		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 2537 (2012)	1-Mar-2012

 $Q(\beta^{-})=-5.05\times10^{3} 6$; S(n)=9445 10; S(p)=6568 10; $Q(\alpha)=1753.0 3$ 2017Wa10 S(2n)=16278 10; S(2p)=11400.95 10 2017Wa10

Additional information 1.

Additional information 2.

Data are from the following studies: ¹⁵⁶Ho $\varepsilon + \beta^+$ decay; ¹⁵⁹Tb(p,4n γ) and ¹⁵⁶Gd(α ,4n γ) studies; (HI,xn γ) studies; ¹⁵⁸Dy(p,t) reaction; ¹⁵⁶Dy(d,d') reaction; ¹⁶⁵Ho(π^- ,9n γ) study; and Coul. ex.

Model discussions and calculations of level energies, configurations, B(E2), or degree of deformation: 1975Bi13, 1978Pe01, 1980De34, 1980Di15, 1983He20, 1986BeZG, 1989Gu07, 1990Ha22, and 1991Bo05.

¹⁵⁶Dy Levels

Average g-factors given in the evaluation 1989Ra17 are: +0.11 4 and +0.12 3 for an average J of 19; +0.14 6 for an average J of 21; and +0.20 3, +0.21 7, and +0.21 3 for an average J of 23. These values are based on the data of 1984Ha39 and 1985Ta02. See also the compilation by 2005St24.

The customary expression for the energies of the low-spin members of the rotational bands does not provide a good description of these energy spacings. Thus, at most only an A value is given here (in order to provide insight into how the effective moment of inertia differs for the various bands). It is computed from the energies of the first two band members, unless noted otherwise. For the definition of the quasiparticle band-labeling convention for the various high-spin bands, see the (HI,xnγ) Data Set.

Cross Reference (XREF) Flags

				A B C D	(HI,xn γ)E 158 Dy(p,t) 156 Ho ε decay (56 min)F 156 Dy(d,d') 156 Ho ε decay (7.6 min)G 165 Ho(π^- ,9n γ) 159 Tb(p,4n γ), 156 Gd(α ,4n γ),HCoulomb excitation
$E(level)^{\dagger}$	J ^π ‡	$T_{1/2}^{\#}$	XREF		Comments
0@	0+	stable	ABCDEFGH		⁷ _{1/2} : 2011Be18 report an experimental lower limit for the half-life of the <i>α</i> transition to the first 2 ⁺ state in ¹⁵² Gd of 3.8×10 ¹⁶ y. The model calculation of 1988Al13 gives T _{1/2} (<i>α</i>)=4.3×10 ²⁴ y. Authors quote a measured limit of >1.0×10 ¹⁵ y. From systematics of <i>α</i> decay using a radius parameter extrapolated from ^{150,152,154} Dy, one deduces T _{1/2} (<i>α</i>)=2.2×10 ²⁴ y. 2011Be18 report measured lower limits for the half-lives of <i>εε</i> and <i>εβ</i> ⁺ transitions, both 0 <i>ν</i> and 2 <i>ν</i> , to a number of levels in ¹⁵⁶ Gd. These range from ≈1.8×10 ¹⁴ y to ≈7.1×10 ¹⁶ y. 2002Hi09 calculate 2 <i>ν</i> double <i>ε</i> decay for several deformed nuclei. For ¹⁵⁶ Dy, they compute T _{1/2} =2.74×10 ²² y, 8.31×10 ²⁴ y, and 1.08×10 ²⁵ y, respectively, for 2 <i>ν ε</i> decay to the g.s., the first excited 0 ⁺ state, and the second excited 0 ⁺ state of ¹⁵⁶ Gd. These values are also given in 1999Ce12, which involves some of the same authors. More recent calculations of various aspects of the "double-beta-decay" process are given by 2009Ra26, 2010Ra06, 2011Kr07 and 2011El05. These are discussed in the ¹⁵⁶ Gd data set. 2002Hi09 calculate 2 <i>ν ε</i> decay for several deformed nuclei. For ¹⁵⁶ Dy, they report calculated upper limits for T _{1/2} values for the 2 <i>ν ε</i> decay to the g.s., the first and second excited 0 ⁺ levels in ¹⁵⁶ Gd. The end and square charge radius has been determined from optical isotope shift data. From 1987NeZW Δ <r<sup>2>(156-154)≈0.38 fm² and Δ<r<sup>2>(158-156)=0.199 fm² <i>10</i>. For the nuclear parameter, <i>λ</i> (which ≈ Δ<r<sup>2>), 1982Cl04 report <i>λ</i>(158-156)=0.215 fm² <i>12</i>. The compilation of 1987Au06 quotes values of <i>λ</i>(156-154)=0.37 fm² <i>3</i> and <i>λ</i>(158-156)=0.194 fm² <i>17</i>.</r<sup></r<sup></r<sup>

¹⁵⁶Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				From an evaluation of data on nuclear rms charge radii, 2004An14 report
e				$< r^2 > 1/2 = 5.16 \text{ fm } 25.$
137.77 [@] 8	2+	0.823 ns 7	ABCDEFGH	μ=+0.78 8 $J^π$: E2 γ to 0 ⁺ gs; L=2 in (p,t). T _{1/2} : Computed from B(E2)↑=3.72 3 (1977Ro27) in Coul. ex. Others: 0.82 ns 5 (1966Ab02) and 0.90 ns 8 (1970Mo39), from ¹⁵⁶ Ho ε decay; and 0.74 ns 4 (2006Mo22), from (HI,xnγ). μ: From the evaluation by 1989Ra17. See also the compilation by 2005St24.
404.19 [@] 10	4+	31.6 ps 3	ABCDEFG	J^{π} : E2 γ to 2 ⁺ and expected band structure.
675.60 ^{&} 14	0^{+}		AB DEF	J^{π} : E0 transition to 0 ⁺ gs; L=0 in (p,t).
770.44 [@] 11	6+	6.3 ps <i>3</i>	ABCDEFG	J ^{π} : E2 γ to 4 ⁺ , L=6 in (p,t) and expected band structure.
828.64 & 11	2+		AB DEF H	B(E2) \uparrow =0.008 5 B(E2) \uparrow : From Coul. ex. (1982Ro07). J^{π} : E0 component in γ to 2 ⁺ , L=2 in (p,t).
890.50 ^{<i>a</i>} 9	2+	1.56 ps <i>12</i>	AB DEF H	The γ decay of this level is quite different from what is expected (and observed) for γ vibrations in other nuclides. This, together with an apparent E0 component in the transition to the 2 ⁺ member of the g.s. band, suggests that this state may be more than simply a γ vibration. J ^{π} : E2 γ to 0 ⁺ , L=2 in (p,t). T _{1/2} : Computed from B(E2) \uparrow =0.180 <i>11</i> (1982Ro07) in Coul. ex. and the adopted γ branching.
1022.08 ^{<i>a</i>} 10	3+		AB D	J^{π} : E2 γ 's to 2 ⁺ and 4 ⁺ levels and expected band structure.
1088.28 ^{&} 11	4+	4.5 ps 12	AB DEF	J ^{π} : From E0 component in γ to 4 ⁺ level and L=4 in (p,t).
1168.47 ^a 11	4+		AB DEF	J^{π} : E2 γ 's to 2 ⁺ levels, E0 or M1 γ to 4 ⁺ , L=(4) in (p,t), and expected band structure.
1215.61 [@] 20	8+	2.26 ps 6	ABCDE G	J ^{π} : E2 γ to 6 ⁺ and expected band structure.
1293.2 ^b 3	1-		D	J ^{π} : Assumed E1 γ to 2 ⁺ level. Bandhead of odd-spin octupole band.
1335.56 ^a 13	5+		AB D	J^{π} : E2 γ 's to 3 ⁺ and 6 ⁺ levels and expected band structure.
1368.36 ⁰ 12	3-		B DEF H	B(E3) $\uparrow=0.22$ 7 J ^{π} : E1 γ 's to 2 ⁺ and 4 ⁺ levels. B(E3) \uparrow : From Coul. ex. (1982R007).
1377.80?	(0+)		В	2003KaZP report this level but give no other information about it. 2008VaZU, with many of the same authors, also list it but also provide no information other than what is given here.
1382.31 16	2+		ΒE	XREF: E(1385). J^{π} : γ 's to 0 ⁺ , 2 ⁺ , and 3 ⁺ levels. Presumed M1 γ to 2 ⁺ gives $J^{\pi}=2^+$. Evaluator associates this level with the 1385 level in (p,t), which was associates this level on L =(3).
1407 5	(3 ⁻)		EF	$B(E3)\uparrow=0.009$ $J^{\pi}: \text{ From } L=(3) \text{ in } (p,t); \text{ and } (d,d') \text{ reaction data.}$ $B(E3)\uparrow: \text{ From Coul. ex. } (1982\text{Ro07}).$
1437.28 ^{&} <i>17</i>	6+	3.56 ps 24	AB D	J^{π} : E0 component in γ to 6 ⁺ member of the gs band and expected band structure.
1447.38 <i>20</i> 1476.10 <i>15</i>	(2^+) $(3)^-$		D B E	J^{π} : γ to 2 ⁺ . Proposed in (p,4n γ) as a member of the "Super" band. XREF: E(1483).
1514.94 20	2+		ΒE	J [*] : E1 γ to 2 ⁺ indicates π = L=(3) in (p,t) suggests J [*] =(3 ⁻). XREF: E(1520). J ^{π} : γ 's to 0 ⁺ and 4 ⁺ levels; L=2 in (p,t). Assigned as a " β - γ " vibrational bandhead by 1977Ko04 from (p,t).
1525.17 ^a 19	6+		AB D f	XREF: f(1523). J ^{π} : Possible E0 component in γ to 6 ⁺ level; expected band structure.
1526.28 ^b 15	5-		BDf	XREF: f(1523).

¹⁵⁶Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Х	REF	Comments
					J ^{π} : E1 γ 's to 4 ⁺ and 6 ⁺ levels, but both γ 's are multiply placed. Expected band structure.
1609.33 <i>16</i>	(3)-		В	EF	J^{π} : E1 γ to 4 ⁺ indicates J=3,4,5 and π = Population in (d,d') indicates natural parity. Assignment requires γ to g.s. to be E3. In (p,t), L=(0) which implies J^{π} =(0 ⁺).
1624.64 18			В		
1627.42 16	(4)		В	DE	XREF: E(1635). J^{π} : E2 γ 's to 3 ⁺ and 4 ⁺ levels indicates π =+. L=(4) in (p,t). Proposed in (p,4n γ) as a member of the "Super" band. However, 1977Ko04, (p,t), suggest that it is the bandhead of a K ^{\pi} =4 ⁺ band.
1677.15 <i>15</i> 1679.9 8	4+		B B		J^{π} : γ 's to 2 ⁺ and 6 ⁺ levels.
1725.02 [@] 8	10^{+}	1.06 ps 10	AC	D G	J^{π} : E2 γ to 8 ⁺ level and expected band structure.
1728.79 ^a 12	7+	-	AB	D	J ^{π} : E2 γ 's to 5 ⁺ and 6 ⁺ levels and expected band structure.
1772.4 10	(3 ⁻)		В	E	XREF: $E(1778)$. I^{π} : From I = (3) in (p t)
1794.55 19	4+		В	EF	XREF: E(1798)F(1794).
177 1100 17	·		_		J^{π} : From L=4 in (p,t).
1809.97 <mark>b</mark> 10	7-		AB	D	J ^{π} : E1 γ to 6 ⁺ level and expected band structure.
1840.07 13	$(4)^{+}$		В	E	XREF: E(1844).
					J^{π} : M1 γ to 3 ⁺ level indicates $J^{\pi}=2^+,3^+,4^+$. M1+E2 γ to 4 ⁺ rules out 2 ⁺ . Probable excitation in (p,t) indicates natural parity. Note that L=(5) in (p,t).
1857.84 14			В		
1858.64 ^{&} 11	8+	2.09 ps 10	Α	D	J^{π} : E0 component in γ to 8 ⁺ member of the gs band, and expected band structure.
1878.6 4	(2)+		В	Е	XREF: E(1874). J ^{π} : E2 to 2 ⁺ , possible M1 to 2 ⁺ and γ 's to 4 ⁺ indicate π =+ and J=2.3.4. L=(2)
1884 5	(5^{-})			F	in (p,t) suggests J=2. I^{π} : From I =(5) in (p t)
1898.64 ^{<i>c</i>} 10	(3) 6 ⁻		AB	D	J^{π} : Feeding by stretched quadrupole (i.e. E2) transition from negative-parity level indicates $\pi = -$. J=6 from proposed band assignment. Assigned as (6,7) ⁺ in (p.4n2)
1930.1 5	(3 ⁻)		В	EF	$T_{\text{R}}^{(p)}$, $T_{\text{R}}^{$
1933.60 18	+		В		J^{π} : E2 to 3^+ indicates π =+. Thus, this is not likely to be the (3 ⁻) level at 1927 in (dd) and at 1924 in (n t)
1942.9 4	+		в		J^{π} : E2 γ to 4 ⁺ indicates π =+.
1949.99 22	(3 ⁻)		B	EF	XREF: E(1956)F(1948).
1050 (40 11	0±			_	J^{π} : From L=(3) in (p,t).
1958.64 ^a 11 2002.9 3	$\frac{8}{4^{+}}$		A B	D E	J [*] : E0 component in γ to 8 ⁺ level, and expected band structure. XREF: E(2009?).
2022 5	2+			F	J^{n} : L=4 in (p,t).
2032 3	(3^{-})			E	J [*] : From L=2 in (p,t). I^{π} : I = (2) in (p,t). If I^{π} is indeed 2 ⁻ , then this level is not the same as the 2058
2032 3	(3)			E	level in 156 Ho ε decay, since this latter level has a decay γ to a 5 ⁺ level.
2058.49 20			В		
2071				F	
2085.14 23	a +		В	_	
2089.81 22	2		В	F	AKEF: $F(2080)$. $I^{\pi_1} \alpha'_{S}$ to 0^+ and 4^+ levels
2094 5	(5^{-})			E	I^{π} : From I = (5) in (n t)
2103.38 25	(4^+)		В	Ē	J^{π} : γ' s to 3^+ and 5^+ levels indicate $J^{\pi}=3^+,4,5^+$. If the 2103 level in (p,t) is the
					same as the 2103 level in ε decay, then the implied natural parity gives 4 ⁺ .
2135	(5-)			F	$I_{\rm L}$ From $I_{\rm -}(5)$ in (a t)
2140 3	(5)			E	J. FIOH $L = (J)$ III (p,t).

