¹⁵⁶Ho ε decay (7.6 min)

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012		

Parent: ¹⁵⁶Ho: E \approx 52.4+x; J^{π}=9⁺; T_{1/2}=7.6 min 3; Q(ε)=5.05×10³ 6; % ε +% β ⁺ decay=75.0

¹⁵⁶Ho-E: Additional information 1.

¹⁵⁶Ho-J^{π},T_{1/2}: Additional information 2.

¹⁵⁶Ho-Q(ε): Additional information 3.

Additional information 4.

The level scheme is that proposed by 1999KaZV.

2003KaZP: Many of the same authors as 1999KaZV. Experimental conditions similar to those of 1999KaZV. Provide data on the the γ 's deexciting the 8⁺ level at 2787 keV, as well as for the 366, 445 and 508 γ 's. These are the data used in this data set. 1999KaZV: Source produced by high-energy proton-induced spallation on W targets using the on-line isotope-separator facility

YASNAPP-2. Measured γ radiation, α and $\gamma\gamma$ coincidences. Data are presented in the form of a level scheme only.

1976IwZZ: Source produced in the ¹⁶⁰Dy(p,5n) reaction, E(p)=52 MeV. Source material contained both the isomer and the ¹⁵⁶Ho g.s. γ 's studied using a 40 cm³ GeLI detector. For the isomer, report $T_{1/2}$ and two γ 's deexciting the 2787 level in ¹⁵⁶Dy.

¹⁵⁶Dy Levels

E(level) [†]	J ^{π‡}
0 [#]	0^{+}
137.8 [#]	2^{+}
404.0 [#]	4+
770.3 [#]	6+
1215.6 [#]	8+
1724.3 [#]	10^{+}
$2787.6^{@}$	8^{+}

[†] Calculated from a least-squares fit to the listed $E\gamma$ values.

[‡] From the adopted values.

[#] Band(A): Member of the g.s. band.

[@] Band(B): Bandhead of a $K^{\pi}=8^+$ band. Conf=v5/2[523]+v11/2[505].

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$	$I\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$
$(2.31 \times 10^3 6)$	2787.6	10.3	89.7	4.52	100

[†] For absolute intensity per 100 decays, multiply by 0.75.

 $\gamma(^{156}\text{Dy})$

I γ normalization, I(γ +ce) normalization: Calculated to give 75% for the I(γ +ce) value of the γ deexciting the 404, 4⁺ level (and hence of the γ feeding the ¹⁵⁶Dy g.s.). $\% \varepsilon + \% \beta^+ = 75\%$ is from 1999KaZV.

$^{156}{\rm Ho}~\varepsilon$ decay (7.6 min) (continued)

$\gamma(^{156}\text{Dy})$ (continued)

Eγ	$I_{\gamma}^{\dagger \ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α &	Comments
137.8	21#	137.8	2+	0	0+	[E2]	0.849	α(K)=0.473 7; α(L)=0.290 4; α(M)=0.0689 10; α(N+)=0.01741 25 α(N)=0.01549 22; α(O)=0.00190 3; α(P)=2.06×10-5 3 Iγ: Value chosen to yield 100% of the decays through the ε decay branch.
266.2	36 [#]	404.0	4+	137.8	2+	[E2]	0.0935	α (K)=0.0683 <i>10</i> ; α (L)=0.0195 <i>3</i> ; α (M)=0.00452 <i>7</i> ; α (N+)=0.001162 <i>17</i> α (N)=0.001026 <i>15</i> ; α (O)=0.0001333 <i>19</i> ; α (P)=3.47×10 ⁻⁶ <i>5</i>
366.25 5	38	770.3	6+	404.0	4+	[E2]	0.0356	$\alpha(K)=0.0276 4; \alpha(L)=0.00622 9; \alpha(M)=0.001419 20; \alpha(N+)=0.000368 6 \alpha(N)=0.000323 5; \alpha(O)=4.34\times10^{-5} 6; \alpha(P)=1.489\times10^{-6} 21$ I_{γ} : Value chosen to yield 100% of the decays through the c decay branch 2003Ka7P report $I_{\alpha}=100$
445.32 5	30	1215.6	8+	770.3	6+	[E2]	0.0206	
508.67 10	≈3.3	1724.3	10+	1215.6	8+	[E2]	0.01449	$\alpha(K)=0.01169 \ 17; \ \alpha(L)=0.00218 \ 3; \ \alpha(M)=0.000491 7; \ \alpha(N+)=0.0001287 \ 18 \alpha(N)=0.0001125 \ 16; \ \alpha(O)=1.554\times10^{-5} \ 22; \alpha(P)=6 \ 55\times10^{-7} \ 10$
1063.38 <i>10</i> 1572.05 <i>5</i> 2017.4 <i>1</i>	3.3 9 27.0 15 9.0 10	2787.6 2787.6 2787.6	8+ 8+ 8+	1724.3 1215.6 770.3	10 ⁺ 8 ⁺ 6 ⁺			

[†] Unless noted otherwise, the values are those reported by 2003KaZP.

[‡] Note that the γ branching of the 2787 level reported by 2003KaZP is significantly different from that reported by 1999KaZV. This leads to significant intensity imbalances at the 1215, 8⁺, and 770, 6⁺, levels.

[#] Deduced by the evaluator from intensity-balance considerations in the level scheme. 2003KaZP do not report I γ values for these γ 's.

^(a) For absolute intensity per 100 decays, multiply by 1.91.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵⁶Ho ε decay (7.6 min)

¹⁵⁶₆₆Dy₉₀

3

¹⁵⁶Ho ε decay (7.6 min)

¹⁵⁶₆₆Dy₉₀