¹⁴⁴Sm(¹⁶O,p4nγ) 2018Li19

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019	

2018Li19: E=118 MeV beam provided by Separated Sector Cyclotron (SSC) at iThemba LABS, South Africa on 2.89 mg/cm² target (on 13.13 mg/cm² Pb backing). Used γ multidetector array AFRODITE (8 Compton-supressed clover detectors). Energy and efficiency calibrations performed with standard ¹³³Ba and ¹⁵²Eu sources. Measured symmetrized $\gamma\gamma$ and $\gamma\gamma\gamma$ coin and asymmetric Angular Distribution from Oriented states (ADO) $\gamma\gamma$ coin matrices. Theoretical interpretation based on potential energy surfaces calculations and on systematics of odd Tm isotopes and N=84,86 isotones.

¹⁵⁵Tm Levels

States $11/2^-$ to $27/2^-$ of $\alpha = -1/2$ g.s. band are interpreted as being of soft quasivibrational character followed by quasirotational character above $27/2^-$ state. Energy anomaly of yrast states: first $25/2^-$ state of seniority 5 is lower in energy than $27/2^-$ state of seniority 3.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	11/2-	configuration: $\pi h_{11/2}$.
535.6 [#] 3	$15/2^{-}$	
1132.1 [#] 5	19/2-	
1380.2 [@] 5	$(17/2^{-})$	
1752.0 [#] 5	23/2-	
2038.9 [@] 6	$(21/2^{-})$	
2133.7 7	$(25/2^{-})$	configuration: $\pi h_{11/2}^3 \nu f_{7/2} h_{9/2}$.
2312.1 [#] 6	$27/2^{-}$	configuration: $\pi h_{11/2} \otimes v f_{7/2} h_{9/2}$ fully aligned.
2718.6 [@] 6	$(25/2^{-})$	
3030.8 [#] 8	31/2-	
3769.2 [#] 9	35/2-	
4529.8 [#] 11	39/2-	
5248.0 [#] 12	43/2-	
6074.0 [#] 13	$(47/2^{-})$	

[†] From least-squares fit to $E\gamma$'s.

[‡] As deduced by 2018Li19 based on measured multipolarities and theoretical arguments. All parity values are negative.

[#] Band(A): Based on $\pi h_{11/2}$, $\alpha = -1/2$.

[@] Band(B): Based on $\pi h_{11/2}$, $\alpha = +1/2$.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]		Comments
178.4 5 381.7 5 535.6 3 560.1 3	12.6 9 18.2 9 100.0 49.5 <i>19</i>	2312.1 2133.7 535.6 2312.1	27/2 ⁻ (25/2 ⁻) 15/2 ⁻ 27/2 ⁻	2133.7 1752.0 0.0 1752.0	(25/2 ⁻) 23/2 ⁻ 11/2 ⁻ 23/2 ⁻	(M1+E2) (M1+E2) E2 E2	ADO=0.99 17. ADO=0.93 10. ADO=1.15 6. ADO=1.21 9.	
x581.1 596.5 3 619.9 3 x635.5 x648.9	89.8 29 77.6 27	1132.1 1752.0	19/2 ⁻ 23/2 ⁻	535.6 1132.1	15/2 ⁻ 19/2 ⁻	E2 E2	ADO=1.13 7. ADO=1.18 7.	

 $\gamma(^{155}\text{Tm})$

Continued on next page (footnotes at end of table)

144 Sm(16 O,p4n γ) **2018Li19** (continued)

γ (¹⁵⁵Tm) (continued)

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [‡]	Comments
658.7 5	6.2 6	2038.9	$(21/2^{-})$	1380.2	$(17/2^{-})$	E2	ADO=1.18 11.
679.7 5	8.2 7	2718.6	$(25/2^{-})$	2038.9	$(21/2^{-})$	E2	ADO=1.35 14.
718.2 5	≈3	5248.0	$43/2^{-}$	4529.8	39/2-	E2	ADO=1.21 13.
718.7 5	≈11	3030.8	31/2-	2312.1	$27/2^{-}$	E2	ADO=1.22 12.
738.4 5	10.1 5	3769.2	$35/2^{-}$	3030.8	$31/2^{-}$	E2	ADO=1.19 13.
760.6 5	5.5 4	4529.8	39/2-	3769.2	35/2-	E2	ADO=1.16 15.
826.0 5	<2	6074.0	$(47/2^{-})$	5248.0	$43/2^{-}$		
^x 841.6							
844.6 5	6.3 4	1380.2	$(17/2^{-})$	535.6	$15/2^{-}$	(M1+E2)	ADO=0.98 10.
906.8 5	2.4 2	2038.9	$(21/2^{-})$	1132.1	19/2-	(M1+E2)	ADO=0.99 14.
966.6 5	2.1 2	2718.6	$(25/2^{-})$	1752.0	$23/2^{-}$	D(+Q)	ADO=0.82 9.

 † Values given 2018Li19 are without unc, which were adopted by evaluator.

[‡] From mesured experimental ratio $R_{ADO}=I_{\gamma}(135^{\circ})\setminus I_{\gamma}(90^{\circ})$ with typical values 1.2 for stretched quadrupol and 0.8 for stretched pure dipole transitions respectively. For the particular population and decay mechanism of this study 2018Li19 adopted E2 for stretched Q (M2 is unlikely) and (M1+E2) for mixed D+Q transitions (E1+M2 is less likely) while for the relatively pure dipole transitions one can rather adopt D(+Q).

 $x \gamma$ ray not placed in level scheme.

¹⁵⁵₆₉Tm₈₆

¹⁵⁵₆₉Tm₈₆