144 Sm(16 O,5n γ) 2016Li41

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

 $E(^{16}O)=118$ MeV beam provided by Separated Sector Cyclotron (SSC) at iThemba LABS, South Africa on 2.89 mg/cm² target (on 13.13 mg/cm² Pb backing). Used γ multidetector array AFRODITE (8 Compton-supressed clover detectors). Energy and efficiency calibrations performed with standard ¹³³Ba and ¹⁵²Eu sources. Measured symmetrized $\gamma\gamma$ and $\gamma\gamma\gamma$ coin and asymmetric Angular Distribution from Oriented states (ADO) $\gamma\gamma$ coin matrices. Specific reaction channels selection done with the so called chessboard comprising 24 CsI scintillators. Semiempirical shell-model (SESM) calculations. Coexistence of prolate-oblate shapes predicted by adiabatic and configuration-fixed constrained triaxial covariant density functional theory (CDFT) calculations with point-coupling energy density functional (PC-PK1). Also performed potential energy surfaces calculations and systematics of N=85 even-Z isotones, N=84 even-even isotones, and N=86 even-even isotones comparisons respectively.

¹⁵⁵Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	(7/2 ⁻)	1.793 s 19	J^{π} , $T_{1/2}$: from the adopted values. configuration: $(vf_{7/2})_{7/2}$, oblate, $\beta = 0.15$, $\gamma \approx 60^{\circ}$.
168.7 [@] 3	(9/2 ⁻)		configuration: $(\gamma h_{9/2})_{9/2^-}$, prolate, $\beta = 0.14$, $\gamma \approx 0^\circ$.
666.00 [#] 19	$(11/2^{-})$		
839.4 <mark>&</mark> <i>3</i>	$(13/2^+)$		configuration: $(\nu i_{13/2})_{13/2^+}$, oblate, $\beta = 0.16$, $\gamma \approx 60^\circ$.
983.8 [@] 4	$(13/2^{-})$		
1178.5 [#] 3	$(15/2^{-})$		
1527.5 ^{&} 3	$(17/2^+)$		
1592.8 [@] 4	$(17/2^{-})$		
1912.8 [@] 5	$(21/2^{-})$		
2033.7 ^{&} 5	$(21/2^+)$		
2494.4 ^{&} 6	$(25/2^+)$		
2526.6 6	$(23/2^{-})$		
2768.8 [@] 6	$(25/2^{-})$		
3520.3 [@] 8	$(29/2^{-})$		
3740.8 [@] 9	$(33/2^{-})$		
4183.4 11	$(35/2^{-})$		
4349.0 12	(31/2)		

[†] From least-squares fit to $E\gamma's$.

[‡] Values assigned by 2016Li41 based on measured multipolarities, systematics and theoretical calculations.

[#] Band(A): Based on $(vf_{7/2})_{7/2^-}$. Levels $(7/2^-)$, $(11/2^-)$, $(15/2^-)$ proposed to arise from the coupling of the $vf_{7/2}$ orbital to the 0⁺, 2⁺, 4⁺ couplings of the two $vf_{7/2}$ orbitals (2016Li41).

^(a) Band(B): Based on $(\nu h_{9/2})_{9/2^-}$. Levels $(9/2^-)$, $(13/2^-)$, $(21/2^-)$ proposed to arise from the coupling of the $\nu h_{9/2}$ orbital to the 0⁺, 2⁺, 4⁺, 6⁺ couplings of the two $\nu f_{7/2}$ orbitals (2016Li41).

[&] Band(C): Based on $(\nu_{13/2})_{13/2^+}$. Levels $(13/2^+)$, $(17/2^+)$, $(21/2^+)$, $(25/2^+)$ proposed to arise from the coupling of the $\nu_{13/2}$ orbital to the 0⁺, 2⁺, 4⁺, 6⁺ couplings of the two $\nu_{f_{7/2}}$ orbitals (2016Li41).

