Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

 $Q(\beta^{-})=1627.3 \ 12; \ S(n)=5807.0 \ 3; \ S(p)=8.97\times10^{3} \ 5; \ Q(\alpha)=-1672.7 \ 11 \ 2017Wa10$ $S(2n)=13773.8 \ 3; \ S(2p)=17438 \ 5 \ 2017Wa10$

Because of the relatively large uncertainties quoted for the level energies from the (d,p) data, there has been some ambiguity in deciding if a given level (or which of a group of levels) is in fact populated in this reaction. Some of these instances are indicated in the cross-reference notations.

1999As05, in (HI,xn γ), report a rotational band based on the 16.5, $5/2^+$ state. Because of the tentatively established features of this band above the 358, $13/2^+$ state, the data on these higher-lying levels are not further given here. For this information, see the (HI,xn γ) Data Set.

¹⁵⁵Sm Levels

Cross Reference (XREF) Flags

			A 1 B 1 C 1	
E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0.0 ^{&}	3/2-	22.18 min 6	ABCDE	$\%\beta^{-}=100$ Q=1.13 <i>13</i>
				J ^{π} : atomic beam (1968Ea02). log <i>ft</i> =5.5 to 5/2 ⁻ level in ¹⁵⁵ Eu indicates π = Configuration=(ν 3/2[521]). T _{1/2} : weighted average of: 22.180 min 26 (2010GeZX), 22.4 min 3 (1969Un01); 21.9 min 2 (1960Su03); 23.5 min 4 (1952Ru10). Others: 25 min 2 (1950Wi07); 21 min 2 (1942Ku03).
16.5467 ^{<i>a</i>} 19	5/2+	2.8 µs 5	ABCDEF	 Q: from 2016St14 compilation by atomic beam magnetic resonance method. XREF: C(25). J^π: E1 transition to g.s., together with intensity of primary feeding transitions in resonance-averaged neutron capture, indicates J^π=5/2⁺. Assigned as the 5/2[642] Nilsson state.
53 0338 <mark>&</mark> 12	5/2-		ARCD	T _{1/2} : from decay curve of 16.5 γ in ²³⁹ Pu(n,F γ):isomer (2010Si03).
55.0550 12	5/2		ADCD	has an M1 component.
76.3007 ^{<i>a</i>} 21	7/2+		ABCDEF	XREF: C(80). J^{π} : M1+E2 transition to 5/2 ⁺ state. Resonance-averaged neutron-capture data indicate J \geq 7/2.
127.6982 ^{&} 9	7/2-		ABCD	J ^{π} : M1+E2 transition to 5/2 ⁻ member of g.s. band. Resonance-averaged
152.4190 ^{<i>a</i>} 23	9/2+		ABCDEF	J^{π} : M1 transition to $7/2^+$ state. Resonance-averaged neutron-capture data indicate $J \ge 7/2$. Level energy near that expected for the $9/2^+$ member of the $5/2^+[642]$ band.
220.6842 ^{&} 14	9/2-		ABCD	XREF: C(227). J^{π} : M1 transition to 7/2 ⁻ state. Resonance-averaged neutron-capture data indicate J \geq 7/2. Level energy (and π) consistent with assignment as the 9/2 ⁻ member of the g s band
250.5 ^{<i>a</i>} 3	$11/2^{+}$		DEF	J^{π} : γ' s to $7/2^+$ and $9/2^+$ members of the $5/2[642]$ band. Level energy agrees with that expected for the $11/2^+$ member of that band.
337.2 ^{&} 7	$(11/2^{-})$		CD	J^{π} : γ' s to $9/2^+$ and $9/2^-$ states. Level energy agrees with that expected for the $11/2^-$ member of the g s band
358.8 ^{<i>a</i>} 3	13/2+		CDEF	J^{π} : γ' s to $9/2^+$ and $11/2^+$ members of the 5/2[642] band. Level energy agrees

Continued on next page (footnotes at end of table)

