114 Cd(48 Ca,6n γ):1 2009Pa17

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

Additional information 1. 215-MeV ⁴⁸Ca beam from the 88-in Cyclotron at LBNL. Two stacked thin self-supporting ¹¹⁴Cd foils (enrichment not given) with a total thickness of 1.1 mg/cm². γ radiation studied using the Gammasphere array consisting of 102 HPGe detectors. Report E γ , Iy, $\gamma\gamma$, $\gamma(\theta)$. The high-spin behavior is discussed in terms of state-of-the-art cranked Nilsson-Strutinsky calculations.

¹⁵⁶Er Levels

E(level) [†]	J ^{π#}	E(level) [†]	J ^{π#}
0.0	0+	5930.2 ^b 8	20^{+}
344.3 [@] 3	2^{+}	6057.4 <mark>8</mark> 8	20^{-}
796.9 [@] 5	4+	6260.2 ^C 8	21^{-}
1303.3 ^d 11	3-	6355.3 ^e 8	21^{-}
1340.3 [@] 5	6+	6436.1 ^j 8	21-
1611.0 ^d 6	5-	6488.4 <mark>&</mark> 9	22^{+}
1630.3 ^f 11	2^{-}	6662.0 ^b 9	22^{+}
1813.4 ^{<i>f</i>} 7	4-	6739.7 <mark>h</mark> 8	22-
1958.0 [@] 6	8+	6866.5 ^C 9	23-
2028.6 ^d 6	7-	7052.9 ^j 9	23-
2203.5 ^f 6	6-	7108.7 ^e 9	23-
2488.8 ^e 6	9-	7315.0 <mark>&</mark> 10	24^{+}
2600.3 ^{<i>f</i>} 6	8-	7413.6 ^h 9	24-
2632.0 [@] 6	10^{+}	7443.0 ^b 9	24^{+}
2902.3 ^g 7	10-	7491.6 10	24+
2922.6° 7	11-	7599.8 10	25-
3080.4 ⁴ 7	11-	7648.4 9	25-
3313.6 7	12+	7978.9 10	1
3383.18 7	12-	8081.3 ^{cc} 10	26+
3431.3° 7	13-	8100.3 ⁿ 9	26-
3438.5 8	12+	8209.9 ⁰ 10	26+
3672.5° 8	13-	8288.3 ^c 11	27-
3835.6 [°] 7	14+	8323.8 11	
3952.98 7	14-	8392.8 ^J 9	27^{-}
4034.1° /	15	8847.8^{a} 10	28
4308.9 8	15	8800.0* 10	28
45/9.4 7	10	8901.2 11	20^{+}
4392.08 8	10	$8904.1^{-1}10$	20 20+
$4/10.5^{\circ}/$	1/	$9007.2^{\circ}10$	20 20-
$4/81.5^{\circ} 8$	10	$9190.7^{2}13$	29
49999.7° 0	10+	$9287.2^{5}9$	29 20+
5206 28 8	10	$9040.9^{\circ}10$	20-
5290.388	10	9092.4 11	21-
5101 7° 8	10 10-	$10103.1^{\circ} 14$ $10181.2^{\circ} 11$	31 31-
5673 5 ^C 8	19 19 ⁻	10101.2^{5} 11 10413 6 ^a 11	32^+
5715.7 <mark>&</mark> 8	20^{+}	10531.2^{h} 12	32-
5786.8 ^{<i>i</i>} 8	19-	10925.5^{j} 12	33-
	-		

¹⁵⁶Er Levels (continued)

E(level) [†]	J ^{π#}	Comments
11095.9 ^{<i>a</i>} 12	34+	
11186.1 ^C 16	33-	
11332.0 12	34+	
11452.2 ^h 12	34-	
11576.5 12	34-	
11816.0 13	35+	
11973.6 ^j 13	(35 ⁻)	
12034.3 ^a 13	36+	
12138.5 12	(35-)	
12422.0 ^{<i>h</i>} 12	36-	
13057.1 ^h 14	38-	
13201.4 ^{<i>a</i>} 14	38+	
13401.3 14	38+	
13866.0 ^{<i>a</i>} 15	40^{+}	
14033.2 14	40+	
14420.5 ^{<i>u</i>} 15	42+	Band termination point. Above this level, the states are presumed (2009Pa17) to include excitations of the ¹⁴⁶ Gd core.
		J ^{π} : State represents the full alignment of the ten valence nucleons outside the ¹⁴⁶ Gd core. Configuration is $(\pi h_{11/2}^4 \ _{16+}) \otimes [(i_{13/2}^2 \ _{12+})(\nu f_{7/2},h_{9/2})_{14+}^4)]_{26+}$.
15477.6 [‡] 16	43 ⁽⁻⁾	
15762.5 [‡] 18	44+	
15812.5 [‡] <i>18</i>	44+	
15984.6 [‡] <i>19</i>		
16041.5 [‡] <i>18</i>	44+	
16373.5 [‡] 20		
16581.5 [‡] 16	44+	

[†] From a least-squares fit by the evaluator to the listed $E\gamma$ values.