$\underline{\gamma}(^{155}\mathrm{Yb})$							
E_{γ}^{\dagger} I_{γ}^{\ddagger} $E_{i}(\text{level})$ J_{i}^{π} E_{f} J_{f}^{π} Mult. [@] Comments							
168.7 4 37.7 6 168.7 (9/2 ⁻) 0.0 (7/2 ⁻) (M1+E2) ADO=0.97 2.							
173.4 2 98.2 [#] 54 839.4 $(13/2^+)$ 666.00 $(11/2^-)$ D(+Q) ADO=0.75 <i>l</i> .							
220.5 5 32.5 6 3740.8 (33/2 ⁻) 3520.3 (29/2 ⁻) E2 ADO=1.29 2.							
242.2 5 16.6 3 2768.8 (25/2 ⁻) 2526.6 (23/2 ⁻) (M1+E2) ADO=0.95 2. 317.8 5 983.8 (13/2 ⁻) 666.00 (11/2 ⁻)							
320.0 <i>3</i> 70.3 <i>6</i> 1912.8 (21/2 ⁻) 1592.8 (17/2 ⁻) E2 ADO=1.38 2.							
349.0 3 $71.5^{\#}$ 25 1527.5 $(17/2^+)$ 1178.5 $(15/2^-)$ D(+Q) ADO=0.86 2.							
366.2 5 15.9 2 4549.6 (37/2 ⁻) 4183.4 (35/2 ⁻) D ADO=0.79 <i>I</i> .							
414.3 5 1592.8 (17/2 ⁻) 1178.5 (15/2 ⁻)							
442.6 5 20.8 4 4183.4 $(35/2^{-})$ 3740.8 $(33/2^{-})$ (M1+E2) ADO=0.68 2.							
460.7 3 $68.3^{\text{#}}$ 28 2494.4 $(25/2^+)$ 2033.7 $(21/2^+)$ E2 ADO=1.36 7.							
506.2 3 $70.0^{\#}$ 10 2033.7 (21/2 ⁺) 1527.5 (17/2 ⁺) ADO=1.07 3.							
Mult.: based on ADO ratio this sho 2016Li41 adopt Q as in band trai	ould be D+Q; nsition.						
512.5 3 75.4 [#] 26 1178.5 $(15/2^{-})$ 666.00 $(11/2^{-})$							
609.0 2 80.2 <i>14</i> 1592.8 (17/2 ⁻) 983.8 (13/2 ⁻) E2 ADO=1.29 <i>3</i> .							
613.8 5 18.3 7 2526.6 (23/2 ⁻) 1912.8 (21/2 ⁻) (M1+E2) ADO=0.67 2.							
666.0 2 $178.8^{\#} 54$ 666.00 $(11/2^{-})$ 0.0 $(7/2^{-})$ E2 ADO=1.28 3.							
$688.1 \ 2 100^{\#} \qquad 1527.5 (17/2^+) \qquad 839.4 (13/2^+) E2 \qquad \text{ADO}=1.24 \ 7.$							
751.5 5 35.2 7 3520.3 (29/2 ⁻) 2768.8 (25/2 ⁻) E2 ADO=1.30 3.							
815.1 2 100 983.8 $(13/2^{-})$ 168.7 $(9/2^{-})$ E2 ADO=1.35 3.							
856.0 4 46.3 5 2768.8 $(25/2^{-})$ 1912.8 $(21/2^{-})$ ADO=1.01 2.							
Mult.: based on ADO ratio this sho 2016 i.i.d. adopt O as in band trai	ould be D+Q;						

[†] Based on comment of 2016Li41 that uncertainties are between 0.2 and 0.5 keV the evaluator assigned unc to each γ transition based on their relative intensities divided into four groups covering the interval in between 16%–100% starting with 0.5 keV for the lowest intesity group up to 0.2 keV for the highest one ending to 100%, here including the 179% higher relative intensity. No difference was made in between the two groups based on the two different normalizations (see the comment below).

^{\ddagger} 2016Li41 give two scales of normalization γ -ray intensities: normalized to 100% for 815.1 γ unless noted otherwise.

[#] Normalized to 100% for 688.1 γ .

^(a) From mesured experimental ratio $R_{ADO}=I_{\gamma}(135^{\circ})\setminus I_{\gamma}(90^{\circ})$ with typical values 1.2 for stretched quadrupole and 0.8 for stretched pure dipole transitions respectively. For the particular population and decay mechanism of this study 2016Li41 adopted E2 for stretched Q (M2 is unlikely) and (M1+E2) for mixed D+Q transitions (E1+M2 is less likely) while for the relatively pure dipole transitions one can rather adopt D(+Q).

 $^{155}_{70}{\rm Yb}_{85}$

¹⁵⁵₇₀Yb₈₅