¹⁵⁵Sm Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
				with that expected for the $13/2^+$ member of that band.
426.419 ^b 3	5/2-		ABCD	J ^{π} : resonance-averaged neutron-capture data indicate $J^{\pi}=5/2^{-}$. 5/2[523] Nilsson state.
500.002 ^b 4	7/2-		ABCD	J ^{π} : resonance-averaged neutron-capture data indicate J≥7/2. L=2,3 in (d,p) limits J ^{π} possibilities to 7/2 ⁻ .
538.03 19	(11/2 ⁻)	1.00 µs 8	E	 J^π: ≥11/2 from levels scheme arguments; (11/2⁻) based on QPRM calculations in ²³⁹Pu(n,Fγ):isomer (2010Si03). T_{1/2}: from summed decay curve of 385.6+287.5+76.5+60.0 γ rays +Kα+Kβ x rays in the delayed cascade from the 538.6 keV isomer in ²³⁹Pu(n,Fγ):isomer (2010Si03). E(level): dominant configuration=11/2[505] from ²³⁹Pu(n,Fγ):isomer (2010Si03).
540 6 562 7			C C	
595.1 ^b 8	(9/2 ⁻)		CD	XREF: C(601). J ^{π} : not seen in (n, γ), suggesting J>7/2. Transitions to 9/2 ⁺ and (11/2 ⁺) states. Level energy agrees with that expected for the 9/2 ⁻ member of the K^{π} =5/2 ⁻ band.
617.5440 ^c 23	3/2+		ABCD	J^{π} : resonance-averaged neutron capture indicates $J^{\pi}=1/2^+, 3/2^+$. E1 transition to $5/2^-$ level eliminates $1/2^+$.
658.388 ^c 3	5/2+		ABCD	XREF: C(645). J ^{π} : resonance-averaged neutron-capture results indicate $J^{\pi}=5/2^+$. M1 transition to $7/2^+$ level supports $\pi=+$ assignment.
716 ^b 7 736.933 ^c 10	(11/2 ⁻) (7/2 ⁺)		C BCD	 J^π: level energy near that expected for the 11/2⁻ member of this band. XREF: C(748). J^π: resonance-averaged n-capture data indicate J≥7/2. γ's to 9/2⁺, 7/2⁺ and 5/2⁻ states, together with its level energy, support the assignment of this level as the 7/2⁺ member of this K^π=3/2⁺ band.
778.1473 ^d 23	3/2-		ABCD	XREF: C(786). J^{π} : resonance-averaged n capture gives $J^{\pi}=1/2^{-}$, $3/2^{-}$. E1 transition to $5/2^{+}$ state rules out J=1/2. log <i>ft</i> =5.4 from ¹⁵⁵ Pm g.s. indicates that both levels involved have the same asymptotic quantum numbers. [532] in this case.
819.882 ^e 5	1/2-		BcD	XREF: c(824). J^{π} : resonance-averaged capture data and L=1 in (d,p) indicate $J^{\pi}=1/2^{-}$ or $3/2^{-}$. Large (d,p) cross section establishes this level as the bandhead of the 1/2[521] band.
821.307 ^d 11	5/2-		ABc	XREF: c(824). J^{π} : from resonance-averaged neutron capture, $J^{\pi}=5/2^{-}$ or $J \ge 7/2$. γ' s to the $5/2^{+}$ and $7/2^{+}$, but not the $9/2^{+}$, members of the $5/2[642]$ band lend support to the $5/2^{-}$ assignment. β^{-} feeding pattern of this level and the 778 and 919 levels in 155 Sm β^{-} decay support the interpretation of them as members of the $3/2[532]$ band.
844.115 ^e 5	3/2-		AB D	J ^{π} : resonance-averaged capture data allow $J^{\pi}=1/2$, $3/2^{-}$. M1 transition to $5/2^{-}$ state rules out J=1/2.
865.850 ^{<i>f</i>} 7	3/2+		Вс	XREF: c(874). E(level): 1982Sc03 identify the 874 level in (d,p) as being this state. However, this (d,p) level may also contribute to the 882.2 state seen in (n,γ) . J ^{π} : resonance-averaged neutron-capture results indicate J ^{π} = 1/2 ⁺ ,3/2 ⁺ . Transition to 5/2 ⁻ state rules out 1/2 ⁺ .
882.165 ^{<i>f</i>} 19	5/2+		ABc	XREF: c(874?). I^{π} : feeding pattern in resonance-averaged n conture indicates $I^{\pi} = 5/2^{+}$
903.468 ^g 5	$(1/2)^+$		ABc	XREF: c(909).

¹⁵⁵Sm Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
006 8288 17	5/0-	PeP	J^{π} : resonance-averaged neutron-capture results indicate $J^{\pi}=1/2^+$ or $3/2^+$. Existence of another $1/2^+, 3/2^+$ level at 968 keV and only one $5/2^+$ level (at 1011 keV), together with the "completeness" aspect of the resonance-averaged neutron-capture reaction, suggest that these levels form a $K^{\pi}=1/2^+$ band. The large (d,p) peak observed in this energy region would then indicate a significant component of $1/2[400]$ (J=1/2) in this state.
900.838 17	5/2	БСД	 E(level): although most of the 909 peak in (d,p) is likely to be associated with the 903 level, because of its closeness in energy some part of this peak may be due to the population of this 906 state. J^π: from population pattern in resonance-averaged n capture.
915.527 ^h 5	(1/2) ⁻	BcD	 XREF: c(909?). E(level): although most of the 909 peak in (d,p) is likely to be associated with the 903 level, because of its closeness in energy some part of this peak may be due to the population of this 915 state. J^π: resonance-averaged neutron-capture results indicate J^π=1/2⁻,3/2⁻. Probable assignment as head of 1/2[530] band favors J=1/2.
919.0 ^{<i>d</i>}	(7/2) ⁻	A	J^{π} : feeding in β^- decay from $J^{\pi}=5/2^-$ indicates $\pi=-$ and $J=3/2$, $5/2$ or $7/2$. Nonobservation of this level in (n,γ) rules out $3/2$ and makes $5/2$ unlikely. Interpretation of this level as the $7/2^-$ member of the $3/2[532]$ band clarifies the β^- feeding pattern in 155 Pm β^- decay (i.e., its members are populated by the three strongest β^- transitions in this region of excitation).
930.644 ^h 6	3/2-	ABCD	XREF: C(937). $J^{\pi}: J^{\pi}=1/2^{-}, 3/2^{-}$ from resonance-averaged neutron capture. M1 component in transition to $5/2^{-}$ rules out $1/2^{-}$. 1975Ja19 assign this level as the $5/2^{-}$ member of the $1/2^{-}$ [521] band.
962.46 ^e 3	7/2-	ABc	XREF: c(963). J ^{π} : resonance-averaged n capture indicates $J^{\pi}=5/2^{-}$ or J \geq 7/2. Level energy agrees with expected position of 7/2 ⁻ member of this band.
968.093 ^g 20	(3/2)+	BcD	XREF: c(963). J^{π} : resonance-averaged neutron capture indicates $J^{\pi}=1/2^+, 3/2^+$. Band-structure considerations (see comment on 903.466 level) favor the $3/2^+$ assignment.
984.452? ^h 5	(5/2 ⁻)	Bc	XREF: c(999). J^{π} : from resonance-averaged n capture, $J^{\pi}=5/2^{-}$ or $J \ge 7/2$. γ' s to $3/2^{+}$ and $7/2^{-}$ states restrict J^{π} to $5/2^{-}$ or $7/2^{+}$. Probably the $5/2^{-}$ member of the $1/2[530]$ band.
1010.926 ^g 9	5/2+	Вс	XREF: c(999,1018). J^{π} : from population pattern in resonance-averaged neutron capture.
1043 8		C	
1076 7 1106.671 ^{<i>i</i>} 9	3/2+	ABC	J ^{π} : resonance-averaged neutron-capture results indicate $J^{\pi}=1/2^+$ or $3/2^+$. Transition to $5/2^-$
1154.415 ^{<i>i</i>} 24	5/2+	Вс	XREF: c(1163). J^{π} : from population pattern in resonance-averaged n capture.
1168.746 9	3/2-	ABc	XREF: c(1163). J^{π} : from resonance-averaged neutron capture, $J^{\pi}=1/2^{-}, 3/2^{-}$. Transition to $5/2^{+}$ level rules
1180 11		С	
1217.7? 7	$(5/2^{-})^{@}$	BC	XREF: C(1225).
1282.438 ^j 5	$1/2^+, 3/2^+$	В	J^{π} : from resonance-averaged neutron capture.
1327.528 ^j 7	5/2+	AB	J^{π} : from resonance-averaged neutron capture.
1335.8 7	(5/2) [@]	BC	XREF: C(1339).
1362.134 10	3/2+	ABC	J ^{<i>n</i>} : from resonance-averaged neutron capture, $J^{\pi}=1/2^+, 3/2^+$. Transition to $5/2^-$ level rules out $1/2^+$.
1390.6 7	$(5/2)^{\textcircled{0}}{5/2}$	B	$\mathbf{YDEE} \cdot c(1408)$
1403.8 10	$\frac{3/2}{1/2^+.3/2^+}$	вс Вс	AREF. C(1400). XREF: c(1408).
	-,- ,-,-		