¹⁵⁶Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2164.3 5			В	
2176	(3 ⁻)		EF	XREF: $E(2174)F(2179)$. $I^{\pi} \cdot I = (3) in (n t)$
2183.7 5			В	
2186.58 ^b 14	9-		A D F	J^{π} : From E1 γ to 8 ⁺ level and expected band structure.
2191.62 ^{<i>a</i>} 26	9^+		A D	J^{π} : E2 γ 's to 7 ⁺ and 10 ⁺ levels and expected band structure.
2199.68 <i>19</i>	+		B	J . From $L=4$ in (p,t).
2207.4 4			В	
2220.4 4			BE	
2230.9 4			В	
2244.64 14	(3 ⁻)		В	J^{π} : Assumes that mult=E1 for the 1076 γ . Then, γ 's to 2 ⁺ and 4 ⁺ levels require $J^{\pi}=3^{-}$ uniquely.
2250 5	2^+		E	J^{π} : L=2 in (p,t). Level assumed to be distinct from the 2244 level.
2261.62° 11	8		A D	J [*] : Feeding by stretched quadrupole (i.e., E2) transition from negative-parity level indicates π = J=8 from proposed band assignment. Assigned as 8 ⁺ in (p,4n γ).
2264.3 5 2270 0 4			B B	
$2285.88^{@} 10$	12+	0.62 ps 7	A D G	J^{π} : E2 γ to 10 ⁺ and expected band structure.
2293.4 4		1	В	, 1
2300.1 4	4 ⁺		B	I^{π} , α' s to 2^+ and 6^+ levels
$2315.59^{\&}$ 12	$\frac{1}{10^{+}}$	1.55 ps 10	A D	J^{π} : E0 component in γ to 10 ⁺ level.
2323.58 13		F	В	
2331.7 3			B	
$2345.1^{f} 2$	8-		A	J^{π} : γ' s to 7 ⁺ and 8 ⁺ , and proposed band structure.
2372.1 3			В	
2385.7 3	2+ 3 4+		B	I^{π} , α' s to 2^+ and 4^+ levels
2408.5^{e} 3	2 ,5,4 9 ⁻		A	J^{π} : E1 γ to 8^+ and proposed band structure.
2419.1 6			В	
2433.84 16 2439 16 17			B B	
2445.17 21	3+,4+		B	J^{π} : γ 's to 2^+ and 5^+ levels.
2448.03 ^{<i>a</i>} 16	10^{+}		A D	J^{π} : E2 γ to 8 ⁺ and expected band structure.
2489.5 5 2491.90 18			в В	
2517.0 4			В	
2571.7 5	10-		В	T_{T} (F1) (10 ⁺ F2) (0 ⁻ 1) (11 1) (
2580.1 ³ 2592.7 <mark>8</mark>	10 9 ⁻		A A	J^{*} : (E1) γ to 10 ⁺ , E2 γ to 8 ⁺ , and expected band structure. I^{π} : (E1) γ to 8 ⁺ and expected band structure.
2594.3 3	-		В	
2636.55 ^b 18	11-		A D	J^{π} : E1 γ to 10 ⁺ and expected band structure.
2642.50 22 2653.3 6			B B	
2701.5 ^h 2	10-		A D	J ^{π} : From E2 γ to 8 ⁻ level and expected band structure. Negative parity for this level and its associated band members is proposed by 1988Ri09, in (HI,xn γ), based on cranked shell-model and signature-splitting considerations. (Level assigned as 10 ⁺ in (p,xn γ) (1977De28).).
2706.87 ⁱ 13 2707.8 ^c	12^+ 10^-	4.53 ps 10	A D	J^{π} : E2 γ' s to 10 ⁺ levels and expected band structure.
2707.0	10		**	· · · · · · · · · · · · · · · · · · ·

¹⁵⁶Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2709.4 ^e	11-		A	J^{π} : E2 γ to 9 ⁻ , E1 γ to 10 ⁺ , and expected band structure.
2712.37 ^a 14	11^{+}		A D	J^{π} : E2 γ to 9 ⁺ , γ to 12 ⁺ , and expected band structure.
2757.8 5			В	
2787.4 ⁰	8+		C	From log $ft \approx 4.5$ in ¹⁵⁶ Ho ε decay (7.6 min), conf = $v5/2[523]+v11/2[505]$. J ^{π} : γ 's to 6 ⁺ and 10 ⁺ levels.
2788.1 9			В	
2810.4 7			В	
2818.35 12	4+,5-		В	J^{π} : γ' s to 3 ⁻ and 6 ⁺ levels.
2823.38 15			В	
2835.7 + 2847 58	11-		Δ	I^{π} , F2 M1 v to 10^{-} F2 v to 9^{-} and expected hand structure
28782@13	1/1+	0.56 ps 6		π : E2, π is 10° is 10° is 27° is 5° i, and expected band structure.
2895.0.4	14	0.50 ps 0	R	J . EZ Y to 12, and expected band structure.
20/2.0 f	12-		Δ	I^{π} , α to 10^{-} and expected hand structure
2981.5 13	12		B	J. y to to , and expected band structure.
2997.23? ^a 18	12^{+}		D	J^{π} : E2 γ to 10 ⁺ , and expected band structure.
3021.2 ^h	12-		Α	J^{π} : E2 γ 's to 10 ⁻ and 11 ⁻ levels and expected band structure.
3065.88 ⁱ 23	14^{+}	7.49 ps 21	A D	J^{π} : E2 γ to 12 ⁺ , γ to 14 ⁺ , and expected band structure.
3103.6 ^e	13-	I	Α	J^{π} : E2 γ' s to 11 ⁻ levels, E1 γ to 12 ⁺ , and expected band structure.
3154.2 ^b	13-		A D	J^{π} : E1 γ to 12 ⁺ , and expected band structure.
3186.8 ^C	12-		Α	J ^{π} : From proposed band structure in (HI,xn γ).
3221.2 ⁸	13-		Α	J^{π} : E2 γ to 11 ⁻ , and expected band structure.
3273.5 ^a	(13^{+})		Α	J^{π} : γ to 11 ⁺ , and expected band structure.
3411.6 ^J	14-		Α	J^{π} : E2 γ to 12 ⁻ , and expected band structure.
3444.9 ⁿ	14-		Α	J^{π} : E2 γ to 12 ⁻ , and expected band structure.
3498.8 ¹ 3	16^{+}	1.39 ps 8	A D	J ^{π} : E2 γ 's to 14 ⁺ levels, and expected band structure.
3523.3 2	16^{+}	0.32 ps 6	A D	J^{π} : E2 γ to 14 ⁺ , and expected band structure.
3596.4 ^e	15-		Α	J^{π} : E2 γ to 13 ⁻ , and expected band structure.
3678.0	14-		A	J ^{π} : From proposed band structure in (HI,xn γ).
3089.98	$15 \\ 15(-)$		A	$J = EZ \gamma 10 TS$, and expected band structure.
$3/19.0^{\circ}$ 3861.22 ⁰	(15^+)		A A	
3054.0^{h}	16-		A	
3954.0	16-		A .	
3901.3 ⁵	10	0.02 mg 5	A	
4023.8° 4157.8°	18	0.92 ps 5	A D	
4178 1 [@]	18+	0.24 ps 6		
4210.4 ^c	16^{-10}	0.24 ps 0	A	
4236.28	17-		A	
4331.1 ^b	(17^{-})		Α	
4533.9 ^h	18-		Α	
4562.4^{f}	18^{-}		А	
4635.6 ⁱ 6	20+	0.49 ps 4	A D	
4771.2 ^e	19-	Po .	A	
4779.2 ^c	18^{-}		Α	
4845.9 <mark>8</mark>	19-		Α	
4859.0 [@]	20^{+}	0.24 ps 6	A D	
4978.8 ^b	(19 ⁻)		Α	
5170.8 ^h	20-		Α	

¹⁵⁶Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
5199.9 <i>∫</i>	20^{-}		A	10141 ^c	32-		A
5320.2 ⁱ	22^{+}	0.31 ps 3	A D	10340.6 ^e	33-		Α
5381.9 ^c	20^{-}		Α	10449.3 <mark>8</mark>	33-		Α
5428.2 ^e	21-		Α	10592 ^d	33-		Α
5507.3 <mark>8</mark>	21-		Α	10618.0 ⁱ	34+	0.06 ps 1	Α
5573.0 [@]	22^{+}	0.21 ps 3	Α	10629 ^k	(33 ⁺)		Α
5855.3 ^h	22^{-}		Α	10713 ¹	(34 ⁺)		Α
5873.4 ^ƒ	22-		Α	10828.1	34+		Α
6036.3 ^c	22-		Α	10925.0 ^f	34-		Α
6070.1 ⁱ	24+	0.177 ps 18	Α	10944.6 ^h	34-		Α
6129.3 ^e	23-		Α	10975 <i>j</i>	34+		Α
6213.8 ^g	23-		Α	11092 ^c	34-		Α
6328.7 [@]	24+	0.155 ps <i>30</i>	Α	11313.4 ^e	35-		Α
6582.5 ⁿ	24-		Α	11443.5 ⁸	35-		Α
6589.7 <mark>5</mark>	24-		Α	11585 ^d	35-		Α
6753.7 ^C	24^{-}		Α	11614 ^k .	(35 ⁺)		Α
6876.8 <mark>e</mark>	25^{-}		Α	11670.6 ¹	36+	0.04 ps 1	Α
6877.9 ⁱ	26^{+}	0.123 ps 19	Α	11735 ¹	(36 ⁺)		Α
6963.9 <mark>8</mark>	25-		Α	11886.7 [@]	36+		Α
7130.3	26^{+}		Α	11946.2 ^{<i>f</i>}	36-		Α
7349.6 ^f	26^{-}		Α	11957.3 ^h	36-		Α
7358.7 <mark>h</mark>	26-		Α	11986 ^j	36+		Α
7533.4 ^c	26-		Α	12089 ^C	36-		Α
7672.6 ^e	27-		Α	12326.8	37-		Α
7738.8 ⁴	28+	0.091 ps 14	A	124628	37-		A
7760.3 ⁸	27-		A	12626 ^{<i>a</i>}	37-		A
7920.5 ^a	27-		A	12628 ^K	(37 ⁺)		Α
7978.5 [@]	28+		A	12769.3 ¹	38+	0.14 ps 4	Α
8164.5J	28-		A	12818 ¹	(38+)		Α
8179.7 ⁿ	28^{-}		Α	12959	38-		Α
8364 [°]	28^{-}		Α	12976	38+		Α
8517.0 ^e	29-		Α	13014.0	38-		Α
8605.8 <mark>8</mark>	29-		Α	13051	38+		Α
8650.8 ¹	30^{+}	0.074 ps 8	Α	13140 ^C	38-		Α
8762 ^{<i>a</i>}	29-		Α	13386.8 ^e	39-		Α
8875.9 [@]	30^{+}		Α	13470 ⁸	39-		Α
9031.9 ^J	30-		Α	13686 ^{<i>k</i>}	(39+)		Α
9051.5 ^h	30-		Α	13711 ^d	39-		Α
9234 [°]	30-		Α	13885.1 ¹	40^{+}	0.05 ps +8-3	Α
9407.4 ^e	31-		Α	13941	(40^+)		Α
9502.2 <mark>8</mark>	31-		Α	13973 ^h	40-		Α
9611.3 ¹	32^{+}	0.06 ps 1	Α	14021.9	40^{+}		Α
9653 ^d	31-		Α	14113.9 ^{<i>f</i>}	40-		Α
9692 ^k	(31^{+})		Α	14210 <i>j</i>	40^{+}		Α
9825.2 [@]	32+		Α	14254 ^C	(40 ⁻)		Α
9952.3 ^f	32-		Α	14496.1 ^e	41-		Α
9973.5 ^h	32-		Α	14532 <mark>8</mark>	41-		Α
10063 <i>j</i>	32+		Α	14797 <mark>d</mark>	(41 ⁻)		Α
			(Continued on	next page	e (footnotes at en	d of table)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
14800 ^k	(41^{+})	A	17012 ⁿ	(45 ⁻)	A	19963 [@]	50^{+}	A
14994.8 ⁱ	42+	Α	17236 ^k	(45 ⁺)	Α	20002 ^k	(49+)	Α
15061 ^h	42-	A	17348 ⁱ	46+	Α	20009 ∫	52-	Α
15152 ¹	(42^{+})	A	17388 ∫	46-	Α	20241? ^h	(50 ⁻)	Α
15190 [@]	42+	A	17434 [@]	46+	Α	20332.2 ^e	51-	Α
15229 ^m	42+	A	17482 ^h	46-	Α	20858 <i>j</i>	(50^{+})	Α
15232 <i>f</i>	42-	Α	17832 ¹	(46 ⁺)	Α	20874 ¹	(50^{+})	Α
15411 ^c	(42 ⁻)	Α	17908? ^C	(46 ⁻)	Α	21332 [@]	52+	Α
15447 <mark>j</mark>	(42^+)	Α	18015.7 ^e	47^{-}	Α	21422 ⁱ	(52 ⁺)	Α
15635.6 ^e	43-	Α	18036 <mark>/</mark>	(46^{+})	Α	21512 ^k	(51 ⁺)	Α
15679 <mark>8</mark>	43-	Α	18152 <mark>8</mark>	47^{-}	Α	21763 ^e	53-	Α
15841 ⁿ	43-	Α	18303 ⁿ	(47 ⁻)	Α	22369? ^j	(52^+)	Α
15950 ^d	(43-)	Α	18472	48^{-}	Α	22576? ^l	(52+)	Α
15975 ^k	(43 ⁺)	Α	18600 ^k	(47^{+})	Α	22799 [@]	54+	Α
16171.2 ⁱ	44+	Α	18615 ⁱ	48^{+}	Α	22998 ⁱ	(54+)	Α
16210 ^h	44-	Α	18616 ∫	50-	Α	23244? ^k	(53+)	Α
16289 [@]	44+	Α	18651 @	48^{+}	Α	24382? ^l	(54 ⁺)	Α
16350 /	44-	Α	18813 ^h	48^{-}	Α	24430 [@]	(56 ⁺)	Α
16448 ¹	(44^{+})	Α	19090.2 ^e	49-	Α	24716? ⁱ	(56 ⁺)	Α
16474 ^m	(44^{+})	A	19298 ¹	(48^{+})	Α	26224 [@]	(58 ⁺)	Α
16625 ^C	(44 ⁻)	Α	19408 <i>j</i>	(48^{+})	Α	26640? ⁱ	(58+)	Α
16717 <mark>/</mark>	(44^{+})	A	19488 <mark>8</mark>	49-	Α	28122? [@]	(60^{+})	Α
16833.3 ^e	45-	A	19652? ⁿ	(49 ⁻)	A	30241? [@]	(62^{+})	Α
16869 <mark>8</mark>	45-	Α	19953 ⁱ	50^{+}	Α			

