	28+	857.4 6	100	8210.9 26+		
9197 7	29-	908 4 [@] 6	$100^{@}$	8289 3 27-		
9288.3	29-	421.5.6	<14	8867.1 28-		
		894.0@6	100@ 10	8303 0 27-		
9647 9	30+	359.5.6	<45	9288 3 29-	F1	
J0+7.J	50	579.8.6	50 5	9068.2 28+	LI	
		683.0 6	<45	8965.0 28+		
		745.7 6	<45	8902.5		
		798.9 6	100 9	8848.8 28+	E2	
9693.5	30-	826.4 6	100	8867.1 28-		
9864	30^{+}	899		8965.0 28+		
10106.1	31-	$908.4^{\textcircled{0}}6$	$100^{@}$	9197.7 29-		
10182.3	31-	488.8 6	<14	9693.5 30-		
		894 0 [@] 6	$100^{@} 10$	9288 3 29-		
10414.6	32+	548 ^a	100 10	9864 30 ⁺		E_{γ} : From (HI,xn γ). γ not reported by 2009Pa17.
		766.7 <mark>&</mark> 6	$100^{\&}$	9647.9 30+		
10532.2	32-	838.8 6	100	9693.5 30-		
10926.5	33-	744.2 [@] 6	$100^{@}$	10182.3 31-	E2	Note: γ is doubly placed.
11097.0	34+	682.4 6	100	10414.6 32+		
11187.1	33-	1081.0 6	100	10106.1 31-		
11333.1	(34^{+})	918.4 6	100	10414.6 32+		
11453.2	34-	920.9 6	100	10532.2 32-		
11577.6	34-	651.1 6		10926.5 33-		
		1045.5 6		10532.2 32-		
11817.1	35+	720.1 6	100	$11097.0 \ 34^+$	M1+E2	
11974.6	(35 ⁻)	1048.1 6	100	10926.5 33-		
11976	(36+)	879	100	11097.0 34+		
12035.4	36+	218.3 6	65 6	11817.1 35+	M1+E2	
		702.2.6	<29	11333.1 (34')	52	
12120 6	(25-)	938.4 6	100 9	11097.0 34	E2	
12139.0	(35)	1212.9 0	100	$10920.5 \ 55$ $12120 \ (25^{-})$		
12423.1	30	285.4 0		12139.0(33)		
		060.8.6		$11377.0 \ 34$ $11453 \ 2 \ 34^{-}$		
12668.2	(38^{+})	632.8	100	$11435.2 \ 54$ $12035.4 \ 36^+$		
13058.2	38-	635.1.6	100	12033.4 - 30 $12423.1 - 36^{-1}$		
13202.5	38+	1167.1.6	100	$12035.4 36^+$	E2	
13402.3	38+	1367.0 6	100	$12035.4 36^+$	E2	
13867.0	40^{+}	664.4 <i>6</i>	100	13202.5 38+	E2	
14034.3	(40^{+})	632.0 6		13402.3 38+		E_{γ} : From 2009Pa17. γ not reported in (HI,xn γ).
	(-)	831.9 6		13202.5 38+		E_{γ} : In (HI,xn γ), a 1368.0 γ is placed from a 14044.0 level, assumed to be the same as the
						,

Adopted Levels, Gammas (continued)								
							$\gamma(^{156}\text{Er})$ (continued)	
E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^{π}	Mult. [†]	Comments	
							14033.2 level here. However, 2009Pa17 report a 1367.0 γ , which they place from a level at 13401.3.	
14421.6	42+	387.4 6	<48	14034.3	(40^{+})			
		554.4 6	100 10	13867.0	40+	E2		
15478.7	(43 ⁻)	1057.1 6	100	14421.6	42^{+}	(E1)		
15764	$(44)^{+}$	1342 <i>I</i>	100	14421.6	42^{+}	E2		
15814	$(44)^{+}$	1392 <i>1</i>	100	14421.6	42^{+}	E2		
15986		507 1	100	15478.7	(43 ⁻)			
16043	$(44)^+$	1621 <i>1</i>	100	14421.6	42^{+}	E2		
16375		611 <i>1</i>	100	15764	$(44)^{+}$			
16583	$(44)^{+}$	2161 <i>I</i>	100	14421.6	42+	E2		

[†] From ¹⁵⁶Tm ε decay, based on α (K)exp measurements (1975Ag02,1980Zo02) and from heavy-ion-induced reaction studies, based on $\gamma(\theta)$ measurements (1973Be43,1976Su05,2009Pa17,2011Re06) and α (K)exp measurements (1974Go14).

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.

[@] Multiply placed with undivided intensity.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

¹⁵⁶₆₈Er₈₈

¹⁵⁶₆₈Er₈₈

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 γ Decay (Uncertain)

Level Scheme (continued)

¹⁵⁶₆₈Er₈₈

Band(d): γ -vibrational band, α =1 branch

Band(D): γ-vibratio	nal (15 ⁺)	4967.4
band, $\alpha = 0$ branch	1	
14+ 4280	<u>.7</u> <u>(13⁺)</u>	698 4269.8
692 12 ⁺ 3588	<u>5</u> (11 ⁺)	670 3599.3
645 10 ⁺ 2943	<u>2</u> (9+)	638 2961.3
8 ⁺ 566 2377	.0 (7+)	⁵⁹³ 2368.6
<u>6+</u> <u>491</u> <u>1885</u>	<u>.9</u> <u>5</u> ⁺	⁵³⁴ 1835.2
4+ 480 1406.1	<u>5</u> <u>3</u> +	⁴⁸⁴ 1351.33
2+ 476 930.4	8	·

 $^{156}_{68}{
m Er}_{88}$

 $^{156}_{68}{\rm Er}_{88}$

 $^{156}_{68}{
m Er}_{88}$