Continued on next page (footnotes at end of table)

¹⁵⁵Sm Levels (continued)

E(level) [†]	J ^{π#}	XREF	Comments
1424.7 7	5/2	В	
1449 8		С	
1474.0 5	1/2-,3/2-	В	
1478.0 9	1/2+,3/2+	В	
1481.6 8	$1/2^+, 3/2^+$	Bc	XREF: c(1487).
1499.3 2	1/2+,3/2+	В	
1503.1 12	5/2	В	VDEE (1501)
1524.8 1	$\frac{1}{2}, \frac{3}{2}$	BC	XREF: C(1521).
1548 4 2	$\frac{3}{2}$ $\frac{1}{2^+}$ $\frac{3}{2^+}$	D D	
1567.0.2	1/2, $3/21/2^{-} 3/2^{-}$	BC	XRFF: c(1561)
1570.9.8	$1/2^+$ $3/2^+$	B	AKLI . U(1501).
1584.6.3	$1/2^+, 3/2^+$	Bc	XREF: c(1582.1589).
1600.8 <i>3</i>	$1/2^+, 3/2^+$	Bc	XREF: c(1589).
1614.5 <i>3</i>	1/2-,3/2-	В	
1618.8 <i>3</i>	$1/2^{-}, 3/2^{-}$	BC	XREF: C(1628).
1658.7 <i>3</i>	5/2+	Bc	XREF: c(1663).
1665.9? 9	$(5/2^+)$	Bc	XREF: c(1663).
1671.2 <i>3</i>	$1/2^+, 3/2^+$	Bc	XREF: c(1663,1681).
1678.1 8	$(5/2^+)$	Bc	XREF: c(1681).
1696.5 6	5/2	В	
1708.2? 12	(5/2)	BC	XREF: c(1716).
1/18.2 2	1/2 , $3/2$	BC	XREF: c(1/16).
172267	1/2, 3/2 $1/2^+, 3/2^+, 5/2^+$	BC	AKEF: $C(1/10)$. VDEE: $C(1/720)$
1752.0.2	1/2, $3/2$, $3/21/2^{-} 3/2^{-}$	BC	AREF. C(1750). YREF: C(1762)
1774 2 3	1/2, $3/21/2^+ 3/2^+$	BC	XREF. c(1702).
1787.9 [‡] 5	1/2.3/2	BC	XREF: c(1781).
$1804.7^{\ddagger}.2$	1/2-3/2-	Bc	XRFF: c(1801 1813)
182146	5/2+	BC	XREF: c(1813)
1830.7 10	$5/2^+$	Bc	XREF: c(1838).
1833.2 2	$1/2^{-}, 3/2^{-}$	Bc	XREF: c(1838).
1857.2 <i>3</i>	1/2-,3/2-	Bc	XREF: c(1863).
1864.9 <i>6</i>	$1/2^+, 3/2^+$	Bc	XREF: c(1863).
1875.7 2	1/2-,3/2-	Bc	XREF: c(1863).
1885.4 <i>4</i>	$1/2^+, 3/2^+$	Bc	XREF: c(1888).
1889.5 5	1/2-,3/2-	Bc	XREF: c(1888).
1899.4 10	5/2+	BC	XREF: c(1888).
1904.5 4	1/2,3/2	В	
1920.1 10	$1/2^{-}, 3/2^{-}, 3/2^{-}$	B	VDEE : $a(1022)$
1923.7 0	1/2, $3/21/2^{-} 3/2^{-}$	DC Rc	AREF. $c(1952)$. VDEF. $c(1032)$
1929.17	1/2, $3/21/2$ $3/2$	BC	XREF. c(1952).
1965 2 6	1/2 3/2	h	XREF b(1964)
1978.8 5	5/2+	B	
1987.2 5	$1/2^+, 3/2^+$	BC	XREF: C(1989).
2010 10		С	
2043 10		С	
2066 10		С	
2094 10		С	
2113 10		C	
2122 13		C	
2180 10		C	
2209 10		C	
2245 10		C	
2502 10		C	