¹⁵⁶Dy Levels (continued)

[†] From values given in individual reactions or decays, primarily from ¹⁵⁶Ho ε decay and (HI,xn γ) and ¹⁵⁹Tb(p,4n γ) studies.

[‡] Arguments are given explicitly for each level below 3.7 MeV. Above this energy, all values are from (HI,xn γ) alone and are based on the considerations mentioned in that data set. These values are generally those proposed by the authors of those studies. The light-ion-induced in-beam studies are for convenience frequently referred to simply as (p,4n γ), although they may include (α ,4n γ) data as well.

[#] Unless noted otherwise, the $T_{1/2}$ values are from the (HI,xn γ) data set.

[@] Band(A): $K^{\pi}=0^+$ g.s. band. $\alpha=23.0$.

[&] Band(B): First excited $K^{\pi}=0^+$ band. $\alpha=25.5$. Because of the small value of B(E2) \uparrow , this band is not, at least predominantly, a β vibration. For a discussion of this and related points regarding excited 0^+ bands in strongly deformed nuclei, see 2001Ga02. Microscopic calculations of the 0^+ excitations in the even-mass Dy isotopes from $\alpha=156$ to 166 are described and discussed by 2002Ge10.

^{*a*} Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band. α =19.8. α -value computed from the energies of the 2⁺ and 4⁺ states. For a discussion of the odd-even staggering in the γ -vibrational bands of a number of heavy deformed nuclei, see 2000Mi18. The decay of the bandhead is quite different from that observed for γ vibrations in most other nuclides, and the ΔJ =0 transitions from some of the excited band members to members of the g.s. band seem to have E0 components, suggesting that a γ -vibrational assignment may not be entirely appropriate. Mixing with the near-lying 828 level may be significant.

- ^b Band(D): Aligned odd-spin octupole band. α =7.55. α -value computed from the energies of the 1⁻ and 3⁻ states.
- ^c Band(E): Unfavored, even-spin octupole band. α =12.1. α -value computed from the energies of the 6⁻ and 8⁻ states.
- ^d Band(e): Negative-parity band, $\alpha = 1$. Band proposed by 1998Ko49 in (HI,xn γ).
- ^{*e*} Band(F): Odd-spin, negative-parity band. Configuration assigned as AE, changing to AEBC at the higher spins (1988Ri09). (For the definition of the quasiparticle band-labeling convention for this and the other high-spin bands, see the (HI,xn γ) data set).

¹⁵⁶Dy Levels (continued)

^f Band(f): Even-spin, negative-parity band. Configuration assigned as AF, changing to AFBC at the higher spins (1988Ri09).

- ^g Band(g): Odd-spin, negative-parity band. Configuration assigned as AX, changing to AXBC at the higher spins (1988Ri09).
- ^h Band(G): Even-spin, negative-parity band. Configuration assigned as AY, changing to AYBC at the higher spins (1988Ri09).
- ^{*i*} Band(H): Positive-parity band, α =0. Configuration assigned as AB at the lower spins (J<22) (1988Ri09). This band crosses the g.s. band around J^{π}=16⁺ and the first excited 0⁺ band between J=10 and 12. A crossing with the two-proton- quasiparticle band with configuration A_pB_p also occurs within this band at higher spins.
- ^{*j*} Band(I): Positive-parity band, α =0. Band proposed by 1998Ko49 in (HI,xn γ).
- ^k Band(J): Positive-parity band, $\alpha = 1$ branch. Band proposed by 1998Ko49 in (HI,xn γ).
- ^{*l*} Band(j): Positive-parity band, α =0 branch. Band proposed by 1998Ko49 in (HI,xn γ).
- ^{*m*} Band(K): Positive-parity band, α =0. Band proposed by 1998Ko49 in (HI,xn γ).
- ^{*n*} Band(L): Negative-parity band, α =0. Band proposed by 1998Ko49 in (HI,xn γ).
- ^o Band(M): Bandhead of a $K^{\pi}=8^+$ band. configuration=v5/2[523]+v11/2[505].

 $\gamma(^{156}\text{Dy})$

Measurements of continuum γ 's: 1982Lu03, 1988HoZQ.

9

The unplaced γ 's are not given here, see ¹⁵⁶Ho ε decay and ¹⁵⁹Tb(p,4n γ).

Calculations of the reduced γ transition probabilities, e.g., B(E2)(W.u.), assume that essentially all of the decays from the level are given. This assumption may be unrealistic for the high-energy levels observed in the (HI,xn γ) studies. The presence of other decay modes would reduce the calculated transition probabilities. In this data set, unless noted otherwise, mention of the ¹⁵⁶Ho ε decay refers to the 56-min g.s. decay. Reference to the isomeric (7.6 min) decay is specifically indicated.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α b	$I_{(\gamma+ce)}^{a}$	Comments
137.77	2+	137.80 10	100	0	0+	E2	0.849		B(E2)(W.u.)=150.0 <i>17</i> Mult.: Based on α (K)exp=0.46 (1966La11) and 0.45 (1976Gr20); K/L=1.8 5 (1960Gr24), 1.42 (1961Ba32), and 1.69 (1966La11); L1/L2=0.41 (1966GrZX) and 0.37 2 (1987BaYQ); L1/L3=0.41 (1966GrZX) and 0.40 2 (1987BaYQ), all from ¹⁵⁶ Ho ε decay. Also from $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
404.19	4+	266.38 10	100	137.77	2+	E2	0.0933		B(E2)(W.u.)=244.8 24 Additional information 3. Mult.: Based on α(K)exp=0.064 (1966La11), 0.075 (1976Gr20), and 0.069 3 (1977De28); K/L=3.0 4 (1960Gr24), 2.0 (1961Ba32), 3.6 (1966GrZX), and 3.21 (1966La11), together with L subshell ratios (1960Gr24,1966GrZX,1987BaYQ), all from ¹⁵⁶ Ho ε decay. Also from $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
675.60	0^+	537.8 2	100	137.77	2+	E2	0.01257		Mult.: Based on α (K)exp=0.013 in ¹⁵⁶ Ho ε decay (1976Gr20) and 0.014 4 in (p.4ny) (1977De28).
		675.8 <i>3</i>		0	0+	E0		4	I _{γ} : Measured I γ <9 (1976Gr20, ε decay), but γ is an E0. Mult.: Based on observation of ce and lack of observation of γ in ¹⁵⁶ Ho ε decay (1976Gr20).
770.44	6+	366.22 12	100	404.19	4+	E2	0.0356		B(E2)(W.u.)=264 13 Mult.: From ¹⁵⁶ Ho ε decay: α (K)exp=0.023 (1966La11) and 0.030 (1976Gr20); K/L=5.1 & (1960Gr24), 2.8 (1961Ba32), 4.4 (1966GrZX) and 4.0 (1966La11); L subshell ratios (1960Gr24,1966GrZX); α (K)exp= 0.0287 16 (1977De28), (p,4n γ). Also $\gamma(\theta)$ from (HI,xn γ) (1988Ri09).
828.64	2+	152.8 424.5 2	<0.7 10.8 5	675.60 404.19	0+ 4+	[E2] E2	0.591 0.0235		 I_γ: From ¹⁵⁶Ho ε decay. Value from (α,4nγ) is 36 7. I_γ: From ¹⁵⁶Ho ε decay. Value from (α,4nγ) is 89, but includes a ¹⁵⁷Dy impurity. Mult.: Based on α(K)exp=0.019 (1976Gr20), ¹⁵⁶Ho ε decay, and 0.029 3 (1977De28), (p,4nγ).
		690.86 <i>13</i>	100 5	137.77	2+	E0+E2	0.031		Mult.: From α (K)exp=0.036 (1976Gr20), ¹⁵⁶ Ho ε decay, and 0.024 4 (1977De28), (p,4n γ). α : Computed from α (K)exp=0.026 and α/α (K).
		828.7	<4	0	0^+	[E2]	0.00454		I _{γ} : From ¹⁵⁶ Ho ε decay. From (α ,4n γ), I γ =16 18.

					Adop	ted Levels,	Gammas (continued)			
	γ ⁽¹⁵⁶ Dy) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f = J_f^{\pi}$	Mult. [@]	α b	$I_{(\gamma+ce)}^{a}$	Comments			
890.50	2+	61.7 486.4 <i>3</i> 752.67 <i>15</i>	<1.0 8.5 10 56 5	828.64 2+ 404.19 4+ 137.77 2+	[M1,E2] [E2] E2+E0(+M1)	14 <i>5</i> 0.01629 0.0085	14	 B(E2)(W.u.)=12.6 19 B(E2)(W.u.)=9.4 12 ρ²(E0)×10³=8 5. Value computed by the evaluator assuming no M1 component in the 752 transition. E0 components in the ΔJ=0 transitions between γ-vibrational states and members of the g.s. band are not expected, suggesting that the make-up of this band is more than simply a γ vibration. B(E2)(W.u.): Calculated assuming a pure E2 mult. Mult.: From α(K)exp=0.0065 (1976Gr20), ¹⁵⁶Ho ε decay and 0.0075 13 (1977De28), from (p,4nγ). If α(K)exp is assumed to result from a M1,E2 admixture only, one computes δ²=0.82, which seems unreasonably large for a transition between a γ band and a gs band. α: Computed from α(K)exp=0.0072 and α/α(K), assuming no M1 component. 			
		890.44 12	100 15	0 0+	E2	0.00389		Additional information 4. B(E2)(W.u.)=7.2 8			
1022.08	3+	131.7	< 0.5	890.50 2+	[M1,E2]	1.04 5	6.	Mult.: From α (K)exp=0.0029 (19/6Gr20), ¹⁵⁰ Ho ε decay. I _{γ} : From ¹⁵⁶ Ho ε decay. From I(ce) and α for [M1,E2], I γ =7.2; in (α 4na) value is 57% of Ia(618), but also 65% of Ia(824).			
		617.88 12	22 2	404.19 4+	E2	0.00891		In (α ,4ny) value is 37% of $1\gamma(018)$, but also 05% of $1\gamma(084)$. I _{γ} : From ¹⁵⁶ Ho ε decay; value from (α ,4n γ) is 115. Mult : From α (K)exp=0.0075 (1076Gr20). ¹⁵⁶ Ho ε decay			
		884.30 10	100 7	137.77 2+	E2	0.00394		Mult.: From α (K)exp=0.0075 (1976Gr20), 110 ε decay. Mult.: From α (K)exp=0.0031 (1976Gr20), ¹⁵⁶ Ho ε decay, and 0.0033 4 (1977De28) (p.4ny)			
1088.28	4+	259.59 15	11.0 10	828.64 2+				I_{γ} : Value from $(\alpha, 4n\gamma)$ is 57, but this value includes ¹⁵⁷ Dy			
		317.9 2	2.0 3	770.44 6+	E2	0.0541		B(E2)(W.u.)=12 4 I_{γ} : From ¹⁵⁶ Ho ε decay.			
		684.10 <i>10</i>	100 7	404.19 4+	E2+E0	0.035		Mult.: Based on α (K)exp=0.045 (1976Gr20), from ¹⁵⁶ Ho ε decay. B(E2)(W.u.)=13 4 B(E2)(W.u.): Calculated assuming a pure E2 mult. Mult.: From α (K)exp=0.043 (1976Gr20), ¹⁵⁶ Ho ε decay and 0.0324 19 (1977De28), (p,4n γ).			
		950.5 2	9.0 15	137.77 2+	E2	0.00338		α: Computed from $\alpha(K)\exp=0.050$ and $\alpha/\alpha(K)$. Additional information 5. B(E2)(W.u.)=0.23 8 I _γ : From ¹⁵⁶ Ho ε decay. Mult.: From $\alpha(K)\exp=0.0028$ (1976Gr20). ¹⁵⁶ Ho ε decay.			
1168.47	4+	80.2	<3	1088.28 4+			7	E_{γ} : From ce data (1976Gr20), ¹⁵⁶ Ho ε decay.			
		146.4	<3	1022.08 3+	[M1,E2]	0.75 7	2	E_{γ} : From ce data in ¹⁵⁶ Ho ε decay (1976Gr20). I_{γ} : From 2002Ca49, ¹⁵⁶ Ho ε decay. Value from (α ,4n γ) is 515.			

