Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

 $Q(\beta^{-})=-7.96\times10^{3} \ 3$; S(n)=8642 24; S(p)=3364 22; Q(α)=5338.8 21 2017Wa10 Q(\varepsilon)=6123 19; S(2n)=19437 24; S(2p)=4612 22; Q(\varepsilon p)=4813 17 2017Wa10 Additional information 1.

All data on excited states are from 144 Sm(16 O,5n γ) dataset (2016Li41) that includes with few adjustments those from ¹⁰²Pd(⁵⁸Ni,4pn) dataset (2001Di17).

¹⁵⁵Yb Levels

Cross Reference (XREF) Flags

 159 Hf α decay A

В

 102 Pd(58 Ni,4pn γ) 144 Sm(16 O,5n γ) С

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments		
0.0 [‡]	(7/2-)	1.793 s 20	ABC	%α=89 5; %ε+%β ⁺ =11 5 μ=-0.913 22; Q=-0.5 3 1998Ba08 (also 1999BaZW, 2000Ba16, 2000Se22) report Δ <r<sup>2>(¹⁵⁵Yb,¹⁶⁸Yb)=1.316 fm² 8. 2002BaZX report Δ<r<sup>2>(¹⁷⁴Yb,¹⁵⁵Yb)=-1.630 fm² 8. Some of these papers also indicate that there is essentially no change in deformation for isotopes of Yb with A=154, 155, and 156. In an evaluation of the nuclear rms charge radii, 2013An02 report <r<sup>2>^{1/2}=5.1040 fm <i>110</i>. T_{1/2}: weighted average of 1.75 s 5 (1991To08) and 1.800 s 20 (1996Pa01). Others: 1.7 s 2 (1982Bo04); 1.8 s 3 (1980Da09); 1.59 s 22 (1979Ho10); 1.9 s 2 (1977Ha48); and 1.65 s <i>15</i> (1964Ma45). %α: Weighted average of 84% <i>10</i> (1979Ho10) and 90% 5 (1991To08). μ: From resonance-ionization spectroscopy in a LASER ion source (1998Ba08). These same values are listed in a number of subsequent publications (1999BaZW, 2000Ba16, 2000Se22, 2002BaZX) from this same group and thus probably do not represent additional measurements. 1992A118 (also 1992AIZM, 1992AIZY) report μ=-0.84 8, from optical hyperfine splitting measurements using LASER-induced resonance photoionization spectroscopy in a LASER ion source (1998Ba08). These same values are listed in a number of subsequent publications (1999BaZW, 2000Ba16, 2000Se22, 2002BaZX) from this same group and thus probably do not represent additional measurements. 1992A118 (also 1992AIZM, 1992AIZY) report μ=-0.84 8, from optical hyperfine splitting measurements using LASER-induced resonance photoionization. See also 2014StZZ compilation. Q: From resonance-ionization spectroscopy in a LASER ion source (1998Ba08). These same values are listed in a number of subsequent publications (1999BaZW, 2000Ba16, 2000Se22, 2002BaZX) from this same group and thus probably do not represent additional measurements. 1992A118 (also 1992AIZM, 1992AIZY) report Q=-1.2 <i>10</i>, from optical hyperfine splitting measurements using LASER-induced resonance photoionization. See also 2016St14 compilation. J[#]: α transition, most probably favored, to ¹⁵¹Er (J^π=(7/2</r<sup></r<sup></r<sup>		
168.7" 3	(9/2 ⁻)		BC	configuration: $(\nu f_{9/2})_{9/2^-}$, prolate, $\beta = 0.14$, $\gamma \approx 0^{\circ}$. J ^{π} : (M1+E2) to (7/2 ⁻) g.s.; bandhead.		
666.00 [‡] 19	$(11/2^{-})$		С	J^{π} : E2 in band to (7/2 ⁻).		
839.4 [@] 3	(13/2 ⁺)		C	J ^π : D(+Q) to (11/2 ⁻); π=(+) from assigned structure (2016Li41); bandhead. configuration: $(v_{13/2})_{13/2^+}$, oblate, β=0.16, γ≈60° (2016Li41).		
983.8 [#] 4	$(13/2^{-})$		BC	J^{π} : E2 in band to (9/2 ⁻).		