¹⁵⁵Sm Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
2344 10		С	
2363 10		С	
2382 10		С	
2400 10		С	
2431 12		С	
2446 10		С	
2480 10		С	
2513 13		С	
2547 13		С	
2566 10		С	
2584 10		С	
2599 12		С	
2627 14		С	
2670 12		С	
2719 14		С	
2785 10		С	
2829 10		C	
2860 10		C	
2887 10		C	
2917 10		C	
2945 10		C	
2960 10		C	
3020 10		C	
3034 14		C	
3075 14		С	
3096 15		C	
3127 11		C	
3165 14		С	
3201 11		С	
3216 15		С	
3261 14		С	
3281 11		С	
3300 11		С	
3330 11		С	
3350 11		С	
3362 13		С	
3400 15		С	
3420 15		С	
3450 11		С	
5806.96 27	1/2+	В	E(level): neutron capture resonance energy; listed value represents the neutron binding energy. J^{π} : capture state is formed by s-wave (L=0) neutron capture on a doubly even nucleus $(J^{\pi}=0^+)$.

[†] From least-squares fit to $E\gamma$'s.

- [‡] Observed as an unresolved doublet in the capture γ -ray spectrum (1982Sc03).
- [#] For the levels above 1391 keV, the listed J^{π} values are those in 1982Sc03 and are based on the measured reduced transition probabilities of the primary γ -ray transitions in resonance-averaged neutron capture.
- ^(a) Tentatively adopted value reported in 1982Sc03 in (n,γ) with no arguments for the assigned value.
- [&] Band(A): g.s. band. $K^{\pi}=3/2^{-}$. configuration=3/2(521). A=10.70 keV, B=-6.1 eV, A₃=-7.4 eV (from 3/2⁻, 5/2⁻, 7/2⁻ and 9/2⁻ levels).
- ^{*a*} Band(B): $K^{\pi}=5/2^{+}$ band. Dominant configuration=5/2(642). A=8.60 keV, B=-4.9 eV (from 5/2^{+}, 7/2^{+} and 9/2^{+} levels).
- ^b Band(C): $K^{\pi} = 5/2^{-}$ band. configuration=5/2(523). A=10.51 keV (from $5/2^{-}$ and $7/2^{-}$ levels).
- ^c Band(D): $K^{\pi}=3/2^+$ band. Dominant configuration=3/2(651). A=9.2 keV, A₃=-0.17 keV (from 3/2⁺, 5/2⁺ and 7/2⁺ levels).

¹⁵⁵Sm Levels (continued)

Large A₃ value implied by the assumed band structure indicates presence of Coriolis mixing (with 1/2[660]). Δ' N=2 mixing (with 3/2[402]) also expected to be present in this band.

- ^{*d*} Band(E): $K^{\pi}=3/2^{-}$ band. Dominant configuration=3/2(532). A=10.4 keV, A₃=-0.30 keV (from 3/2⁻, 5/2⁻ and 7/2⁻ levels). The deduced A value is quite reasonable, although the A₃ value seems large. (Note that a B term was not included due to the lack of additional band members.).
- ^{*e*} Band(F): $K^{\pi}=1/2^{-}$ band. Conf=1/2(521). A=10.4 keV, B=-6.7 eV and a=-0.22 (from 1/2⁻, 3/2⁻, 5/2⁻ and 7/2⁻ levels). Note that the decoupling parameter implied by this assignment of band members is negative. For a pure 1/2[521] Nilsson state, the decoupling parameter is expected to be positive (and ≈ 0.8 in this mass region).
- ^{*f*} Band(G): $K^{\pi}=3/2^+$ band. Dominant configuration= $3/2(402)^+$... The small A-value ($\approx 3.3 \text{ keV}$) implied by the $3/2^+$, $5/2^+$ level spacing indicates strong mixing with other positive-parity bands.
- ^g Band(H): $K^{\pi}=1/2^+$ band. Conf=1/2(400). A=15.05 keV, a=+0.431 (from $1/2^+$, $3/2^+$ and $5/2^+$ levels).
- ^h Band(I): $K^{\pi}=1/2^{-}$ band. Conf=1/2(530). A=7.90 keV, a=-0.362 (from $1/2^{-}$, $3/2^{-}$ and $5/2^{-}$ band members).
- ^{*i*} Band(J): $K^{\pi}=3/2^+$ band. Probable $K^{\pi}=0^-$ octupole vibration built on g.s. band. A=9.55 keV (from $3/2^+$ and $5/2^+$ levels).
- j Band(K): K^{π}=1/2⁺ band. Conf=1/2(660) ?