From ENSDF

 $^{156}_{66}\mathrm{Dy}_{90}$ -10

					Ad	opted Levels,	Gammas	(continued)
						γ (¹⁵⁶ Dy	y) (continue	ed)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
1168.47	4+	277.96 18	7.9 8	890.50 2+	E2	0.0816		E _γ : From ¹⁵⁶ Ho ε decay. Value from (p,4nγ) is 279.22 21. I _γ : From ¹⁵⁶ Ho ε decay. Value from (p,4nγ) is ≤415. Mult : From α (K)exp=0.062 (1976Gr20). ¹⁵⁶ Ho ε decay.
		397.9 2	2.3 6	770.44 6+	[E2]	0.0281		I_{γ} : Value from $(\alpha, 4n\gamma)$ is 370.
		764.12 <i>13</i>	100 6	404.19 4+	E0+E2,M1	0.0095		Mult.: Based on α (K)exp=0.0072 (1976Gr20), ¹⁵⁶ Ho ε decay. Value from (p,4n γ) is 0.0082 <i>12</i> (1977De28). α : Computed from α (K)exp=0.0080 and α/α (K).
		1030.7 2	86 4	137.77 2+	E2	0.00286		Mult.: Based on α (K)exp=0.0024 (1976Gr20), ¹⁵⁶ Ho ε decay. and 0.0023 4 (1977De28), (p,4n γ).
1215.61	8+	445.23 17	100	770.44 6+	E2	0.0206		B(E2)(W.u.)=281 8 Mult.: From α (K)exp=0.0165 17 (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
1293.2	1-	1154.4 3	100	137.77 2+	E1			Mult.: From $\gamma(\theta)$ in (p,4n γ) (1976E113), mult=D. From assigned configuration, mult=E1 is expected.
1335.56	5+	167.0	<4	1168.47 4+	[M1,E2]	0.50 7	14	E_{γ} : From ce data (1976Gr20), ¹⁵⁶ Ho ε decay.
								I_{γ} : From 2002Ca49, ¹⁵⁶ Ho ε decay.
		313.4 2	9.2 7	1022.08 3+	E2	0.0565		I_{γ} : From ¹⁵⁰ Ho ε decay; value from (α,4nγ) is ≤73. Mult.: From α(K)exp=0.044 (1976Gr20), ¹⁵⁶ Ho ε decay, and γ(θ) (1988Ri09), (HI,xnγ).
		565.07 <i>17</i>	16.0 8	770.44 6+	E2(+M1)	0.016 6		I _γ : From ¹⁵⁶ Ho ε decay. Mult.: From α (K)exp=0.012 (1976Gr20), ¹⁵⁶ Ho ε decay, and 0.0090 22 (1977De28), (p.4nγ).
		931.35 16	100 6	404.19 4+	E2	0.00353		Mult.: From: α (K)exp=0.0029 (1976Gr20), ¹⁵⁶ Ho ε decay; 0.0034 5 (1977De28), (p,4n γ); and $\gamma(\theta)$ (1988Ri09), (HI,xn γ).
1368.36	3-	964.36 18	29 2	404.19 4+	E1	0.00134		Mult.: From α (K)exp=0.0012 (1976Gr20), ¹⁵⁶ Ho ε decay.
		1230.72 14	100 10	137.77 2+	E1	8.92×10 ⁻⁴		Mult.: From α (K)exp=0.00071 (1976Gr20), ¹⁵⁶ Ho ε decay, and 0.00072 <i>14</i> (1977De28), (p,4n γ).
1382.31	2^{+}	360.7 ^e 12	39 14	1022.08 3+				
		491.6 3	82 21	890.50 2+	1/1	0.0000		
		553.12	100 11	828.64 2	MI	0.0229		$\alpha(K)=0.020; \alpha(L)=0.003$ Mult.: Assigned to a 554.03 γ by 1976Gr20, previously placed from a 3071.7 level. If this association is correct, then $J^{\pi}=2^+$ uniquely for the 1382.3 level.
1427.00		706.74 16	50 7	$675.60 0^+$	50	0.0410		$\mathbf{D}(\mathbf{EQ})(\mathbf{W}) \ge \mathbf{Q}(\mathbf{Q},\mathbf{Q})$
1437.28	Ο'	348.96 <i>14</i>	134	1088.28 4*	E2	0.0410		B(E2)(W.u.)=209 21 Mult.: From α (K)exp=0.041 (1976Gr20), ¹⁵⁶ Ho ε decay, and $\gamma(\theta)$ (1988Ri09), (HLxn γ).
		666.88 15	100 5	770.44 6+	E0+E2	0.048		B(E2)(W.u.)=11.2 <i>11</i> B(E2)(W.u.): Calculated assuming a pure E2 mult. Mult.: From α (K)exp=0.058 (1976Gr20), ¹⁵⁶ Ho ε decay, and 0.0344 21 (1977De28) (p.4nz)

	Adopted Levels, Gammas (continued)											
	γ ⁽¹⁵⁶ Dy) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult.@	α b	Comments					
1437.28	6+	1033.2 <i>3</i>	34 7	404.19 4+	E2 ^{&}	0.00284	B(E2)(W.u.)=0.43 <i>10</i> I _y : From ¹⁵⁶ Ho ε decay. 2006Mo22 report Iy=14 <i>4</i> .					
1447.38	(2^{+})	1310.9 8	100	137.77 2+			, , , ,					
1476.10	(3)-	585.6 2 1338.31 <i>17</i>	32 6 100 10	$890.50 \ 2^+ \ 137.77 \ 2^+$	E1		Mult.: From ce data in 156 Ho ε decay. (See the comment there.).					
1514.94	2^{+}	624.4 <i>3</i> 839 3 2	21 9 37 4	$890.50 \ 2^+$ $675.60 \ 0^+$								
		1111.2.6	100 25	$404.19 4^+$								
1525.17	6+	190	<13	1335.56 5+								
		356.5 [°] 3	30 <i>3</i>	1168.47 4+								
		437 ^c	<7	1088.28 4+								
		754.9 [°] 2	100 6	770.44 6+			Mult.: Suggested to be E0+E2 from α (K)exp=0.0120 22 (1977De28), (p,4n γ). However, uncertainty in split of the intensity between the two placements casts doubt on this. Note also that an E0 component in a Δ J=0 transition between a member of a γ -vibrational band and a member of a g.s. band is not expected.					
							However, such a component is apparently observed in the deexcitation of the 2^+ bandhead, suggesting that this band may be more than simply a γ band.					
		1121 ^c	<149	404.19 4+	E2 <mark>&</mark>							
1526.28	5-	357 ^c	<3	1168.47 4+								
		437.6 ^{ce} 6	1.0 7	1088.28 4+								
		755 ^c	<7	770.44 6+			I_{γ} : From ¹⁵⁶ Ho ε decay; value from (α ,4n γ) is 75, but it is doubly placed.					
		1121.8 ^c 2	100 10	404.19 4+			I_{γ} : From ¹⁵⁶ Ho ε decay. Multi-Assigned E1 in ¹⁵⁶ Ho ε decay.					
1600 22	$(2)^{-}$	1205 2 2	51 1	404 10 4+	E 1		Mult. Assigned E1 III FIG ε decay and III (p,4II), but γ may be a doublet. Mult. From $\alpha(K) \alpha x p = 0.00062$ in ¹⁵⁶ He α decay (1076C+20)					
1009.55	(\mathbf{J})	1205.2 2	100 12	$137 77 2^+$	LI		Mult From $a(\mathbf{K})exp=0.00002$ III 110 ε decay (19700120).					
		1609 1 6	56.12	$0 0^+$	[F3]							
1624.64		456.2.8	9.3	1168.47 4+	[20]							
1021101		796.03 15	100 6	828.64 2+								
		1486.4 7	55 16	$137.77 2^+$								
1627.42	$(4)^{+}$	458.9 <i>4</i>	3.6 11	1168.47 4+								
		605.3 <i>3</i>	6.4 13	1022.08 3+	E2	0.00937	Mult.: From α (K)exp=0.0085 (1976Gr20), ¹⁵⁶ Ho ε decay.					
		1223.36 18	100 7	404.19 4+	E2,M1	0.0027 7	Mult.: From $\alpha(K) \exp (-0.0022 \ 18 \text{ in } (p,4n\gamma)) (1977 \text{De}28).$					
1677.15	4+	588.88 14	100 3	1088.28 4+	,							
		654.9 <i>4</i>	63 17	1022.08 3+								
		786.1 ^e 5	19 6	890.50 2+								
		848.2 5	23 10	828.64 2+								
		907.2 4	29 4	770.44 6+	E2	0.00373	Mult.: From α (K)exp=0.0034 (1976Gr20), ¹⁵⁶ Ho ε decay.					
		1272.8 <i>3</i>	62 15	404.19 4+								
1679.9		851.0 ^e 12	95	828.64 2+								
		1542.1 8	100 20	137.77 2+								
1725.02	10^{+}	509.35 6	100	1215.61 8+	E2	0.01444	$B(E2)(W.u.)=3.1\times10^2 3$					

						γ (¹⁵⁶ Dy) (continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
1728.79	7+	393.57 19	52 8	1335.56 5+	(E2)	0.0290	Mult.: From α (K)exp=0.0112 <i>11</i> in (p,4n γ) (1977De28), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09). I $_{\gamma}$: In ¹⁴⁸ Nd(¹² C,4n γ), this γ is reported to be≈2.2 times as strong as the
							other γ (958.4 keV) deexciting this level (1988Ri09). Mult.: From α (K)exp=0.0028 4 in (p,4n γ) (1977De28), but line is mixed, and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
		958.40 <i>18</i>	100 10	770.44 6+	E2	0.00333	Mult.: From α (K)exp=0.0030 8 in (p,4n γ) (1977De28) and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
1772.4	(3 ⁻)	1634.6 10	100	137.77 2+			
1794.55	4+	1024.6 6	62	770.44 6+			
		1390.33 17	100 6	404.19 4+			
1809.97	7-	593.29 26	14 4	1215.61 8+			
		1039.88 25	100 15	770.44 6+	E1		Mult.: From α (K)exp=0.0006 5 in (p,4n γ) (1977De28) and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
1840.07	$(4)^+$	671.2 2	25 6	1168.47 4+	M1+E2	0.011 4	$\alpha(K)=0.009 \ 3; \ \alpha(L)=0.001$
		818.1 2	37 8	1022.08 3+	M1		
		949.60 16	100 7	890.50 2+			
		1011.7 2	14 4	828.64 2+			
		1435.7 5	66 <i>13</i>	404.19 4+			
1857.84		688.9 ^e 5	64	1168.47 4+			
		1087.40 16	24.8 16	770.44 6+			
		1453.65 15	100 12	404.19 4+			
1858.64	8^{+}	421.25 13	100 [#] 4	1437.28 6+	E2	0.0240	B(E2)(W.u.)=310 24
							Mult.: From α (K)exp=0.020 4 in (p,4n γ) (1977De28) and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
		642.48 40	21 [#] 3	1215.61 8+	E2+E0	0.049	B(E2)(W.u.)=8.0 10
							B(E2)(W.u.): Calculated assuming a pure E2 mult.
							I_{γ} : From (α ,4n γ), value is 65 10.
							Mult.: From α (K)exp=0.041 6 in (α ,4n γ) (1977De28) and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
							α : Computed from α (K)exp=0.041 and α/α (K). Additional information 6.
		1089.3 2	7.6 [#] 17	770.44 6+	E2 ^{&}	0.00255	B(E2)(W.u.)=0.20 5
							I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ), $I\gamma$ =8 2.
1878.6	$(2)^{+}$	988.7 ^e 5	25 5	890.50 2+	E2	0.00312	Mult.: From α (K)exp=0.0031 in ¹⁵⁶ Ho ε decay (1976Gr20).
	~ /	1049.6 ^e 15	21.9	828.64 2+	M1	0.00472	Mult.: From $\alpha(K) \exp = 0.0050$ in ¹⁵⁶ Ho ε decay (1976Gr20).
		1474.2.4	100 25	404.19 4+		5.00.72	
		1741.5 7	64 16	137.77 2+			
1898.64	6-	271.10 21	<18	$1627.42(4)^+$			E_{γ} : From (p.4n γ).
10/0101	0	5(0) (5					I_{γ} : From (p, I_{γ}), I_{γ} : From (p, 4n γ), $I_{\gamma} \leq 88$.
		562.6 5	13.6	1335.56 5*			E_{γ}, I_{γ} : From ¹⁵⁰ Ho ε decay.
		1128 2 4	100.6	$1110 AA 6^{+}$			H : Hrom (n/lno)