[‡] Level is expected to involve excitations from the ¹⁴⁶Gd core.

[#] Values as reported by 2009Pa17 and based on proposed band structure and γ -decay properties, measured angular distributions consistency of deduced B(M1)/B(E2) and B(E1)/B(E2) ratios.

^(a) Band(A): $K^{\pi}=0^+$ g.s. band. Band crossed by an aligned (i_{13/2}) two-quasineutron (AB) éxcitation near h ω =0.30 MeV (above J=10).

& Band(B): Aligned $i_{13/2}$ two-quasineutron (AB) band.

^{*a*} Band(C): Band based on a 28⁺ level. Proposed extension of Bands(B) and (D), both of which experience band crossings near $\hbar\omega$ =0.39 MeV (J^{π} ≈28⁺). Above $\hbar\omega$ ≈0.4 MeV, band seems noncollective in nature. Possible weakly deformed oblate triaxial terminating band (2009Pa17).

^b Band(D): Band based on a 16⁺ level. Band possibly results from the coupling of the aligned $i_{13/2}$ two-quasineutron (AB) band and the γ -vibrational band. Note that a subsequent high-spin study (2011Re06) identifies 12⁺ and 14⁺ levels lying below the 16⁺ level which they associate with this band.

^c Band(E): Odd-spin negative parity band based on 19⁻. Band associated with Bands(F) and (f).

^d Band(F): Odd-spin negative-parity band. Probable octupole-based excitation. Undergoes a backbend near $h\omega=0.2$ MeV (J>7).

^e Band(f): Probable $-\pi$ prolate two-neutron quasiparticle band. Associated with the band crossing of Band(G).

^f Band(G): Even-spin negative-parity band. Probable octupole-based excitation. Undergoes a backbend near $h\omega$ =0.2 MeV (J>8).

- ^g Band(H): Probable $-\pi$ prolate two-neutron quasiparticle band. Associated with the band crossing of Band(G).
- ^{*h*} Band(I): Probable extension of Band(G).
- i Band(J): Odd-spin negative-parity band based on $11^-.$
- ^j Band(j): Band associated with Band(I).