						Adopted Le	evels, Gammas (co	ontinued)	
							$\gamma(^{155}\text{Sm})$		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{b}}$	Comments
16.5467	5/2+	16.547 10	100	0.0	3/2-	E1		6.74	α (L)=5.30 8; α (M)=1.163 17 α (N)=0.247 4; α (O)=0.0285 4; α (P)=0.000779 11 B(E1)(W.u.)=2.48×10 ⁻⁶ 45 Mult.: also from α (M)exp in ²³⁹ Pu(n,F γ):isomer (2010Si03)
53.0338	5/2-	53.033 2	100	0.0	3/2-	M1+E2	0.167 4	10.99	$\alpha(K)=8.79 \ 13; \ \alpha(L)=1.73 \ 4; \ \alpha(M)=0.380 \ 8 \ \alpha(N)=0.0852 \ 16; \ \alpha(Q)=0.01209 \ 22; \ \alpha(P)=0.000565 \ 8$
76.3007	7/2+	59.753 1	100	16.5467	5/2+	M1+E2	0.218 +15-16	7.88 13	$\alpha(K) = 0.20$ 9; $\alpha(L) = 1.32$ 6; $\alpha(M) = 0.291$ 14 $\alpha(K) = 0.05$ 3; $\alpha(L) = 0.001$ 4; $\alpha(P) = 0.00335$ 6
127.6982	7/2-	74.664 1	100 5	53.0338	5/2-	M1+E2	0.205 +19-20	4.04	$\alpha(K) = 0.005$ 5; $\alpha(L) = 0.503$ 24; $\alpha(K) = 0.130$ 6 $\alpha(K) = 0.002$ 12; $\alpha(D) = 0.00410$ 15; $\alpha(D) = 0.000208$ 3
		111.154 2	9.08 91	16.5467	5/2+	E1		0.207	$\alpha(\mathbf{K}) = 0.0252 \ 12, \ \alpha(\mathbf{C}) = 0.00419 \ 13, \ \alpha(\mathbf{I}) = 0.00208 \ 3$ $\alpha(\mathbf{K}) = 0.1746 \ 25; \ \alpha(\mathbf{L}) = 0.0253 \ 4; \ \alpha(\mathbf{M}) = 0.00542 \ 8$ $\alpha(\mathbf{N}) = 0.001210 \ 17; \ \alpha(\mathbf{O}) = 0.0001718 \ 24;$ $\alpha(\mathbf{P}) = 8.50 \times 10^{-6} \ 12$
		127.698 <i>1</i>	16.0 10	0.0	3/2-	E2		0.977	$\alpha(\Gamma) = 0.595 10^{-12}$ $\alpha(K) = 0.590 9; \alpha(L) = 0.301 5; \alpha(M) = 0.0692 10^{-5}$ $\alpha(N) = 0.01521 22; \alpha(D) = 0.00105 2; \alpha(D) = 2.64 \times 10^{-5} 4$
152.4190	9/2+	76.118 <i>1</i>	100 12	76.3007	7/2+	M1		3.71	$\alpha(K) = 0.0152122, \alpha(G) = 0.001555, \alpha(F) = 2.04\times10^{-4}$ $\alpha(K) = 3.145; \alpha(L) = 0.4477; \alpha(M) = 0.096014$ $\alpha(K) = 0.02183; \alpha(G) = 0.003265; \alpha(F) = 0.0002013$
220.6842	9/2-	135.873 <i>5</i> 92.986 <i>1</i>	14.8 22 100 <i>16</i>	16.5467 127.6982	5/2 ⁺ 7/2 ⁻	M1		2.08	$\alpha(K)=1.764\ 25;\ \alpha(L)=0.250\ 4;\ \alpha(M)=0.0538\ 8$ $\alpha(K)=0.01219\ 17;\ \alpha(Q)=0.00183\ 3;\ \alpha(P)=0.0001126\ 16$
		144.382 <i>15</i> 167.650 <i>5</i>	25 <i>5</i> 56 8	76.3007 53.0338	7/2 ⁺ 5/2 ⁻				
250.5	11/2+	98.3 [#] 174 [#]		152.4190 76.3007	9/2 ⁺ 7/2 ⁺				
337.2	$(11/2^{-})$	116.5 [#] 184.8 [#]		220.6842	$9/2^{-}$				
358.8	13/2+	108.3#		250.5	$11/2^+$				
426.419	5/2-	206.6 [#] 298.79 <i>3</i> 350.114 <i>3</i>	1.5 <i>5</i> 24.8 <i>20</i>	152.4190 127.6982 76.3007	9/2+ 7/2- 7/2+	E1		0.01001	α(K)=0.00855 12; α(L)=0.001152 17; α(M)=0.000246 4
									$\alpha(N) = 5.54 \times 10^{-5} 8; \alpha(O) = 8.16 \times 10^{-6} 12; \alpha(P) = 4.75 \times 10^{-7} 7$
		409.873 2	100 6	16.5467	5/2+	E1		0.00684	$\alpha(K) = 0.00585 \ 9; \ \alpha(L) = 0.000782 \ 11; \ \alpha(M) = 0.0001667 \ 24 \\ \alpha(N) = 3.76 \times 10^{-5} \ 6; \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \\ 5 \ \alpha(O) = 5.56 \times 10^{-6} \ 8; \ \alpha(P) = 3.28 \times 10^{-7} \$
500.002	7/2-	347.580 4	51 8	152.4190	9/2+	(E1)		0.01019	$\alpha(K)=0.00870 \ 13; \ \alpha(L)=0.001173 \ 17; \ \alpha(M)=0.000250 \ 4$ $\alpha(N)=5.64\times10^{-5} \ 8; \ \alpha(O)=8.31\times10^{-6} \ 12;$
		423.704 4	100 7	76.3007	7/2+	(E1)		0.00632	$\alpha(F) = 4.84 \times 10^{-7}$ $\alpha(K) = 0.00541 \ 8; \ \alpha(L) = 0.000722 \ 11; \ \alpha(M) = 0.0001539 \ 22$