From ENSDF

¹⁵⁶₆₆Dy₉₀-13

Т

					Ado	opted Levels	s, Gammas (continued)
						<u>γ(¹⁵⁶D</u>	y) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
							I _γ : From 2002Ca49, ¹⁵⁶ Ho ε decay. From (p,4nγ), Iγ=100 25. Mult.: Assigned as M1 from α (K)exp=0.0040 14 in (p,4nγ), E2 from α (K)exp=0.0024 in ¹⁵⁶ Ho ε decay, and (E1) from $\gamma(\theta)$.
1930.1	(3 ⁻)	1526.1 <i>6</i> 1791.9 <i>9</i>	100 25 78 28	$\begin{array}{rrrr} 404.19 & 4^+ \\ 137.77 & 2^+ \end{array}$			
1933.60	+	845.3 <i>3</i> 911.5 <i>6</i> 1529 <i>4</i> 2	7.2 <i>13</i> 10 <i>3</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E2	0.00370	Mult.: From α (K)exp=0.0025 for a 912.54 γ in ¹⁵⁶ Ho ε decay (1976Gr20).
1942.9	+	854.6 <i>3</i> 1172.5 ^{<i>e</i>} <i>16</i> 1538.0 ^{<i>e</i>} <i>12</i>	100 <i>9</i> 100 <i>15</i> 59 <i>19</i> 121 <i>38</i>	$\begin{array}{c} 404.19 \ 4 \\ 1088.28 \ 4^{+} \\ 770.44 \ 6^{+} \\ 404.19 \ 4^{+} \end{array}$	E2	0.00425	Mult.: From α (K)exp=0.0048 for an 855.65 γ in ¹⁵⁶ Ho ε decay (1976Gr20).
1949.99	(3-)	1545.8 2	100 6	404.19 4+			
1958.64	8+	432.64^{a} 18 520.1 ^d 3	$100^{d} 9$ $14^{d} 9$	$1525.17 6^+$ $1437.28 6^+$	E2	0.0223	Mult.: From α (K)exp=0.019 3 (1977De28), in (p,4n γ). γ is doubly placed.
		741.7 4	15 7	1215.61 8+	E2+E0	0.011	Mult.: From α (K)exp=0.009 4 (1977De28), (p,4n γ). α : Computed from α (K)exp=0.009 and α/α (K). Additional information 7
		1186.7 7		770.44 6+			
2002.9	4+	914.6 3	56 20	$1088.28 \ 4^+$			
		11/4.3 8	88 <i>32</i> 100 28	$404\ 19\ 4^+$			
2058.49		722.3 7	41 13	1335.56 5+			
		890.2 4	84 <i>31</i>	1168.47 4+			
		970.4 ^e 18	19 <i>13</i>	1088.28 4+			
200514		1036.4 2	100 19	$1022.08 3^+$			
2085.14	2+	1314.7 2	100	//0.44 6+	(120)	0.002(1	N & E (17) 0.005 · 15611 1 (107(C 20) 1/ N/1 17
2089.81	21	921.2 3	60 14	1168.47 4*	[E2]	0.00361	Mult.: From $\alpha(K)$ exp=0.005 in ¹⁵⁰ Ho ε decay (19/6Gr20), mult=M1. J^{π} assignments require E2.
		1001.7 3	100 14	1088.28 4+	[E2]	0.00303	Mult.: From α (K)exp=0.0007 in ¹⁵⁶ Ho ε decay (1976Gr20), mult=E1, but placement requires E2.
		1952.3 9	56 23	137.77 2+			
0102.20	(4+)	2089.1 10	72 30	$0 0^+$	[E2]		
2103.38	(4 ')	/6/.8 4	25.0	1335.56 5			
		935.04 1081 24	100 8	1022.08 3+			
2164.3		1393.9 ^e 7	29 12	770.44 6+			
		1760.1 4	100 29	404.19 4+			
2183.7		1095.9 ^e 5	48 29	1088.28 4+			
		1293.0 ^e 5	67 38	890.50 2+			
2106 50	0-	1355.1 4	100 23	828.64 2+	F 1	0.00122	Multi France $(K)_{resc} = 0.0000, 0.(1077D, 20), (-4, -), -1.(0), (111, -)$
	9	970.69 22	100	1213.61 87	EI	0.00132	Mult.: From $\alpha(\kappa) \exp[=0.0008 \ \delta (19/De28), (p,4n\gamma), and \gamma(\theta) in (HI,xn\gamma)$

 $^{156}_{66}\mathrm{Dy}_{90}$ -14

Т

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
2191.62	9+	233.41 18	66 16	1958.64 8+			
		332.6° 4 462.16 21	91 22 100 <i>19</i>	1858.64 8 ⁺ 1728.79 7 ⁺	E2	0.0187	Mult.: From α (K)exp=0.015 4 (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09)
		467.57 25	91 <i>19</i>	1725.02 10+	E2	0.0181	Mult.: From α (K)exp=0.018 5 (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
		975.8 ^d 3	122 ^d 25	1215.61 8+	(E2)	0.00320	I _γ : From ¹⁴⁸ Nd(¹² C,4ηγ), Iγ(975.2γ)/Iγ(462.4γ)=0.76. Mult.: From α(K)exp=0.025 11 in (p,4ηγ) (1977De28), but γ is doubly placed. E2.M1 from $\gamma(\theta)$ in (HI,xηγ) (1988Ri09).
2193.6	4+	858.0 3	100 15	1335.56 5+	M1	0.00770	Mult.: From α (K)exp=0.0079 in ¹⁵⁶ Ho ε decay (1976Gr20).
2100.68		1423.3 6	47 18	$770.44 \ 6^{+}$ 1476 10 (3) ⁻			
2199.00		863.3 10	24 10	$1335.56 5^+$			
		1031.8 8	26 7	1168.47 4+			
		1177.6 2	69 12	1022.08 3+	E2	0.00219	Mult.: From α (K)exp=0.0016 in ¹⁵⁶ Ho ε decay (1976Gr20).
		1795.6 5	100 36	404.19 4+			
2207.4		871.6 5	82 23	1335.56 5+			
2220.4		1185.6.5	100 18	1022.08 3			
2220.4		1430.0 5	100 27	$404 19 4^+$			
2230.9		1460.5 3	100 14	770.44 6+			
2244.64	(3^{-})	620.1 8	7 2	1624.64			
		1076.2 5	28 5	1168.47 4+	E1	0.00109	Mult.: From α (K)exp=0.00094 in ¹⁵⁶ Ho ε decay (1976Gr20).
		1156.4 <i>3</i>	21 5	1088.28 4+			
		1222.8 <i>3</i>	25 5	1022.08 3+			
		1354.1 2	27 3	890.50 2+			
		1415.9 2	100 6	828.64 2+			
	<u> </u>	1840.5 8	15.6	404.19 4*		0.00//	1/2 2 4 2 2 4 2 4 2 4 2 2 2 4 2 2 2 4 2
2261.62	8-	362.83 9	80 12	1898.64 6	E2	0.0366	I_{γ} : From $I_{\gamma}(362\gamma)/I_{\gamma}(1046\gamma)$ in ¹⁴⁶ Nd(¹² C,4n γ). From (p,4n γ), this ratio is 80 <i>13</i> .
							Mult.: From $\gamma(\theta)$ in (HI,xn γ) (1988Ri09). Assigned E1 or E2 from $\alpha(K) \exp -0.006$ <i>A</i> in (p.4n α)
		451.7 2	<15	1809.97 7-			E_{γ} : From (HI,xn γ). L · From ¹⁴⁸ Nd/ ¹² C 4n γ)
		1046.3 4	100 19	1215.61 8+	[E1]	0.00115	Mult.: From $\alpha(K)\exp=0.0031$ 12 (1977De28), (p,4n γ), mult=E2,M1. Other: assigned as (E1) from $\gamma(\theta)$ in (HLxn γ) (1988Ri09). Placement requires E1.
2264.3		1094.8 ^e 10	19 6	1168.47 4+			
		1241.2 ^e 6	19 7	1022.08 3+			
		1860.1 5	100 16	404.19 4+			
2270.0		1499.6 <i>3</i>	100 15	770.44 6+			
2285.88	12^{+}	560.75 10	100	$1725.02 \ 10^+$	E2	0.01131	$B(E2)(W.u.)=3.3\times10^2 4$
							Mult.: From α (K)exp=0.0104 <i>16</i> (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).

15

¹⁵⁶₆₆Dy₉₀-15

From ENSDF

¹⁵⁶₆₆Dy₉₀-15

γ (¹⁵⁶Dy) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$E_f = J_f^{\pi}$	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
2293.4		1523.0 3	100 16	770.44 6+			
2300-1		1888.8° 15	71 26	404.19 4 ⁺ 1022.08 3 ⁺			
2300.1	4+	680.6 5	<11	$1627.42 (4)^+$	E2+M1	0.010 4	Mult.: From $\alpha(K) \exp[=0.0084 (1976Gr20), {}^{156}Ho \varepsilon decay.$
		939.2 1	18 7	1368.36 3-			
		1139.0 6	35 10	1168.47 4+			
		1218.8 9	42 10	$1088.28 \ 4^+$ 1022.08 3 ⁺			
		1416.8 2	100 11	890.50 2+	[E2]	0.00157	
		1478.7 2	30 3	828.64 2+	[E2]	0.00147	
		1536.0 4	53 9	770.44 6+	[E2]	0.00139	
		1902.5 5	46 11	$404.19 \ 4^+$	112.21		
2215 50	10+	2109.8 0	54 4 100# 4	137.77 2		0.0102	$B(E2)(W_{12}) = 2.0 \times 10^2 = 2$
2313.39	10	430.80 12	100 4	1838.04 8	E2	0.0192	B(E2)(w.u.)=5.0×10 ⁻⁵ Mult.: From α (K)exp=0.020 4 (1977De28), (p,4nγ), and $\gamma(\theta)$ in (HI,xnγ) (1988Ri09).
		591.6 5	11 [#] 2	1725.02 10+	E2+E0	0.060	B(E2)(W.u.)=8.9 18
							B(E2)(W.u.): Calculated assuming a pure E2 mult.
							I_{γ} : From $I^{(2)}$ Nd(I^{2} C,4n γ), $I\gamma = 1$ <i>I</i> . From (p,4n γ), $I\gamma = 21$ <i>4</i> . Mult : From $\alpha(K) \exp -0.051 I_0 (1977) \exp (28)$ (p.4n α) and E2 M1 from $\alpha(\theta)$ in
							(HI, $xn\gamma$) (1988Ri09).
							α : Computed from α (K)exp=0.051 and α/α (K).
			#		8-		Additional information 8.
		1100.3	11# 2	1215.61 8+	E2 ^{&}	0.00250	B(E2)(W.u.)=0.40 8 I _{γ} : From ¹⁴⁸ Nd(¹² C,4n γ), I γ =7 1. γ not reported in (p,4n γ).
2323.58		955.4 4	7.4 16	1368.36 3-			
		1155.3 2	49 3	1168.47 4+			
		1235.5 2	1/ 5	$1088.28 \ 4^{\circ}$ $1022.08 \ 3^{+}$			
		1432.8 2	39 4	890.50 2+			
		1494.5 5	11 3	828.64 2+			
		1919.8 4	24 5	$404.19 \ 4^+$			
2331.7		2185.6 0 996.1 4	12 4 37 14	$137.77 2^{-1}$ 1335 56 5 ⁺			
200117		1163.1 ^e 6	27 14	1168.47 4+			
		1309.7 4	100 22	1022.08 3+			
2342.68	o-	1174.2 2	100 17	1168.47 4 ⁺			
2343.1	õ	1128.1.2		1/20.79 /* 1215.61 8 ⁺			
2372.1		1967.9 3	35 9	404.19 4+			
2205 5		2234.2 4	100 23	137.77 2+			
2385.7		1050.0 5	44 12	1335.56 5*			