 $\gamma(^{156}\text{Er})$

Where $A_4=0$ is listed, this indicates that it was set to zero in the angular-distribution fit.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [#]	Comments
118.3 6	<1	3431.3	13-	3313.6 12+	E1	$A_2 = -0.3 2$; $A_4 = 0$
^x 163 1	<1				(D)	$A_2 = -0.1 I: A_4 = 0$
176.1 6	<1	6436.1	21^{-}	6260.2 21-		
186.0 6	<1	7052.9	23-	6866.5 23-		
^x 191 <i>1</i>	<1				(D)	$A_2 = -0.08 4; A_4 = 0$
202.5 6	<1	6260.2	21-	6057.4 20-		<u> </u>
218.3 6	2.2 2	12034.3	36+	11816.0 35+	M1+E2	$A_2 = -0.21 \ 3; \ A_4 = +0.03 \ 4$
234.6 6	<1	7648.4	25^{-}	7413.6 24-		2 / 1
^x 243 1	<1				(M1+E2)	$A_2 = -0.6 l; A_4 = 0.0 l$
^x 266 1	<1				(E2)	$A_2 = +0.205; A_4 = -0.066$
270.4 6	2.9 3	2902.3	10-	2632.0 10+	È1	$A_2 = +0.3 1; A_4 = 0.0 1$
						Mult.: $\Delta J=0$ transition.
^x 282 1	<1				(E2)	$A_2 = +0.16 8; A_4 = +0.05 11$
283.4 6	<1	12422.0	36-	12138.5 (35 ⁻)	. ,	
289.8 6	<1	3672.5	13-	3383.1 12-		
290.4 3	18 <i>I</i>	2922.6	11-	2632.0 10+	E1	$A_2 = -0.10 \ 3; \ A_4 = +0.03 \ 4$
292.4 6	<1	8392.8	27^{-}	8100.3 26-		2 / 1
301.8 6	5.2 5	2902.3	10-	2600.3 8-	E2	$A_2 = +0.15 6; A_4 = -0.08 8$
306.7 6	<1	6662.0	22^{+}	6355.3 21-		2
344.3 <i>3</i>	100	344.3	2+	$0.0 \ 0^+$	E2	$A_2 = +0.16 \ 3; \ A_4 = +0.02 \ 4$
345 1	<1	8323.8		7978.9		
356.3 6	<1	4308.9	15^{-}	3952.9 14-		
359.5 6	<1	9646.9	30^{+}	9287.2 29-	E1	$A_2 = -0.05 \ 8; \ A_4 = 0$
369.8 6	<1	7108.7	23^{-}	6739.7 22-		
376.6 6	<1	5673.5	19-	5296.3 18-		
378.5 6	<1	6436.1	21^{-}	6057.4 20-		
384.5 6	<1	6739.7	22^{-}	6355.3 21-		
387.4 6	<1	14420.5	42^{+}	14033.2 40+		
390.0 6	<1	2203.5	6-	1813.4 4-	E2	$A_2 = +0.46 5; A_4 = -0.02 6$
396.7 6	2.1 2	2600.3	8-	2203.5 6-		
397.5 6	1.1 <i>1</i>	3835.6	14+	3438.5 12+		
407.8 6	<1	4999.7	17^{-}	4592.0 16-		
413.7 6	7.0 7	2902.3	10^{-}	2488.8 9-		
417.3 6	2.0 2	2028.6	7-	1611.0 5-		
421.5 6	<1	9287.2	29-	8866.0 28-		
433.6 <i>3</i>	31 2	2922.6	11-	2488.8 9-	E2	$A_2 = +0.29 \ 3; \ A_4 = +0.01 \ 4$
435.1 6	<1	5930.2	20^{+}	5494.7 19-		
447.9 6	2.2 2	3080.4	11-	2632.0 10+		
452.6 <i>3</i>	82 4	796.9	4^{+}	344.3 2+	E2	$A_2 = +0.25 \ 3; \ A_4 = 0.02 \ 4$
460.8 6	7.2 7	2488.8	9-	2028.6 7-	E2	$A_2 = +0.5 l; A_4 = 0.0 l$
460.9 6	1.6 2	3383.1	12^{-}	2922.6 11-		
479.6 6	<1	6739.7	22^{-}	6260.2 21-		
480.9 6	9.7 10	3383.1	12^{-}	2902.3 10-	E2	$A_2 = +0.38 6; A_4 = 0$
487.1 6	<1	7978.9		7491.6 24+		
488.8 6	<1	10181.2	31-	9692.4 30-		
490.8 6	<1	5786.8	19-	5296.3 18-		
507 <i>1</i>	<1	15984.6		15477.6 43 ⁽⁻⁾		
508.4 <i>3</i>	42 2	3431.3	13-	2922.6 11-	E2	$A_2 = +0.31 \ 3; \ A_4 = 0$
522.0 6	<1	3952.9	14-	3431.3 13-		
522.2 <i>3</i>	15 <i>1</i>	3835.6	14^{+}	3313.6 12+	E2	$A_2 = +0.43 \ 3; \ A_4 = +0.01 \ 4$
530.6 <i>3</i>	31 2	2488.8	9-	1958.0 8+	E1	$A_2 = -0.12 \ 3; \ A_4 = +0.06 \ 4$
536.1 6	<1	7978.9		7443.0 24+		