 \neg

From ENSDF

 $^{155}_{62}\mathrm{Sm}_{93}$ -7

					1	Adopted Le	evels, Gammas (o	continued)	
						$\gamma(1)$	⁵⁵ Sm) (continued	<u>d)</u>	
E _i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{b}}$	Comments
538.03	(11/2 ⁻)	179.2 [@] 2	8 [@] 4	358.8	13/2+	[E1]		0.0567	$\alpha(N)=3.47\times10^{-5} 5; \alpha(O)=5.13\times10^{-6} 8; \alpha(P)=3.04\times10^{-7} 5$ $\alpha(K)=0.0482 7; \alpha(L)=0.00672 10; \alpha(M)=0.001436 21$ $\alpha(N)=0.000322 5; \alpha(O)=4.66\times10^{-5} 7; \alpha(P)=2.52\times10^{-6} 4$ B(E1)(Wu)=2.6×10^{-9} + 13-11
		287.5 [@] 2	15 [@] 4	250.5	11/2+	[E1]		0.01639	$\alpha(K)=0.01398\ 20;\ \alpha(L)=0.00190\ 3;\ \alpha(M)=0.000406\ 6$ $\alpha(N)=9.13\times10^{-5}\ 13;\ \alpha(O)=1.340\times10^{-5}\ 19;$ $\alpha(P)=7.66\times10^{-7}\ 11$ B(E1)(Wu)=1.18\times10^{-9}\ 31
		385.6 [@] 2	100 [@] 9	152.4190	9/2+	[E1]		0.00791	$\alpha(K)=0.00676 \ 10; \ \alpha(L)=0.000907 \ 13; \ \alpha(M)=0.000193 \ 3 \\ \alpha(N)=4.36\times10^{-5} \ 7; \ \alpha(O)=6.44\times10^{-6} \ 9; \ \alpha(P)=3.79\times10^{-7} \ 6 \\ B(E1)(W.u.)=3.28\times10^{-9} \ +32-29$
595.1	(9/2-)	344.6 [#] 442.7 [#]		250.5 152.4190	$11/2^+$ 9/2 ⁺				
617.5440	3/2+	564.507 4	19.2 <i>12</i>	53.0338	5/2 ⁻	E1		0.00329	α (K)=0.00282 4; α (L)=0.000372 6; α (M)=7.91×10 ⁻⁵ 11 α (N)=1.79×10 ⁻⁵ 3; α (O)=2.66×10 ⁻⁶ 4; α (P)=1.609×10 ⁻⁷
		600.993 4	100 6	16.5467	5/2+	M1+E2	1.04 +43-30	0.0107 10	$\alpha(K) = 0.0090 \ 9; \ \alpha(L) = 0.00130 \ 9; \ \alpha(M) = 0.000281 \ 18$ $\alpha(N) = 6 \ 3 \times 10^{-5} \ 4; \ \alpha(O) = 9 \ 4 \times 10^{-6} \ 7; \ \alpha(B) = 5 \ 5 \times 10^{-7} \ 6$
		617.549 7	36.0 22	0.0	3/2-	E1		0.00271	$\alpha(\mathbf{K}) = 0.3 \times 10^{-4}, \ \alpha(\mathbf{C}) = 0.4 \times 10^{-7}, \ \alpha(\mathbf{I}) = 0.3 \times 10^{-5} \ 9$ $\alpha(\mathbf{K}) = 0.00232 \ 4; \ \alpha(\mathbf{L}) = 0.000305 \ 5; \ \alpha(\mathbf{M}) = 6.49 \times 10^{-5} \ 9$ $\alpha(\mathbf{N}) = 1.466 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 2.18 \times 10^{-6} \ 3;$ $\alpha(\mathbf{P}) = 1.329 \times 10^{-7} \ 19$
658.388	5/2+	530.685 15	28.9 23	127.6982	7/2-	(E1)		0.00377	$\alpha(K) = 0.003235; \alpha(L) = 0.0004276; \alpha(M) = 9.09 \times 10^{-5} 13$ $\alpha(K) = 0.003235; \alpha(L) = 0.0004276; \alpha(M) = 9.09 \times 10^{-5} 13$
		582.072 5	100 6	76.3007	7/2+	M1		0.01469	$\alpha(\mathbf{K})=2.03\times10^{-5}; \alpha(\mathbf{C})=3.03\times10^{-5}; \alpha(\mathbf{F})=1.04\times10^{-5}; \alpha(\mathbf{K})=0.01254 \ 18; \alpha(\mathbf{L})=0.001698 \ 24; \alpha(\mathbf{M})=0.000363 \ 5 \\ \alpha(\mathbf{N})=8.24\times10^{-5} \ 12; \alpha(\mathbf{C})=1.239\times10^{-5} \ 18; \\ \alpha(\mathbf{P})=7.83\times10^{-7} \ 11$
		605.381 <i>14</i> 641.88 <i>3</i> 658.396 <i>9</i>	21.1 <i>21</i> 42 <i>3</i> 39 <i>3</i>	53.0338 16.5467 0.0	5/2 ⁻ 5/2 ⁺ 3/2 ⁻				
736.933	$(7/2^+)$	584.511 ^c 11 660.640 21	135 <i>14</i> 78 <i>12</i>	152.4190 76.3007	9/2 ⁺ 7/2 ⁺				
778 1473	3/2-	683.88 <i>5</i> 119 758 <i>2</i>	100 <i>16</i> 3 6 4	53.0338 658 388	$5/2^{-}$ $5/2^{+}$	E1		0 1688	$\alpha(K) = 0.1427.20; \alpha(L) = 0.0206.3; \alpha(M) = 0.00440.7$
, 10.1115	5/2	117.150 2	5.0 F	000.000	5/2	21		0.1000	$\alpha(\mathbf{n}) = 0.000982 \ 14; \ \alpha(\mathbf{O}) = 0.0001400 \ 20; \ \alpha(\mathbf{P}) = 7.09 \times 10^{-6}$
		160.603 <i>1</i>	11.7 7	617.5440	3/2+	E1		0.0761	$\alpha(K) = 0.0646 \ 9; \ \alpha(L) = 0.00908 \ 13; \ \alpha(M) = 0.00194 \ 3$ $\alpha(K) = 0.000425 \ 6; \ \alpha(D) = 6.27 \times 10^{-5} \ 0; \ \alpha(D) = 2.22 \times 10^{-6} \ 5$
		725.123 7	72 4	53.0338	5/2-	M1		0.00854	$\alpha(N) = 0.000435 \text{ o}; \ \alpha(O) = 0.27 \times 10^{-5} \text{ g}; \ \alpha(P) = 3.35 \times 10^{-6} \text{ S}$ $\alpha(K) = 0.00729 \text{ 11}; \ \alpha(L) = 0.000980 \text{ 14}; \ \alpha(M) = 0.000210 \text{ 3}$ $\alpha(N) = 4.75 \times 10^{-5} \text{ 7}; \ \alpha(O) = 7.15 \times 10^{-6} \text{ 10}; \ \alpha(P) = 4.54 \times 10^{-7} \text{ G}$
		761.631 20	28.9 17	16.5467	5/2+				/