Adopted Levels, Gammas (continued)

¹⁵⁵Yb Levels (continued)

$E(level)^{\dagger}$	J^{π}	XREF	Comments				
1178.5 [‡] 3	(15/2 ⁻)	С	J^{π} : in band γ to $(11/2^{-})$.				
1527.5 [@] 3	$(17/2^+)$	С	J^{π} : E2 in band to (13/2 ⁺).				
1592.8 [#] 4	$(17/2^{-})$	BC	J^{π} : E2 in band to (13/2 ⁻).				
1912.8 [#] 5	$(21/2^{-})$	BC	J^{π} : E2 in band to (17/2 ⁻).				
2033.7 [@] 5	$(21/2^+)$	С	J^{π} : in band γ to $(17/2^+)$.				
2494.4 [@] 6	$(25/2^+)$	С	J^{π} : E2 in band to (21/2 ⁺).				
2526.6 6	$(23/2^{-})$	С	J^{π} : (M1+E2) to (21/2 ⁻).				
2768.8 [#] 6	$(25/2^{-})$	С	J^{π} : (M1+E2) to (23/2 ⁻); in band γ to (21/2 ⁻).				
3520.3 [#] 8	$(29/2^{-})$	С	J^{π} : E2 in band to (25/2 ⁻).				
3740.8 [#] 9	$(33/2^{-})$	С	J^{π} : E2 in band to (29/2 ⁻).				
4183.4 11	$(35/2^{-})$	С	J^{π} : (M1+E2) to (33/2 ⁻).				
4549.6 12	(37/2)	С	J^{π} : D to (35/2 ⁻).				

[†] From least-squares fit to $E\gamma's$.

[‡] Band(A): Based on $(vf_{7/2})_{7/2^-}$. Levels $(7/2^-)$, $(11/2^-)$, $(15/2^-)$ proposed to arise from the coupling of the $vf_{7/2}$ orbital to the 0⁺, 2⁺, 4⁺ couplings of the two $vf_{7/2}$ orbitals (2016Li41).

[#] Band(B): Based on $(\nu h_{9/2})_{9/2^-}$. Levels $(9/2^-)$, $(13/2^-)$, $(21/2^-)$ proposed to arise from the coupling of the $\nu h_{9/2}$ orbital to the 0⁺, 2⁺, 4⁺, 6⁺ couplings of the two $\nu f_{7/2}$ orbitals (2001Di17, 2016Li41).

[@] Band(C): Based on $(\nu_{13/2})_{13/2^+}$. Levels $(13/2^+)$, $(17/2^+)$, $(21/2^+)$, $(25/2^+)$ proposed to arise from the coupling of the $\nu_{13/2}$ orbital to the 0⁺, 2⁺, 4⁺, 6⁺ couplings of the two $\nu_{13/2}$ orbitals (2016Li41).

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
168.7	(9/2 ⁻)	168.7 4	100	0.0	(7/2 ⁻)	(M1+E2)	0.62 15	$\alpha(K)=0.45 \ 19; \ \alpha(L)=0.130 \ 33; \\ \alpha(M)=0.0306 \ 89 \\ \alpha(N)=0.0071 \ 20; \ \alpha(O)=0.00090 \ 18; \\ \alpha(P)=2 \ 5\times 10^{-5} \ 14$
666.00	(11/2 ⁻)	666.0 2	100	0.0	(7/2 ⁻)	E2	0.00892	$\alpha(K) = 0.00723 \ 11; \ \alpha(L) = 0.001311 \ 19; \alpha(M) = 0.000299 \ 5 \alpha(N) = 6.97 \times 10^{-5} \ 10; \ \alpha(O) = 9.49 \times 10^{-6} \ 14; \alpha(P) = 4.04 \times 10^{-7} \ 6$
839.4	$(13/2^+)$	173.4 2	100	666.00	$(11/2^{-})$	D(+Q)		
983.8	$(13/2^{-})$	317.8 5	100	666.00	$(11/2^{-})$	52	0.005(0	
		815.1 2	100	168.7	(9/2)	E2	0.00569	$\alpha(\mathbf{K})=0.00468 \ /; \ \alpha(\mathbf{L})=0.000785 \ II; \\ \alpha(\mathbf{M})=0.0001776 \ 25 \\ \alpha(\mathbf{N})=4.14\times10^{-5} \ 6; \ \alpha(\mathbf{O})=5.73\times10^{-6} \ 8; \\ \alpha(\mathbf{P})=2.63\times10^{-7} \ 4$
1178.5	$(15/2^{-})$	512.5 3	100	666.00	$(11/2^{-})$			
1527.5	$(17/2^+)$	349.0 3	71.5 25	1178.5	$(15/2^{-})$	D(+Q)		
		688.1 2	100	839.4	(13/2+)	E2	0.00828	$\alpha(K)=0.00673 \ 10; \ \alpha(L)=0.001203 \ 17; \alpha(M)=0.000274 \ 4 \alpha(N)=6.39\times10^{-5} \ 9; \ \alpha(O)=8.72\times10^{-6} \ 13; \alpha(D)=2.76\times10^{-7} \ 6$
1592.8	$(17/2^{-})$	414.3.5		1178.5	$(15/2^{-})$			$u(1) = 5.70 \times 10^{-5}$
	(27,27)	609.0 2	100	983.8	(13/2 ⁻)	E2	0.01099	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00884 \ 13; \ \alpha(\mathrm{L}) = 0.001669 \ 24; \\ &\alpha(\mathrm{M}) = 0.000382 \ 6 \\ &\alpha(\mathrm{N}) = 8.90 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 1.203 \times 10^{-5} \ 17; \\ &\alpha(\mathrm{P}) = 4.91 \times 10^{-7} \ 7 \end{aligned}$