$\gamma(^{156}\text{Er})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	Comments
539.2 6	<1	7648.4	25-	7108.7 23-		
543.6 <i>3</i>	69 4	1340.3	6+	796.9 4+	E2	$A_2 = +0.36 3; A_4 = -0.02 4$
543.8 <i>3</i>	14 <i>I</i>	4379.4	16^{+}	3835.6 14+	[E2]	
547.2 6	<1	7413.6	24^{-}	6866.5 23-		
554.4 6	2.1 2	14420.5	42+	13866.0 40+	E2	$A_2 = +0.46 \ 3; \ A_4 = 0$ $A_2 \ A_4$ values for the 554 4 556 0 doublet
556.0 6	8.6 9	5337.3	18+	4781.5 16+	E2	A_{2} = +0.46 3; A_{4} = 0 A_{2} = A_{4} values for the 554.4.556.0 doublet.
557.3 6	<1	4592.0	16-	4034.1 15-		2, -
562.9 6	<1	6057.4	20^{-}	5494.7 19-		
569.8 <i>3</i>	12 <i>I</i>	3952.9	14^{-}	3383.1 12-	E2	$A_2 = +0.36 3; A_4 = 0$
572.0 6	<1	2600.3	8-	2028.6 7-		
577.5 6	<1	8901.2		8323.8		
579.8 6	1.1 <i>I</i>	9646.9	30^{+}	9067.2 28+		
585.96	<1	5296.3	18-	4710.5 17-		
587.1 6	<1	6260.2	21-	5673.5 19-		
589.9 6	<1	8081.3	26^{+}	7491.6 24+		
591.6 [@] 6	2.8 [@] 3	3080.4	11-	2488.8 9-		
591.6 [@] 6	2.8 [@] 3	3672.5	13-	3080.4 11-		
592.1 6	<1	2203.5	6-	1611.0 5-		
593.0 6	8.4 8	5930.2	20^{+}	5337.3 18+		
595.8 6	5.0 5	7648.4	25^{-}	7052.9 23-		
602.5 <i>3</i>	39 2	4034.1	15^{-}	3431.3 13-	E2	$A_2 = +0.3 I; A_4 = 0$
605.9 6	2.7 3	6866.5	23-	6260.2 21-		
611 <i>I</i>	<1	16373.5		15762.5 44+		
617.4 6	5.2 5	7052.9	23-	6436.1 21-		
617.5 <i>3</i>	53 <i>3</i>	1958.0	8+	1340.3 6+	E2	$A_2 = +0.37 \ 3; \ A_4 = 0.00 \ 4$
626.3 <i>3</i>	14 <i>1</i>	5005.6	18+	4379.4 16+	E2	$A_2 = +0.41 \ 3; \ A_4 = -0.03 \ 4$
626.9 6	1.7 2	5337.3	18+	4710.5 17-		
632.0 6	<1	14033.2	40+	13401.3 38+		
635.1 6	<1	13057.1	38-	12422.0 36		
636.2.6	3.3 3	4308.9	15-	3672.5 13		
637.4 6	<1	8847.8	28	8209.9 26	F0	
639.4 0	8.9.9	4592.0	10	3952.9 14	E2	$A_2 = +0.35 0; A_4 = 0$
641.7 0	<1	2600.3	8 21-	1958.0 8		
049.8 0	5.5 4	0430.1	21	5/80.8 19		
661 1 6	<1	11370.3	54 40 ⁺	10923.3 55 $12201 4 28^{+}$	E2	$A = \pm 0.40.2$; $A = \pm 0.02.4$
673 6 6	5.4 5 ~1	5673.5	40 10 ⁻	15201.4 56	E2	$A_2 = +0.40$ 5; $A_4 = +0.05$ 4
673.0.6	616	7413.6	24^{-}	4999.7 17 6730 7 22 ⁻		
67413	47.2	2632.0	10 ⁺	1958 0 8+	F2	$\Delta_2 = \pm 0.36.3$: $\Delta_4 = -0.01.4$
67643	$\frac{1}{2}$	4710.5	17-	$4034 \ 1 \ 15^{-}$		$n_2 = +0.50.5, n_4 = -0.01.7$
681.6.6	<1	6355.3	21-	5673 5 19-		
681.8.3	20.1	3313.6	12^{+}	$2632.0 \ 10^+$	E2	$A_{2}=+0.43$ 3: $A_{4}=-0.02$ 4
682.4 6	3.3.3	11095.9	34+	$10413.6 32^+$		
682.9 6	3.0.3	6739.7	22-	6057.4 20-		
683.0 6	<1	9646.9	30^{+}	8964.1 28+		
686.8 6	5.96	8100.3	26-	7413.6 24-		
688.5 6	1.7 2	8288.3	27-	7599.8 25-		
688.6 3	12 <i>I</i>	2028.6	7-	1340.3 6+		
691.0 6	2.7 3	4999.7	17^{-}	4308.9 15-		
702.2 6	<1	12034.3	36+	11332.0 34+		
703.7 6	6.8 7	5296.3	18^{-}	4592.0 16-		
710.2 3	13 1	5715.7	20^{+}	5005.6 18+	E2	$A_2 = +0.17 \ 3; \ A_4 = -0.09 \ 5$
720.1 6	3.2 3	11816.0	35+	11095.9 34+	M1+E2	$A_2 = +0.12 3; A_4 = +0.04 4$