 ∞

From ENSDF

Т

$\gamma(^{155}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{b}}$	Comments
778.1473	3/2-	778.156 8	100 6	0.0	3/2-	M1+E2	1.1 +8-4	0.0056 7	$\alpha(K)=0.0048\ 6;\ \alpha(L)=0.00067\ 7;\ \alpha(M)=0.000143\ 15$ $\alpha(N)=3.2\times10^{-5}\ 4;\ \alpha(O)=4.8\times10^{-6}\ 6;\ \alpha(P)=2.9\times10^{-7}\ 4$
819.882	1/2-	819.880 5	100	0.0	3/2-	M1+E2	1.5 +7-4	0.0046 4	$\alpha(N) = 2.67 \times 10^{-5} \ 18; \ \alpha(O) = 4.0 \times 10^{-6} \ 3; \alpha(P) = 2.36 \times 10^{-7} \ 22 \alpha(K) = 0.0039 \ 4; \ \alpha(L) = 0.00055 \ 4; \ \alpha(M) = 0.000118 \ 8$
821.307	$5/2^{-}$	745.004 12	50 4	76.3007	$7/2^{+}$				$u(\mathbf{R}) = 0.000577, u(\mathbf{R}) = 0.00005577, u(\mathbf{R}) = 0.00011000$
		804.758 <i>19</i>	100 6	16.5467	5/2+	(E1)		1.57×10^{-3}	$\alpha(\mathbf{K})=0.001347 \ 19; \ \alpha(\mathbf{L})=0.0001747 \ 25; \\ \alpha(\mathbf{M})=3.71\times10^{-5} \ 6 \\ \alpha(\mathbf{M})=3.61\times10^{-6} \ 10^$
									$\alpha(N) = 8.40 \times 10^{-6} 12; \ \alpha(O) = 1.254 \times 10^{-6} 18; \ \alpha(P) = 7.77 \times 10^{-8} 11$
844.115	3/2-	791.083 7	100 6	53.0338	5/2-	M1		0.00691	$\alpha(K)=0.00590 \ 9; \ \alpha(L)=0.000791 \ 11; \ \alpha(M)=0.0001690 \ 24$
									$\alpha(N)=3.83\times10^{-5} 6$; $\alpha(O)=5.77\times10^{-6} 8$; $\alpha(P)=3.67\times10^{-7} 6$
		827.61 [°] 10	7.1 14	16.5467	5/2+				
		844.108 12	89 5	0.0	3/2-	M1,E2		0.0047 12	$\alpha(\mathbf{K})=0.0040 \ 11; \ \alpha(\mathbf{L})=0.00056 \ 12; \ \alpha(\mathbf{M})=0.000120 \ 25 \\ \alpha(\mathbf{N})=2.7\times10^{-5} \ 6; \ \alpha(\mathbf{O})=4.0\times10^{-6} \ 9; \ \alpha(\mathbf{P})=2.46\times10^{-7} \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\ $
865.850	3/2+	812.819 17	45 5	53.0338	5/2-	(E1)		1.54×10 ⁻³	$\alpha(K)=0.001321 \ 19; \ \alpha(L)=0.0001712 \ 24; \alpha(M)=3.64\times10^{-5} \ 5 \alpha(N)=8.23\times10^{-6} \ 12; \ \alpha(O)=1.230\times10^{-6} \ 18; \alpha(P)=7 \ 62\times10^{-8} \ 11$
		865.843 9	100 6	0.0	3/2-	E1		1.36×10 ⁻³	$\alpha(K) = 0.001167 \ 17; \ \alpha(L) = 0.0001509 \ 22; \alpha(M) = 3.21 \times 10^{-5} \ 5 \alpha(N) = 7.25 \times 10^{-6} \ 11; \ \alpha(O) = 1.084 \times 10^{-6} \ 16; \alpha(P) = 6.74 \times 10^{-8} \ 10$
882,165	$5/2^{+}$	754,459 24	98 7	127.6982	$7/2^{-}$				$u(r) = 0.74 \times 10^{-10}$
0021100	07=	829.15 4	68 8	53.0338	$5/2^{-}$				
		882.16 5	100 11	0.0	3/2-				
903.468	$(1/2)^+$	285.923 4	100 6	617.5440	3/2+	M1		0.0919	$\alpha(K)=0.0781 \ 11; \ \alpha(L)=0.01083 \ 16; \ \alpha(M)=0.00232 \ 4$ $\alpha(N)=0.000527 \ 8; \ \alpha(O)=7.91\times10^{-5} \ 11; $ $\alpha(P)=4.94\times10^{-6} \ 7$
		886.927 18	54 4	16.5467	$5/2^{+}$				
906.838	5/2-	779.131 24	100 9	127.6982	$7/2^{-}$				
		853.805 23	94 8 18 4	53.0338	5/2-				
915.527	$(1/2)^{-}$	297.990 [°] 8	3.1.5	617,5440	$3/2^+$				
710.027	(1/2)	915.490 20	100 6	0.0	3/2-	E2		0.00300	α (K)=0.00254 4; α (L)=0.000364 5; α (M)=7.83×10 ⁻⁵ 11 α (N)=1.768×10 ⁻⁵ 25; α (O)=2.61×10 ⁻⁶ 4;
930 644	3/2-	272 250 ^C 15	214	658 388	5/2+				$\alpha(P)=1.50/\times 10^{-1}/21$
750.044	5/2	212.230 13	2.1 7	050.500	512				

