144 Sm(14 N,3n γ) 2007Ra21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

Data set based on XUNDL file compiled by S. Geraedts and B. Singh (McMaster).

2007Ra21: E=70 MeV beam provided by 15 UD Pelletron at IUAC, New Delhi. Enriched target. Measured E γ , I γ , $\gamma\gamma$,

 $\gamma\gamma(\theta)$ (DCO) using GDA array of 10 Ge detectors with Compton-suppression and 14 BGO detector array used as multiplicity filter. There were four Ge detectors at 50°, and three each at 98° and 144°.

1985Ko30: studied several reactions and nuclei and found the E2 cascade 455.5-597.0-619.8-560 in ¹⁵⁵Tm, that was confirmed by 2007Ra21 (with slightly different ordering of transitions).

¹⁵⁵Tm Levels

Low-lying states are described by configurations: $\pi h_{11/2}^5 \otimes \nu(f_{7/2}^2 h_{9/2}^2)$ or $\pi h_{11/2}^5 \otimes \nu(f_{7/2}^4)$.

E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}
0.0^{\ddagger}	$11/2^{-}$	2570.8 10		3321.6 11		4875.2 13	
535.8 [‡] 3	15/2-	2768.6 [‡] 11	$31/2^{-}$	3610.9 [‡] <i>11</i>	35/2-	4994.7 [‡] <i>14</i>	$(47/2^{-})$
1132.7 [‡] 7	19/2-	2778.7 10		3660.0 12		5101.5 <i>13</i>	
1752.9 [‡] 9	23/2-	2908.2 12		3771.3 11	$(35/2^{-})$	5230.3 14	
2040.9 9	$(21/2^{-})$	2915.7 11		4086.4 12		5440.0 14	
2134.7 10	$(23/2, 27/2)^{-}$	3032.4 11	$(31/2^{-})$	4246.6 [‡] <i>12</i>	$(39/2^{-})$	6221.8 [‡] <i>15</i>	$(51/2^{-})$
2313.2 [‡] 10	$27/2^{-}$	3285.7 13		4532.6 12			
2378.6 10	$(23/2^{-})$	3292.8 12	35/2-	4648.7 [‡] <i>13</i>	$(43/2^{-})$		

[†] From least-squares fit to $E\gamma's$.

[‡] Band(A): $\pi h_{11/2}$.

$\gamma(^{155}\text{Tm})$

DCO corresponds to gates on $\Delta J=2$, quadrupole transitions. Expected values are: 1.0 for $\Delta J=2$, quadrupole and 0.7 for $\Delta J=1$, dipole. Angles used are 50° and 98°.

Eγ	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
139.6 5	1.2 2	2908.2		2768.6	31/2-		
160.5 5	4.0 5	3771.3	$(35/2^{-})$	3610.9	35/2-		
178.5 5	13.7 <i>1</i>	2313.2	$27/2^{-}$	2134.7	$(23/2,27/2)^{-}$	(M1,E2)	DCO=1.01 6
							Mult.: DCO gives $\Delta J=0$, dipole or $\Delta J=2$, Q.
287.9 5	3.8 2	2040.9	$(21/2^{-})$	1752.9	$23/2^{-}$		
337.7 5	2.7 2	2378.6	$(23/2^{-})$	2040.9	$(21/2^{-})$	(E2+M1)	DCO=0.75 22
346.0 5	1.5 <i>1</i>	4994.7	$(47/2^{-})$	4648.7	$(43/2^{-})$		
377.5 5	3.0 2	3285.7		2908.2			
381.7 5	20.8 1	2134.7	$(23/2, 27/2)^{-}$	1752.9	23/2-	(M1,E2)	DCO=0.99 6
							Mult.: DCO gives $\Delta J=0$, dipole or $\Delta J=2$, Q.
402.1 5	5.7 2	4648.7	$(43/2^{-})$	4246.6	$(39/2^{-})$	(E2)	DCO=1.01 16
455.5 5	36.1 4	2768.6	31/2-	2313.2	$27/2^{-}$		
475.5 5	2.3 [‡] 4	4086.4		3610.9	35/2-		
524.2 5	8.1 [‡] 5	3292.8	35/2-	2768.6	$31/2^{-}$	E2	DCO=1.01 7
535.8 5	100.0 <i>I</i>	535.8	$15/2^{-}$	0.0	$11/2^{-}$	E2	DCO=0.98 4
560.3 5	30.6 10	2313.2	27/2-	1752.9	23/2-	E2	DCO=1.00 5

Continued on next page (footnotes at end of table)

¹⁴⁴Sm(¹⁴N,3n γ) 2007Ra21 (continued) $\gamma(^{155}\text{Tm})$ (continued) I_{γ}^{\dagger} Eγ E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. Comments 564.8 5 2.1~25440.0 4875.2 0.9 1 4648.7 (43/2-) 581.6 5 5230.3 85.5[‡] 23 535.8 15/2⁻ 1132.7 19/2⁻ E2 E2 596.9 5 1132.7 19/2-DCO=1.07 4 71.1 10 620.2 5 1752.9 $23/2^{-}$ DCO=0.99 4 6.4 3 4246.6 (39/2-) 628.6 5 4875.2 14.3 *3* 3610.9 35/2-DCO=0.98 15 635.7 5 4246.6 $(39/2^{-})$ (E2) 8.6[‡] 2 719.1 5 3032.4 $(31/2^{-})$ 2313.2 27/2-(E2) DCO=0.99 21 3.4[‡] 12 3032.4 (31/2-) 738.9 5 3771.3 $(35/2^{-})$ (E2) DCO=0.9 3 744.3 5 5.0 2 2915.7 3660.0 750.8 5 4.7 1 3321.6 2570.8 761.3 5 1.5 *I* 4532.6 3771.3 (35/2-) 781.0 5 6.7 1 2915.7 2134.7 (23/2,27/2)-(E2+M1) DCO=0.97 20 817.9 5 3.5 3 2570.8 1752.9 23/2-842.3 5 22.6 11 $35/2^{-}$ 2768.6 31/2-E2 DCO=1.03 7 3610.9 1132.7 19/2-DCO=0.79 22 908.2 5 4.6 3 2040.9 $(21/2^{-})$ (E2+M1) 1015.1 5 1.0 1 5101.5 4086.4 1752.9 23/2-1025.8 5 1.6 *1* 2778.7 1227.1 5 1.2 1 6221.8 $(51/2^{-})$ 4994.7 (47/2-)

[†] Uncertainties include those arising from peak fitting and background subtraction. There is additional 5-10% uncertainty from efficiency calibration.

[‡] Intensity obtained from the gated spectra.

¹⁵⁵₆₉Tm₈₆

144 Sm(14 N,3n γ) 2007Ra21

¹⁵⁵₆₉Tm₈₆