γ (¹⁵⁶Er) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
731.7 6	8.8 9	6662.0	22+	5930.2	20^{+}	E2	$A_2 = +0.36 4; A_4 = 0$
733.3 6	2.4 2	7599.8	25-	6866.5	23-		
744.2 [@] 6	7.8 [@] 8	8392.8	27-	7648.4	25-	E2	A ₂ =+0.33 4; A ₄ =+0.01 5 Note: γ is doubly placed.
744.2 [@] 6	7.8 [@] 8	10925.5	33-	10181.2	31-	E2	A ₂ =+0.33 4; A ₄ =+0.01 5 Note: γ is doubly placed.
745.7 6	<1	9646.9	30^{+}	8901.2			
747.0 6	5.0 5	4781.5	16+	4034.1	15-		
752.0 6	<1	7108.7	23-	6355.3	21-		
760.8 <i>6</i>	4.2 4	6057.4	20^{-}	5296.3	18-		
765.5 6	2.1 3	6260.2	21-	5494.7	19-		
766.0 6	3.0 3	8866.0	28-	8100.3	26-		
766.5 6	5.0 5	8209.9	26+	7443.0	24+		
766.7 ^{&} 6	4.5 ^{&} 5	8081.3	26^{+}	7315.0	24+	E2	$A_2 = +0.40 \ 3; \ A_4 = -0.03 \ 4$
766.7 ^{&} 6	2.8 ^x 3	8847.8	28^{+}	8081.3	26^{+}		
766.7 ^{&} 6	3.4 ^{&} 3	10413.6	32+	9646.9	30+		
772.9 6	8.9 9	6488.4	22^{+}	5715.7	20^{+}	E2	$A_2 = +0.43 \ 3; \ A_4 = -0.05 \ 4$
780.9 6	5.8 6	7443.0	24+	6662.0	22^{+}		
783.9 3	16 1	5494.7	19-	4710.5	17-		
787.5 6	3.3 3	5786.8	19-	4999.7	$\Gamma/^{-}$		
793.0 ^{x} 6	<1~	7052.9	23-	6260.2	21-		
793.0 ^{&} 6	1.1 ^{&} 1	8392.8	27^{-}	7599.8	25^{-}		
798.9 6	2.2 2	9646.9	30+	8847.8	28^{+}	E2	$A_2 = +0.49 4; A_4 = 0$
806.8 6	1.4 <i>I</i>	3438.5	12^{+}	2632.0	10+		
813.5 6	<1	1611.0	5-	796.9	4 ⁺		
826.4 6	4.4 4	9692.4	30	8866.0	28	F 2	
820.9 0	5.0 0	/315.0	24 · 40+	0488.4	20+	E2	$A_2 = +0.48$ 3; $A_4 = 0$
031.90	<1	14055.2	40° 22-	0602.4	20-		
84576	2.1 2	12422.0	36-	11576 5	30 34-		
85746	222	9067.2	28+	8209.9	26+		
859.7.6	3.3.3	6355.3	21-	5494.7	19-		
863.5 6	2.2.2	2203.5	6-	1340.3	6+		
882.9 6	3.3 3	8964.1	28^{+}	8081.3	26^{+}	E2	$A_2 = +0.39 3; A_4 = 0$
894.0 [@] 6	7.2 [@] 7	9287.2	29-	8392.8	27-		2
894.0 [@] 6	7.2 [@] 7	10181.2	31-	9287.2	29-		
908.4 [@] 6	<1@	9196.7	29-	8288.3	27-		
$908.4^{\textcircled{0}}6$	<1@	10105.1	31-	9196.7	29-		
918.4 6	<1	11332.0	34+	10413.6	32+		
920.9 6	<1	11452.2	34-	10531.2	32-		
924.8 6	<1	5930.2	20^{+}	5005.6	18^{+}		
938.4 6	3.4 <i>3</i>	12034.3	36+	11095.9	34+	E2	$A_2 = +0.40 4; A_4 = +0.06 5$
946.4 <i>6</i>	<1	4781.5	16+	3835.6	14^{+}		
957.9 6	<1	5337.3	18^{+}	4379.4	16^{+}		
959 1	<1	1303.3	3-	344.3	2+		E_{γ} : Value from the authors' level scheme. γ not listed in their table of γ -ray properties.
964.0 6	1.1 <i>1</i>	5673.5	19-	4710.5	17-		
965.3 6	<1	4999.7	17-	4034.1	15-		
969.8 6	<1	12422.0	36-	11452.2	34-		
1003.1 6	1.1 1	7491.6	24+	6488.4	22+		
1015.5 6	<1	1813.4	4	/96.9	4' 22-		
1045.5 0	<1	113/0.3	34 (25-)	10531.2	32 22-		
1040.1 0	<1	119/3.0	(33)	10923.3	55		