$\gamma(^{156}\text{Dy})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α b
2385.7		1217.2 3	100 28	1168.47	4+		
		1363.4 ^e 7	32 12	1022.08	3+		
2408.45	2+,3,4+	304.6 ^e 7	11 3	2103.38	(4^{+})		
		1040.0 7	13 5	1368.36	3-		
		1241.3 ^e 12	16 7	1168.47	4^{+}		
		1320.3 15	14 6	1088.28	4+		
		1386.3 2	76 7	1022.08	3+		
		1518.7 <i>3</i>	28 8	890.50	2+		
		1580.3 4	13 3	828.64	2+		
		2003.7 ^e 7	39 11	404.19	4+		
		2271.0 2	100 15	137.77	2+	0	
2408.5	9-	1192.3 <i>3</i>	100	1215.61	8+	E1 &	
2419.1		1648.1 ^e 7	45 14	770.44	6+		
		2014.9 6	100 24	404.19	4+		
2433.84		908.0 ^e 10	9 <i>3</i>	1526.28	5-		
		1345.6 <i>3</i>	92	1088.28	4+		
		1663.3 2	24 5	770.44	6+		
		2029.70 18	100 7	404.19	4+		
2439.16		1351.3 ^e 6	62	1088.28	4+		
		1668.7 2	19 4	770.44	6+		
		2035.0 2	100 12	404.19	4+		
2445.17	3+,4+	818.7 ^e 4	28 7	1627.42	$(4)^{+}$		
		820.9 ^e 6	12 3	1624.64			
		1110.7 7	43 9	1335.56	5+		
		1423.0 2	100 13	1022.08	3+		
		2307.4 8	40 16	137.77	2*	0	
2448.03	10^{+}	490.63 18	100	1958.64	8+	E2	0.01502
2489.5		1154.4 ^e 5	29 12	1335.56	5+		
		1467.1 8	20 10	1022.08	3+		
		2085.4 5	100 20	404.19	4+		
2491.90		1323.2 4	19 6	1168.47	4+		
		1469.9 5	21 7	1022.08	3+		
		2088.2 6	41 17	404.19	4 ⁺		
0515.0		2354.1 2	100 9	137.77	2		
2517.0		907	<50	1609.33	(3)		
		1148	60 25 05 25	1368.36	3 4+		
		1348.9 3	95 25 100 25	1022.09	4 ' 2+		
		1493.8 <i>10</i>	100 23	1022.08	2+ 2+		
		$1020.8^{\circ}0$	80 30 22 25	890.30	∠ ' 2+		
		1000.2 13	52 23 ~17	020.04 675.60	∠ 0+		
2571 7		041.9 9	<1/ 65 12	1627 42	$(4)^{+}$		
23/1./		944.3 4	03 13	1027.42	(4)		

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	$\alpha^{\boldsymbol{b}}$	Comments
2571.7		2168.9 <mark>e</mark> 7	100 35	404.19 4+			
2580.1	10-	235.0 <i>2</i> 388.6 <i>2</i>	52 14	2345.1 8 ⁻ 2191.62 9 ⁺	E2 ^{&}	0.1392	I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
		855.4 2	100 10	1725.02 10+	(E1) <mark>&</mark>	0.00168	I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
2592.7	9-	1376.6.3	100	1215.61 8+	(E1) ^{&}	8.18×10^{-4}	
2594.3	-	1259.1 7	95 40	1335.56 5 ⁺	(11)	0.10/(10	
		1425.9 4	100 25	1168.47 4+			
		1572.0 5	62 25	1022.08 3+			
2636.55	11^{-}	449.5 2		2186.58 9-			
		911.8 4		1725.02 10+	E1	0.00149	Mult.: From α (K)exp=0.016 <i>10</i> (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
2642.50		2238.3 2	100 17	404.19 4+			
2653.3		1824.7 6	63 16	828.64 2+			
		2249 ^e 2	100 47	404.19 4+			
2701.5	10-	385.1 ^e 7	51 <i>15</i>	2315.59 10 ⁺			
		439.96 8	≤256	2261.62 8-	E2	0.0213	I _γ : From ¹⁴⁸ Nd(¹² C,4nγ), Iγ(439γ)/Iγ(975γ)=450. Mult.: From $\gamma(\theta)$ in (HI,xnγ) (1988Ri09); E2,M1 from α (K)exp=0.029 <i>I</i> 6 in (p.4nγ) (1977De28).
		515.2 2		2186.58 9-			(F)).
		977.1 ^{<i>d</i>} 3	100 ^d 21	1725.02 10+	(E1)	0.00130	E_{γ} : From (HI,xnγ). In (p,4nγ), $E\gamma$ =975.8 <i>3</i> , but γ there is doubly placed. Mult.: From α (K)exp=0.0025 <i>11</i> in (p,4n γ), mult=(E2), but γ there is doubly placed (1977De28).
2706 87	12^{+}	390.9.7	$100^{\#} 4$	2315 59 10+	E2	0.0296	$B(E2)(W_{II}) = 148.9$
2700.07	12	570.71	100 /	2010.09 10	55	0.0270	E_{γ} : From 1988Ri09, (HI,xn γ). γ is doublet in (p,4n γ). Mult.: From $\gamma(\theta)$ in (HI,xn γ) (1988Ri09) and $\alpha(K)\exp(391.14+393.39)=0.028$ 4 in (p,4n γ) (1977De28).
		421.0.4	$61^{\#} 4$	2285 88 12+			
		982.2.2	$21^{\#} 4$	$1725.02 10^+$	F2	0.00316	$B(F2)(W_{11}) = 0.31.6$
		<i>J</i> 02.2 2	21 7	1725.02 10	12	0.00510	I = From (n 4ny) (1977 De 28) Iy - 43.8 From 148 Nd(12C 4ny) Iy - 38.4
							Mult.: From $\gamma(\theta)$ in (HI,xn γ) (1988Ri09). M1,E2 from α (K)exp=0.0046 22 in (p,4n γ) (1977De28).
2707.8	10-	446.1 <i>1</i>	100	2261.62 8-			
2709.4	11-	300.9 1		2408.5 9-	E2 ^{&}	0.0639	
		983.5 <i>5</i>		1725.02 10+	E1&	0.00129	
2712.37	11^{+}	426.67 20	46 11	2285.88 12+			
		520.1 ^{<i>d</i>} 3	58 ^d 14	2191.62 9+	E2	0.01369	Mult.: From α (K)exp=0.010 3 in (p,4n γ) (1977De28) and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
		988.3 4	100 4	1725.02 10+			
2757.8	0±	1735.7 5	100 28	1022.08 3+			
2787.4	8+	1062.5	12 <i>3</i> 100 6	$1725.02 10^+$ 1215.61 8 ⁺			
		1.5/2.7	100.0	1213.01 0			

					Adopte	d Levels, G	ammas (continued)
						$\gamma(^{156}\text{Dy})$ (continued)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	α b	Comments
2787.4	8^{+}	2016.7	33 4	770.44 6+			
2788.1		1572.5 8	100 25	1215.61 8+			
2810.4		2039.9 ^e 10	29 11	770.44 6+			
		2406.2 7	100 29	404.19 4+			
2818.35	$4^{+},5^{-}$	884.3 8	73	1933.60 +			
		919.7 <i>15</i>	8 <i>3</i>	1898.64 6-			
		960.6 <i>3</i>	43 4	1857.84	E1		
		1191.1 5	27 4	$1627.42 (4)^+$			
		1292.3 3	54 7	1526.28 5			
		1293.4 15	1/3	1525.17 6			
		1380.9 2	41 4	1437.28 6			
		1450.0° 8	94	1308.30 3			
		1482.72	19 3	1335.30 5			
		1049.7 2	80 / 26 /	1108.47 4			
		1730.1 2		1022 08 3+			
		1990	<4	828 64 2+			
		2048 0 2	12.4	770.44 6 ⁺			
		2414.2 2	100 11	404.19 4+			
2823.38		965.3 8	3.0 15	1857.84			
		1297.3 2	10 2	1526.28 5-			
		1654.0 <mark>e</mark> 11	4.2 18	1168.47 4+			
		1932	<3	890.50 2+			
		1994	<2	828.64 2+			
		2052.8 2	21 3	770.44 6+			
		2419.2 2	100 9	404.19 4+			
2833.7		2063.2 4	37 6	770.44 6+			
		2429.5 7	100 14	404.19 4+			
2847.5	11-	146.1 <i>1</i>	84 4	2701.5 10-	E2,M1	0.75 7	
		254.8 1	100 8	2592.7 9-	E2	0.1074	
		1122.0 5	<35	1725.02 10+			
2887.82	14+	601.83 <i>13</i>	100	2285.88 12+	E2	0.00950	B(E2)(W.u.)=2.5×10 ² 3 Mult.: From α (K)exp=0.0085 8 (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
2895.0		1872.9 4	100 24	1022.08 3+			
		2004.2 ^e 9	48 19	890.50 2+			
		2490.7 6	100 33	404.19 4+			
2941.9	12-	361.7 <i>1</i>	100	2580.1 10-			
2981.5		2577.3 13	100 21	404.19 4+			
2997.23?	12^{+}	549.32 25	100	2448.03 10+	E2	0.01191	Mult.: From α (K)exp=0.0087 24 in (p,4n γ) (1977De28).
3021.2	12^{-}	173.7 <i>1</i>	100 5	2847.5 11-	E2,M1 ^{&}	0.44 7	
		319.6 <i>1</i>	89 <i>5</i>	2701.5 10-	E2 <mark>&</mark>	0.0532	

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_{f}	J_f^π	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
3065.88	14^{+}	178.7 5		2887.82	14^{+}			
		359.09 15	100 [#] 4	2706.87	12+	E2	0.0377	B(E2)(W.u.)=231 <i>15</i> Mult.: From α (K)exp=0.026 <i>5</i> (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
		780.0 2	6 [#] 2	2285.88	12+			
3103.6	13-	393.9 2	82 9	2709.4	11-	E2 <mark>&</mark>	0.0289	I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
		467.5 2	100 23	2636.55	11-	E2 <mark>&</mark>	0.0181	I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
		818.0 2	96 18	2285.88	12^{+}	E1 <mark>&</mark>	0.00183	I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
3154.2	13-	518.0 2		2636.55	11-			
		867.6 4		2285.88	12+	E1	0.00163	Mult.: From α (K)exp=0.0012 <i>11</i> (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
3186.8	12-	479.0 1	100	2707.8	10-			
3221.2	13-	200.0 1	80 3	3021.2	12-	%	0.000	
3273.5	(13 ⁺)	373.8 <i>1</i> 562.3 <i>3</i>	100 6 100	2847.5 2712.37	11^{-} 11^{+}	E2 ^{cc}	0.0336	
3411.6	14-	469.7 1	100	2941.9	12^{-}	E2 ^{&}	0.0179	
3444.9	14-	223.8 1	60 <i>3</i>	3221.2	13-	E2,M1		
		423.6 1	100 8	3021.2	12-	E2	0.0236	
3498.8	16+	432.64 ^{<i>a</i>} 18	55 ^a 4	3065.88	14+	E2 ^{&}	0.0224	B(E2)(W.u.)=188 <i>19</i> I _{γ} : From ¹⁴⁸ Nd(¹² C,4n γ). In (p,4n γ), I γ =116, but γ is doubly placed. Mult.: From α (K)exp=0.019 <i>3</i> in (p,4n γ) (1977De28), mult=(E2), but γ is doubly placed.
		611.30 25	100 4	2887.82	14+	E2 ^{&}	0.00915	B(E2)(Wu.)=61 5 I _{γ} : From ¹⁴⁸ Nd(¹² C,4n γ). Mult.: From α (K)exp=0.0082 25 in (p,4n γ) (1977De28), mult=E2, but γ is doubly placed
3523.3	16+	635.5 1	100	2887.82	14+	E2	0.00833	B(E2)(W.u.)= 3.4×10^2 7 E _{γ} : From 1988Ri09, (HI,xn γ). From (p,4n γ), 1977De28 report E γ =638.50 21. Mult.: From $\gamma(\theta)$ in (HI,xn γ) (1988Ri09) and α (K)exp=0.0066 11 for the 635 γ in (p,4n γ) (1977De28).
3596.4	15^{-}	492.8 <i>1</i>	100	3103.6	13-	E2 ^{&}	0.01574	
3678.0	14-	491.2 2	100	3186.8	12-			
3689.9	15^{-}	244.9 1	100 12	3444.9	14-	E2,M1 ^{&}		I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
3719.6	15(-)	468.7 <i>1</i> 565.4 2	36 5	3221.2 3154.2	13 ⁻ 13 ⁻	E2 ^{&}	0.0180	I_{γ} : From ¹⁴⁸ Nd(¹² C,4n γ).
3861.2? 3954.0	(15 ⁺) 16 ⁻	832.4 <i>4</i> 587.4 ^e 2 264.2 <i>1</i> 509.1 <i>1</i>		2887.82 3273.5 3689.9 3444.9	14 ⁺ (13 ⁺) 15 ⁻ 14 ⁻	(D) ^{&}	0.00178	
3961.5	16-	549.9 <i>1</i>	100	3411.6	14-	E2 <mark>&</mark>	0.01188	