 $\gamma(^{155}\mathrm{Yb})$

Adopted Levels, Gammas (continued)

$\gamma(^{155}$ Yb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
1912.8	(21/2 ⁻)	320.0 3	100	1592.8	(17/2 ⁻)	E2	0.0610	α (K)=0.0442 7; α (L)=0.01289 19; α (M)=0.00305 5 α (N)=0.000704 11; α (O)=8.91×10 ⁻⁵ 13;
2033.7	(21/2+)	506.2 3	100	1527.5	(17/2+)			α (P)=2.29×10 ⁻⁶ 4 Mult.: based on ADO ratio this should be D+Q; 2016Li41 adopt Q as in band transition
2494.4	$(25/2^+)$	460.7 <i>3</i>	100	2033.7	$(21/2^+)$	E2	0.0220	$\alpha(K) = 0.01714 \ 25; \ \alpha(L) = 0.00379 \ 6;$
								$\alpha(M)=0.000880 \ 15$ $\alpha(N)=0.000204 \ 3; \ \alpha(O)=2.69\times10^{-5} \ 4;$ $\alpha(P)=9.33\times10^{-7} \ 14$
2526.6	(23/2 ⁻)	613.8 5	100	1912.8	(21/2 ⁻)	(M1+E2)	0.0175 68	α (K)=0.0145 59; α (L)=0.00231 68; α (M)=5.2×10 ⁻⁴ 15
								α (N)=1.22×10 ⁻⁴ 35; α (O)=1.71×10 ⁻⁵ 54; α (P)=8.5×10 ⁻⁷ 37
2768.8	(25/2 ⁻)	242.2 5	35.9 7	2526.6	(23/2 ⁻)	(M1+E2)	0.212 69	$\alpha(K)=0.166\ 70;\ \alpha(L)=0.0361\ 9;\ \alpha(M)=0.0084\ 5$ $\alpha(N)=0.00195\ 9;\ \alpha(O)=0.000258\ 10;$
		856.0 4	100 1	1912.8	(21/2 ⁻)			α (P)=9.5×10 ⁻⁶ 48 Mult.: based on ADO ratio this should be D+Q; 2016Li41 adopt Q as in band transition
3520.3	(29/2 ⁻)	751.5 5	100	2768.8	(25/2 ⁻)	E2	0.00679	$\alpha(K)=0.00556 \ 8; \ \alpha(L)=0.000959 \ 14; \ \alpha(M)=0.000218 \ 3$
								$\alpha(N)=5.08\times10^{-5} 8; \alpha(O)=6.98\times10^{-6} 10; \alpha(P)=3.12\times10^{-7} 5$
3740.8	(33/2-)	220.5 5	100	3520.3	(29/2 ⁻)	E2	0.195	$\alpha(K)=0.1251\ 20;\ \alpha(L)=0.0534\ 9;$ $\alpha(M)=0.01286\ 22$
								$\alpha(N)=0.01260\ 22$ $\alpha(N)=0.00296\ 5;\ \alpha(O)=0.000359\ 6;$ $\alpha(P)=5.98\times10^{-6}\ 9$
4183.4	(35/2-)	442.6 5	100	3740.8	(33/2-)	(M1+E2)	0.040 16	$\alpha(K) = 0.033 \ 15; \ \alpha(L) = 0.0056 \ 14; \ \alpha(M) = 0.0013 \ 3$
								$\alpha(N)=0.00030$ 7; $\alpha(O)=4.1\times10^{-5}$ 12; $\alpha(P)=1.93\times10^{-6}$ 91
4549.6	(37/2)	366.2 5	100	4183.4	(35/2-)	D		$u(1) = 1.75 \land 10 = 71$

[†] From mesured experimental ratio $R_{ADO} = I_{\gamma}(135^{\circ}) \setminus I_{\gamma}(90^{\circ})$ in ¹⁴⁴Sm(¹⁶O,5n γ) dataset (2016Li41) with Q adopted as E2 (M2 is unlikely), D+Q adopted as (M1+E2) (E1+M2 is less likely) and relatively pure D adopted as D(+Q). According to 2016Li41 all transitions are stretched. [‡] Additional information 2.

Adopted Levels, Gammas

Level Scheme
Intensities: Relative photon branching from each level

 $^{155}_{70}{\rm Yb}_{85}$

Adopted Levels, Gammas

 $^{155}_{70} Yb_{85}$