$\gamma(^{156}\text{Er})$ (continued)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	Comments
1057.1 6	<1	15477.6	43(-)	14420.5 42+	(E1)	$A_2 = -0.34 5; A_4 = +0.09 7$
1076.2 6	<1 <1	5786.8 11186 1	19- 33-	$4710.5 \ 17^{-1}$		
1167.1 6	3.3 3	13201.4	38+	$12034.3 36^+$	E2	$A_2 = +0.38 \ 3; \ A_4 = -0.02 \ 4$
1212.9 6	<1	12138.5	(35 ⁻)	10925.5 33-		
1286 <i>1</i>	<1	1630.3	2-	344.3 2+		E_{γ} : Value from the authors' level scheme. γ not listed in their table of γ -ray properties.
1342 <i>I</i>	<1	15762.5	44+	14420.5 42+	E2	$A_2 = +0.216; A_4 = +0.078$
1367.0 6	<1	13401.3	38+	12034.3 36+	E2	$A_2 = +0.28 9; A_4 = +0.03 11$
1392 <i>1</i>	<1	15812.5	44^{+}	14420.5 42+	E2	$A_2 = +0.5 2; A_4 = 0$
1621 <i>I</i>	<1	16041.5	44^{+}	14420.5 42+	E2	$A_2 = +0.3 I; A_4 = 0$
2161 <i>I</i>	<1	16581.5	44+	14420.5 42+	E2	$A_2 = +0.4 \ I; A_4 = 0$

[†] The listed uncertainties are derived from a general statement by the authors and are as follows: for I γ >10, $\Delta E\gamma$ =0.3 keV; for weaker transitions, $\Delta E\gamma$ =0.6 keV. For E γ values quoted to only the nearest 1 keV, $\Delta E\gamma$ =1.0 keV.

[‡] The listed uncertainties are estimated (2009Pa17) to be less than 5% for strong transitions (I γ >10%) and less than 10% for the weaker transitions. For those γ 's for which 2009Pa17 list no I γ values, the values are <1.

[#] From $\gamma(\theta)$ values, including considerations from other studies, where the electric or magnetic character was determined explicitly.

[@] Multiply placed with undivided intensity.

& Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁶₆₈Er₈₈

¹⁵⁶₆₈Er₈₈

Level Scheme (continued)

¹⁵⁶₆₈Er₈₈

 $^{156}_{68}{\rm Er}_{88}$

 $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

¹¹⁴Cd(⁴⁸Ca,6nγ):1 2009Pa17

Level Scheme (continued)

Intensities: Relative I_{γ}	Legend		
& Multiply placed: undivided intensity given	-		
@ Multiply placed: intensity suitably divided	I _γ -		
	\longrightarrow I_{γ}		
	I _γ :		
e er			

2028.6

1611.0

1303.3

417

¹⁵⁶₆₈Er₈₈

Band(I): Probable extension of Band(G) 38-13057.1 635 Band(j): Band associated 36-12422.0 with Band(I) (35^{-}) 11973.6 970 11452.2 34 1048 10925.5 921 33-10531.2 32-744 10181.2 31-839 30-9692.4 894 29-9287.2 826 28 8866.0 894 27 8392.8 766 8100.3 26 Band(f): Probable $-\pi$ prolate two-neutron 744 25-7648.4 687 quasiparticle band 24-7413.6 7108.7 23-23 7052.9 674 Band(H): Probable - π 22-6739.7 prolate two-neutron 617 752 Band(J): Odd-spin quasiparticle band 6436.1 negative-parity band 21 21 6355.3 based on 11- 20^{-} 6057.4 860 19 5786.8 761 19-5494.7 18-5296.3 788 4999.7 17-784 704 4710.5 17-<u>16</u> 4592.0 691 4308.9 15 639 15-4034.1 3952.9 14-13-3672.5 602 570 13-3431.3 3383.1 12 592 Band(G): Even-spin 3080.4 11-508 481 negative-parity band 2922.6 11- 10^{-} 2902.3 434 8 2600.3 9-2488.8 397 2203.5 6-390 1813.4 4 2 1630.3

¹⁵⁶₆₈Er₈₈