20

¹⁵⁶₆₆Dy₉₀-20

From ENSDF

¹⁵⁶₆₆Dy₉₀-20

γ (¹⁵⁶Dy) (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	E_f	\mathbf{J}_f^{π}	Mult.@	$\alpha^{\boldsymbol{b}}$	Comments
4025.8	18+	527.1 <i>1</i>	100	3498.8	16+	E2	0.01322	B(E2)(W.u.)=299 17 Mult.: From α (K)exp=0.014 4 (1977De28), (p,4nγ), and γ (θ) in (HI,xnγ) (1988Ri09).
4157.8	17^{-}	561.4 <i>1</i>	100	3596.4	15-	E2 ^{&}	0.01128	
4178.1	18+	654.89 26	100	3523.3	16+	E2	0.00776	B(E2)(W.u.)= $3.9 \times 10^2 \ 10$ Mult.: From α (K)exp=0.055 13 (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
4210.4	16-	532.4 2	100	3678.0	14-	E2 <mark>&</mark>		
4236.2	17^{-}	281.8 2	44 <i>3</i>	3954.0	16-	E2,M1		
		546.4 <i>1</i>	100 5	3689.9	15-	E2 ^{&}	0.01207	
4331.1	(17 ⁻)	611.3 2		3719.6	$15^{(-)}$			
4533.9	18-	297.7 1	42 12	4236.2	17-	E2,M1		
1560.4	10-	579.9 1	100 4	3954.0	16-	E2 ^{X}	0.01041	
4562.4	18	600.9 1	100	3961.5	16	%		
4635.6	201	609.8 1	100	4025.8	18'	E2 ^{cc}	0.00920	B(E2)(W.u.)=272.23
4771.2	19-	613.3 2	100	4157.8	17-	E2	0.00907	
4779.2	18-	568.8 2	100	4210.4	16-	E2 ^{x}	0.01092	
4845.9	19	312.2 2		4533.9	18	To &	0.00021	
4850.0	20^+	609.6 <i>I</i>	100	4236.2	17/ 19+	E2	0.00921	$D(T_2)(W_{rr}) = 2.0 \times 10^2 \text{ g}$
4859.0	20.	080.8 1	100	41/8.1	18	E2	0.00708	B(E2)(W.u.)= 3.2×10^{-8} 8 Mult.: From α (K)exp=0.0050 26 (1977De28), (p,4n γ), and $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).
4978.8	(19 ⁻)	647.7 6		4331.1	(17 ⁻)			
5170.8	20^{-}	324.7 1		4845.9	19-	E2,M1		
		637.0 <i>1</i>		4533.9	18^{-}	E2 ^{&}	0.00828	
5199.9	20^{-}	637.4 <i>1</i>	100	4562.4	18-	E2 <mark>&</mark>	0.00827	
5320.2	22^{+}	684.6 <i>1</i>	100	4635.6	20^{+}	E2 <mark>&</mark>	0.00699	B(E2)(W.u.)=242 24
5381.9	20-	602.7 2	100	4779.2	18-	0		
5428.2	21-	657.0 <i>1</i>	100	4771.2	19-	E2	0.00770	
5507.3	21-	336.4 <i>1</i>	30 4	5170.8	20^{-}	P_		
		661.5 <i>1</i>	100 4	4845.9	19-	E2	0.00757	
5573.0	22^{+}	714.0 1	100	4859.0	20^{+}	E2 ^X	0.00634	$B(E2)(W.u.)=2.9\times10^2 5$
5855.3	22-	347.9 1		5507.3	21-			
5072.4	22-	684.6 1	100	51/0.8	20	D0	0.0070(
58/3.4 6036 3	22	0/3.3 I 654 A I	100	5199.9	20 20-	E2	0.00726	
6070.1	24+	740.0.1	100	5320.2	20	E2&	0.00567	$B(F2)(W_{H}) = 2.7 \times 10^2$ 3
6120.2	∠ 4 22	701 1 1	100	5420.2	22 21-	E_2	0.00307	$D(L2)(w.u.)-2.7 \times 10^{-5}$
6213.8	23 23-	358.6.3	100	5855 3	$\frac{21}{22^{-}}$	E2	0.00001	
0215.0	25	550.0 5		5055.5				

21

¹⁵⁶₆₆Dy₉₀-21

From ENSDF

 $^{156}_{66}\mathrm{Dy}_{90}$ -21

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α b	Comments
6213.8	23-	706.5 1		5507.3	21-	E2 ^{&}	0.00650	
6328.7	24+	755.7 1	100	5573.0	22+	E2 ^{&}	0.00557	$B(E2)(W.u.)=3.0\times10^2 6$
6582.5	24^{-}	727.2 1	100	5855.3	22^{-}			
6589.7	24-	716.3 1	100	5873.4	22-			
6753.7	24-	717.4 2	100	6036.3	22-	&r		
6876.8	25-	747.5 1	100	6129.3	23-	E2	0.00571	
6877.9	26+	807.8 <i>1</i>	100	6070.1	24+	E2	0.00480	$B(E2)(W.u.)=2.7\times10^2 5$
6963.9	25^{-}	750.1 <i>1</i>	100	6213.8	23-	E2	0.00567	
7130.3	26^{+}	801.6	100	6328.7	24+	E2	0.00488	
7349.6	26-	760.0 2	78 7	6589.7	24-			
7358 7	26-	700.9 <i>2</i> 394 1	100 11	6963.9	24 25-			
1550.1	20	768.7 2		6589.7	24^{-}			
		776.7 3		6582.5	24-	E2 ^{&}	0.00524	
7533.4	26-	779.7 3	100	6753.7	24-			
7672.6	27^{-}	795.8 <i>1</i>	100	6876.8	25^{-}	E2 ^{&}	0.00496	
7738.8	28^{+}	860.9 1	100	6877.9	26+	E2 &	0.00418	$B(E2)(W.u.)=2.6\times10^2 4$
7760.3	27^{-}	402		7358.7	26-			
		796.4 <i>1</i>		6963.9	25^{-}	E2	0.00496	
7978.5	28^{+}	848.2 1	100	7130.3	26+	E2 ^{&}	0.00432	
8164.5	28^{-}	814.9 <i>1</i>	100	7349.6	26-	E2 ^{&}	0.00471	
8179.7	28-	420		7760.3	27-	0		
		821.0 <i>1</i>		7358.7	26-	E2	0.00463	
8364	28-	831	100	7533.4	26-	8 -		
8517.0	29-	844.4 1	100	7672.6	27-	E2 ^x	0.00436	
8605.8	29	426		81/9./	28 27-	F 0 %	0.00.42.4	
0.650.0	2 0+	845.6 2	100	7760.3	27	E2 ^{cc}	0.00434	
8650.8	30 ⁺	912.0 <i>I</i> 842	100	7020.5	28'	E2	0.00369	$B(E2)(W.u.)=2.4\times10^{2}$ 3
8702	29 30+	807 / 1	100	7920.5	21 28+	E2&	0.00382	
0021.0	20-	077.41	100	9164 5	20 20-		0.00382	
9051.9	30-	446 ^e	100	8605.8	20 29-	112	0.00411	
200110	50	87172		8179.7	28-	F2 &	0.00407	
9234	30-	870	100	8364	28-	112	0.00107	
9407.4	31-	890.4 <i>1</i>	100	8517.0	29-	E2 <mark>&</mark>	0.00389	
9502.2	31-	451		9051.5	30-			
		896.5 2		8605.8	29-	E2 ^{&}	0.00383	
9611.3	32^{+}	960.5 1	100	8650.8	30+	E2 ^{&}	0.00331	$B(E2)(W.u.)=2.3\times10^2 4$

						Adopted I	evels, Gammas (continued)
						γ	(156Dy) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I _γ ‡	$E_f \qquad J_f^{\pi}$	Mult.@	α ^{b}	Comments
9653	31-	891	100	8762 29-			
9692	(31+)	1041°	100	8650.8 30+	50	0.00000	
9825.2	321	949.3 2	100	8875.9 30	E2 ^{cc}	0.00339	
9952.3 9973.5	32 32 ⁻	920.3 2 472 ^e	100	9031.9 30 9502.2 31 ⁻	E2ª	0.00362	
10063 10141	32 ⁺ 32 ⁻	921.9 <i>2</i> 1187 907	100	9051.5 30 ⁻ 8875.9 30 ⁺ 9234 30 ⁻	E2	0.00361	
10340.6 10449.3	33 ⁻ 33 ⁻	933.2 <i>1</i> 475	100	9407.4 31 ⁻ 9973.5 32 ⁻	E2 ^{&}	0.00352	
10592	33-	947.2 <i>2</i> 939 1185		9502.2 31 ⁻ 9653 31 ⁻ 9407.4 31 ⁻	E2 ^{&}	0.00341	
10618.0 10629	34 ⁺ (33 ⁺)	1006.7 <i>1</i> 937	100 100	9611.3 32 ⁺ 9692 (31 ⁺)	E2 ^{&}	0.00300	B(E2)(W.u.)= $1.8 \times 10^2 \ 3$
10828.1	34+	1003.1 5	100	9825.2 32+	E2 <mark>&</mark>	0.00302	
10925.0 10944.6	34 ⁻ 34 ⁻	972.7 <i>3</i> 496 ^e	100	9952.3 32 ⁻ 10449.3 33 ⁻	E2 ^{&}	0.00322	
10975	34 ⁺	970.9 <i>4</i> 912 1150 951	100	9973.5 32 ⁻ 10063 32 ⁺ 9825.2 32 ⁺ 10141 32 ⁻	E2 ^{&}	0.00324	
11313.4 11443.5	35 ⁻ 35 ⁻	972.8 <i>1</i> 499	100	$10340.6 \ 33^{-}$ $10944.6 \ 34^{-}$	E2 ^{&}	0.00322	
11585	35-	994.3 2 992 1244		10449.3 33 ⁻ 10592 33 ⁻ 10340.6 33 ⁻	E2 ^{&}	0.00308	
11614	(35 ⁺)	985	100	10629 (33 ⁺)	0		
11670.6 11735	36 ⁺ (36 ⁺)	1052.6 2 1022 ^e	100 100	$\begin{array}{ccc} 10618.0 & 34^+ \\ 10713 & (34^+) \end{array}$	E2 ^{&}	0.00274	B(E2)(W.u.)= $2.2 \times 10^2 6$
11886.7	36+	1058.6 4	100	10828.1 34+	E2 ^{&}	0.00271	
11946.2 11957.3	36 ⁻ 36 ⁻	1021.2 <i>4</i> 514 ^e	100	10925.0 34 ⁻ 11443.5 35 ⁻	E2 ^{&}	0.00291	
11986	36+	1012.6 1010 1158		10944.6 34 ⁻ 10975 34 ⁺ 10828.1 34 ⁺	E2 ^{&}	0.00297	
12089	36-	997	100	11092 34-		0.0000	
12326.8 12462	37 ⁻ 37 ⁻	1013.3 2 504 ^e	100	11313.4 35 ⁻ 11957.3 36 ⁻	E2 [∞]	0.00296	

From ENSDF

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
12462 12626	37 ⁻ 37 ⁻	1019 1042 1313	_	11443.5 35 ⁻ 11585 35 ⁻ 11313.4 35 ⁻			
12628	(37+)	1014	100	11614 (35+)	1		
12769.3	38+	1098.7 2	100	11670.6 36+	E2 ^{&}	0.00251	B(E2)(W.u.)=50 15
12818	(38+)	1083 ^e 1147 ^e		$\begin{array}{cccc} 11735 & (36^+) \\ 11670.6 & 36^+ \end{array}$	1		
12959	38-	497 ^e 1002 1013		12462 37 ⁻ 11957.3 36 ⁻ 11946.2 36 ⁻			
12976	38+	1089	100	11886.7 36+			
13014.0	38-	1057 1067.8 <i>4</i>		11957.3 36 ⁻ 11946.2 36 ⁻			
13051	38+	1065 1165		$11986 36^+ 11886.7 36^+$			
13140	38-	1051	100	12089 36-			
13386.8	39-	1060.0 <i>3</i>	100	12326.8 37-	E2 <mark>&</mark>	0.00270	
13470	39-	511 ^e		12959 38-			
		1008		12462 37-			
13686	(39^+)	1058	100	12628 (37+)			
13/11	39	1084 1384		$12626 37 12326.8 37^-$			
13885.1	40^{+}	1115.8 2	100	12769.3 38+	E2 ^{&}	0.00243	$B(E2)(W.u.)=1.3\times10^2 + 20-8$
13941	(40^{+})	1123	100	12818 (38+			
		1172 ^e		12769.3 38+			
13973	40^{-}	503°		13470 39-			
14021.0	40+	1014		12959 38			
14021.9	40	1252.6.3		12769 3 38+			
14113.9	40^{-}	1100.2	100	13014.0 38-			
14210	40^{+}	1159		13051 38+			
		1234		12976 38+			
14254	(40^{-})	1114	100	13140 38-	o		
14496.1	41-	1109.2 3	100	13386.8 39-	E2		
14532	41-	559 ^e		13973 40-			
		1062		13470 39			
1/1707	(11^{-})	1145		13386.8 39			
14/7/	(+1)	1410		13386 8 30-			
14800	(41^{+})	1114	100	13686 (39+	1		
14994.8	42+	973		14021.9 40+			
		1109.6		13885.1 40+			

24

From ENSDF

¹⁵⁶₆₆Dy₉₀-24

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	Comments
15061	42-	529		14532	41^{-}		
15152	(42^{+})	1211	100	13941	(40^+)		
15190	42+	1168		14021.9	40+		
15220	42+	1304		13885.1	40^+ 40^+		
13229	42	1207		13885.1	40^{+}		
15232	42^{-}	1118	100	14113.9	40^{-}		
15411	(42^{-})	1157	100	14254	(40^{-})		
15447	(42^{+})	1237	100	14210	40^{+}		
15635.6	43-	1138.8	100	14496.1	41-		Additional information 9.
15679	43-	1148		14532	41-		
		1183		14496.1	41-		
15841	43-	1345	100	14496.1	41-		
15950	(43^{-})	1154 <mark>e</mark>		14797	(41^{-})		
	. ,	1454		14496.1	41-		
15975	(43^{+})	1175	100	14800	(41^{+})		
16171.2	44+	983 ^e		15190	42+		
		1176.4.3		14994.8	42+	E2 <mark>&</mark>	
16210	44^{-}	1149	100	15061	42-		
16289	44+	1060	100	15229	42+		
10207	••	1099		15190	42+		
16350	44-	1119	100	15232	42-		
16448	(44^+)	1296	100	15152	(42^+)		
16474	(44^+)	1245	100	15229	42^+		
16625	(44^{-})	1213	100	15411	(42^{-})		
16717	(44^+)	1270	100	15447	(42^+)		
16833 3	45-	1196.8	100	15635.6	43-		
16860	45 ⁻	1100.0	100	15670	43 ⁻		
10809	45	1233		15635.6	43		
17012	(45^{-})	1255	100	158/1	43- 13-		
17012	(45^+)	11/1	100	15075	(42^+)		
17230	(45)	1201	100	16171 2	(45)		
17200	40	1028	100	16250	44		
1/300	40	1058		16210	44		
17424	16+	11//	100	16280	44		
17434	40	1145	100	16289	44		
17482	40	1152		10330	44		
17020	(1(+)	1272	100	16210	44		
1/832	(46')	1384	100	16448	(44')		
17908?	(46 ⁻)	1283	100	16625	(44 ⁻)		
18015.7	47	1148		16869	45-		
		1181.7		16833.3	45-		
18036	(46 ⁺)	1319	100	16717	(44^{+})		

From ENSDF

$\gamma(^{156}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}
18152	47-	1284		16869	45-	20332.2	51-	1242.0	100	19090.2	49-
		1319		16833.3	45-	20858	(50^{+})	1450	100	19408	(48^+)
18303	(47^{-})	1291	100	17012	(45^{-})	20874	(50^{+})	1576	100	19298	(48^+)
18472	48-	1084	100	17388	46-	21332	52+	1369	100	19963	50+
18600	(47^{+})	1364	100	17236	(45^{+})	21422	(52^{+})	1469	100	19953	50^{+}
18615	48^{+}	1267	100	17348	46+	21512	(51^{+})	1510	100	20002	(49^+)
18616	50^{-}	1228	100	17388	46-	21763	53-	1431	100	20332.2	51-
18651	48^{+}	1217	100	17434	46+	22369?	(52^{+})	1511 ^e	100	20858	(50^+)
18813	48^{-}	1331	100	17482	46-	22576?	(52^{+})	1702 ^e	100	20874	(50^{+})
19090.2	49-	1074.5	100	18015.7	47^{-}	22799	54+	1467	100	21332	52^{+}
19298	(48^{+})	1466	100	17832	(46^{+})	22998	(54^{+})	1576	100	21422	(52^{+})
19408	(48^{+})	1372	100	18036	(46^{+})	23244?	(53^{+})	1732 ^e	100	21512	(51^+)
19488	49-	1336	100	18152	47^{-}	24382?	(54^{+})	1806 ^e	100	22576?	(52^{+})
19652?	(49-)	1349 <mark>e</mark>	100	18303	(47-)	24430	(56^{+})	1631	100	22799	54+
19953	50^{+}	1338	100	18615	48^{+}	24716?	(56^{+})	1718 ^e	100	22998	(54^{+})
19963	50^{+}	1312	100	18651	48^{+}	26224	(58^+)	1794	100	24430	(56^{+})
20002	(49^+)	1402	100	18600	(47^{+})	26640?	(58^+)	1924 ^e	100	24716?	(56^+)
20009	52-	1393	100	18616	50-	28122?	(60^{+})	1898 ^e	100	26224	(58^+)
20241?	(50 ⁻)	1428 ^e	100	18813	48-	30241?	(62^+)	2119 ^e	100	28122?	(60^{+})

26

[†] Generally from ¹⁵⁶Ho ε decay where such data exist. The values from ¹⁵⁶Ho ε decay and the (p,4n γ),(α ,4n γ) reactions often differ well outside their uncertainties.

[‡] From the ¹⁵⁶Ho ε decays where such data exist. Otherwise, the values are from the (α ,4n γ) and (HI,xn γ) reactions. 2006Mo22, in (HI,xn γ), report I γ values for the γ transitions from the 4⁺ through 18⁺ members of the first excited positive-parity band, including the 4⁺ through 10⁺ members of the first excited K^π=0⁺ band and the 12⁺ through 18⁺ members of the aligned two-neutron-quasiparticle band (AB) above the band crossing. Where adopted, these are pointed out. The significant differences between the experiments, of which there are many between the ¹⁵⁶Ho ε decay (56 min) and the other studies, are noted. [#] From 2006Mo22, (HI,xn γ).

[@] From ce data from the ¹⁵⁶Ho ε decay (56 min) (1976Gr20), the (p,4n γ) (α ,4n γ) studies (1977De28), and the $\gamma(\theta)$ measurements in the (HI,xn γ) study (1988Ri09). In the ¹⁵⁶Ho ε decay data, where a reasonable association of a γ from 2002Ca49 (where ce data are not measured) can be made with one from 1976Gr20, the evaluator has assigned the multipolarity from 1976Gr20 to that γ . In the (HI,xn γ) data, stretched quadrupole transitions are taken to be E2 rather than M2. For levels seen only in (HI,xn γ) for which no comments are shown regarding the multipolarities, it is to be noted that they are from $\gamma(\theta)$ data and that M1/E2 is chosen over E1/M2 primarily on the basis of parity considerations. In the (p,4n γ) and (α ,4n γ) studies, the normalization of the electron and γ intensities was done using α (K)exp=0.0165±0.0017 for the 445.36-keV E2 transition (1977De28). In the ¹⁵⁶Ho ε decay, this normalization was presumably done using the established (1976Gr20) E2 multipolarities of the 137.8-, 266.5-, and 366.4-keV transitions.

[&] From $\gamma(\theta)$ in (HI,xn γ) (1988Ri09).

^{*a*} From ce data from ¹⁵⁶Ho ε decay (56-min) (1976Gr20).

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $\gamma(^{156}\text{Dy})$ (continued)

- ^c Multiply placed.
 ^d Multiply placed with undivided intensity.
 ^e Placement of transition in the level scheme is uncertain.

 $^{156}_{\ 66} Dy_{90}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{156}_{\ 66} Dy_{90}$

Adopted Levels, Gammas Level Scheme (continued) Intensities: Relative photon branching from each level

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{156}_{66} Dy_{90}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁵⁶₆₆Dy₉₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁵⁶₆₆Dy₉₀

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level γ Decay (Uncertain) ----001 cz 662 + 1 0554 100 121 $\frac{24^{+}}{22^{-}}$ 0.177 ps 18 6070.1 6036.3 · 673.5] <u>22</u> 22 5873.4 5855.3 1 ^{214,0} 22 100 | $\exists \frac{66_{1,3}}{3_{56,4}} \varepsilon_{2,10}$ ŝ, 22^{+} 5573.0 0.21 ps 3 E 21 8 5507.3 902.^{2,} $\frac{21^{-}}{20^{-}}$ Ð 5428.2 ¥ 5381.9 Ð 0.31 ps 3 22^{+} -Q-Q-5320.2 337 '4 32.0° <u>20</u> 20 5199.9 + 580 8 22 100 | 5170.8 4 647.> Ş (19⁻) 4978.8 4 4859.0 0.24 ps 6 20^{+} 19-4845.9 ¥ 6 4779.2 18 2 1 00 00 1 4 . 600 j -01 2 2 4771.2 19 4635.6 0.49 ps 4 20^{+} 2-05-05-2-05-05-18 $\frac{1}{1} \frac{5_{46}}{8_{1}, 8_{1}} \frac{1}{8_{2}} \frac{1}{8_{2}} \frac{1}{100}$ 4562.4 18 4533.9 -14 ES 100 | 1 E2 100 611.3 S (17^{-}) 4331.1 -8 17 4236.2 ć 16-4210.4 2 0.24 ps 6 18^{+} ¥ 4178.1 (. '.' . 0.6kg 17 4157.8 4025.8 3961.5 0.92 ps 5 18 <u>_8</u>_6 S. 16 Q $\frac{16^{-}}{(15^{+})}$ - 58> 3954.0 55.4 20.54 3861.2 -0° 8 3719.6 Ŵ 15 3689.9 ¥ <u>_</u> 2 14 15 3678.0 635.5 3596.4 0.32 ps 6 3523.3 16+ 1.39 ps 8 16^{+} ¥ 3498.8 14-3444.9 $\frac{14^{-}}{(13^{+})}$ 3411.6 3273.5 3221.2 Ť 13-¥ 12 3186.8 13 3154.2 3103.6 13 14^{+} 2887.82 0.56 ps 6 0^+ 0 stable

¹⁵⁶₆₆Dy₉₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

--- $\rightarrow \gamma$ Decay (Uncertain)

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 4^{+}

 0^+

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

404.19 31.6 ps 3

¹⁵⁶₆₆Dy₉₀

Level Scheme (continued)

Legend

---- λ γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁵⁶₆₆Dy₉₀

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Intensities: Relative photon branching from each level

& Multiply placed: undivided intensity given

¹⁵⁶₆₆Dy₉₀

¹⁵⁶₆₆Dy₉₀-46

Adopted Levels, Gammas

Legend

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given $--- \rightarrow \gamma$ Decay (Uncertain) $= \frac{1}{1_{27,5}} \frac{1_{60,9}}{1_{27,5}} \frac{1_{60,9}}{1_{25,5}} \frac{1_{60,5,6}}{1_{51,5}}$ (3)-1609.33 3,00 35> 28 \$ \$ ~ 8 8 ~ 8 ŝ, $\frac{\frac{5^{-}}{6^{+}}}{\frac{2^{+}}{(3)^{-}}}$ 1526.28 $\begin{array}{c|c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$ 1525.17 1514.94 P 1476.10 ___ 1447.38 1 $\frac{6^{+}}{2^{+}}$ Ľ 1437.28 3.56 ps 24 8 1382.31 1154 1368.36 8 8 5+ 1335.56 i. D 1 103-23 103-23 103-23 1030 4 1293.2 (442'53) 1 1 ļ 1 6 1215.61 2.26 ps 6 8+ 9905 9905 317,10 290 317,10 290 317,10 290 317,10 1 1 4+ 1168.47 _ 4+ 1088.28 4.5 ps 12 ŧ 1022.08 3+ ¥ 2^{+} 890.50 1.56 ps 12 2^{+} 828.64 770.44 6.3 ps 3 6+ 0^+ 675.60 404.19 31.6 ps 3 4+ <u>137.77</u> 0.823 ns 7 2^{+} 0^+ 0 stable

 $^{156}_{66}\text{Dy}_{90}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁵⁶₆₆Dy₉₀

¹⁵⁶₆₆Dy₉₀

Band(F): Odd-spin, negative-parity band

53-	21763								
	1421	Band(f): Even-	spin,				Band(negativ	G): E ve-na	ven-spin, rity band
	1451	negative-parity	band	Band	l(g): ()	dd-snin.	nogun	e pu	ny sana
51-	20332.2	52-	20009	negat	tive-pa	rity band	<u>(50</u> ⁻)	· — –	20241
	1242	-		49-		19488		1428	
49-	19090.2	1393						1428	
		<u>50</u> -	18616		1336		48-	÷.	18813
	1074	48-	18472	47-		18152			
47-	18015.7	1084 1228						1331	
	1182	46-	17388		1284		46-	+	17482
45-	16833 3		•	45-		16869			
	1000010	1038	16250					1272	
	1197	44	10350		1190		44-	+	16210
43-	15635.6	1119		43-		15679		11.40	
		42-	15232			•	42-	1149	150/1
	1139				1148		42	╀	15001
41-	14496.1	1118		41-	-	14532		1088	
	1100	40- 1	4113.9		1062		40-	↓ ·	13973
20-	12286.8	1100		39-	1002	13470	/		
39	13380.8	38- 1	3014.0			~~~~	29-	1014	12050
	1060		<u></u>		1008		30	+	12939
37-	12326.8	1068		37-	-	12462		1002	
	1012	<u>36</u> <u>1</u>	1946.2		1019		36-	+	11957.3
35-	11313.4	1021		35-	_	11443.5	l'and a second	1013	
		34- 1	0925.0				34-		10944.6
22-	973			33-	994	10449.3	,		
33	10340.6	973	0052 2				37-	971	0073 5
	933	32	9952.5	21-	947	0502.2	32	╀	3913.3
31-	9407.4	920		31	-	9502.2		922	
	890	30-	9031.9		896		30-	+	9051.5
29-	8517.0	868		29-	-	8605.8		872	
	844	28-	8164.5		846		28-	+	8179.7
27-	7672.6	815	7240 (27	-	7760.3	2(-	821	7250 7
	796	20	7349.6	25-	796	6062.0	20	╇	/358./
25-	6876.8	24- 760	6589.7	23	-	0703.7	24-	777	6582.5
23-	748			23-	750	6213.8			000210
23	0127.5	22- 716	5873.4		706		22-	727	5855.3
21-	⁷⁰¹ 5428.2	674		21-		5507.3		685	
	657	20-	5199.9	10-	662	1915 0	20-	+	5170.8
19-	4771.2	18- 637	4562.4	19	-	4045.9	18-	637	4533.9
17-	⁶¹³ 4157.8	1 601	20(1 5	17-	610	4236.2		580	2054.0
15-	561 3596 4	10	3901.5	15-	546	3689.9		-	3954.0
13	493 2122 -	14- 550	3411.6	13-	469	3221.2	14-	509	3444.9
$\frac{13}{11^{-}}$	394 2709.4	$\frac{12^-}{10^-}$ 470	2941.9	11-	374	2847.5	$\frac{12^{-}}{10^{-}}$	424	3021.2
9-	301 2408.5	$\frac{10}{8^-}$ $\frac{362}{235}$	2345.1	9	255	2592.7	10	540	2701.5
	· · · · ·	~ 433							

 $^{156}_{66} Dy_{90}$

685

610

527

433

5320.2

4635.6

4025.8

3498.8

3065.88

359 2706.87

22⁺

<u>20+</u> 18+

16⁺

14+

12

Adopted Levels, Gammas (continued)

¹⁵⁶₆₆Dy₉₀

Band(M): Bandhead of a $K^{\pi}=8^+$ band 8^+ 2787.4

¹⁵⁶₆₆Dy₉₀