9

					Adop	ted Levels,	Gammas (cor	tinued)	
						γ (¹⁵⁵ Sm	n) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{b}}$	Comments
930.644	3/2-	877.600 15	100 6	53.0338	5/2-	E2+M1	1.6 +11-5	0.0039 4	α (K)=0.0033 4; α (L)=0.00046 4; α (M)=9.9×10 ⁻⁵
		930.654 11	55 3	0.0	3/2-	M1		0.00467	8 $\alpha(N)=2.24\times10^{-5} \ 18; \ \alpha(O)=3.3\times10^{-6} \ 3; \ \alpha(P)=1.99\times10^{-7} \ 21$ $\alpha(K)=0.00400 \ 6; \ \alpha(L)=0.000533 \ 8; \ \alpha(M)=0.0001137 \ 16$ $\alpha(N)=2.58\times10^{-5} \ 4; \ \alpha(O)=3.89\times10^{-6} \ 6; \ \alpha(P)=2.47\times10^{-7} \ 4$
962.46	7/2-	80.238 ^d 2	100 10	882.165	5/2+	E1		0.500	α (K)=0.419 6; α (L)=0.0635 9; α (M)=0.01360 19 α (N)=0.00302 5; α (O)=0.000422 6; α (P)=1.97×10 ⁻⁵ 3
968.093	(3/2)+	741.79 <i>3</i> 909.36 <i>6</i> 968.090 <i>20</i>	64 8 77 8 100	220.6842 53.0338 0.0	9/2 ⁻ 5/2 ⁻ 3/2 ⁻	(E1)		1.10×10 ⁻³	$\alpha(K)=0.000943 \ 14; \ \alpha(L)=0.0001213 \ 17; \ \alpha(M)=2.58\times10^{-5} \ 4 \ \alpha(N)=5.83\times10^{-6} \ 9; \ \alpha(O)=8.73\times10^{-7} \ 13; \ \alpha(D)=5.45\times10^{-8} \ 8 \ 10^{-8} \ 8 \ 10^{-8} \ 10^{-8$
984.452?	(5/2-)	366.909 ^c 4 856 67 5	83 8 100 <i>11</i>	617.5440 127.6982	$\frac{3}{2^{+}}$	&			$u(r) = 3.43 \times 10 = 0$
1010.926	5/2+	584.511 ^{<i>c</i>} 11 883.26 4 1010 99 4	41 <i>4</i> 100 <i>10</i> 100 <i>8</i>	426.419 127.6982 0.0	$5/2^{-}$ $7/2^{-}$ $3/2^{-}$				
1106.671	3/2+	191.156 <i>10</i> 240.82 <i>3</i> 1053.598 <i>22</i> 1090.20 <i>20</i> 1106 640 <i>24</i>	4.1 8 5.5 8 49 4 8.5 17 100 6	915.527 865.850 53.0338 16.5467	$(1/2)^{-}$ $3/2^{+}$ $5/2^{-}$ $5/2^{+}$ $3/2^{-}$				
1154.415	5/2+	272.250 ^c 15 1026.70 8	22 <i>4</i> 100 <i>10</i>	882.165 127.6982	5/2 ⁺ 7/2 ⁻				
1168.746	3/2-	302.888 <i>14</i> 551.189 <i>12</i> 1152.16 <i>20</i>	33 8 100 <i>10</i> 54 <i>11</i>	865.850 617.5440 16.5467	3/2 ⁺ 3/2 ⁺ 5/2 ⁺				
1282.438	1/2+,3/2+	297.990 [°] 8 351.795 7	23 <i>3</i> 54 5	984.452? 930.644	(5/2 ⁻) 3/2 ⁻	(E1)		0.00989	$\alpha(K)=0.00845 \ 12; \ \alpha(L)=0.001138 \ 16; \ \alpha(M)=0.000243 \ 4 \ \alpha(N)=5.47\times10^{-5} \ 8; \ \alpha(O)=8.06\times10^{-6} \ 12; \ \alpha(D)=4.70\times10^{-7} \ 7$
		366.909 ^{<i>c</i>} 4 438.324 <i>5</i> 664.868 <i>1</i> 5	54 5 48 4 100 8	915.527 844.115 617.5440	$(1/2)^{-}$ $3/2^{-}$ $3/2^{+}$	&			$\alpha(r) = 4.70 \times 10^{-10} r$
1327.528	5/2+	483.411 5	100 7	844.115	3/2-	(E1)		0.00466	α (K)=0.00399 6; α (L)=0.000529 8; α (M)=0.0001127 16

10

 $^{155}_{62}\mathrm{Sm}_{93}$ -10

From ENSDF

Т

γ (¹⁵⁵Sm) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Comments
						$\alpha(N)=2.54\times10^{-5}$ 4; $\alpha(O)=3.77\times10^{-6}$ 6; $\alpha(P)=2.26\times10^{-7}$ 4
1327.528	$5/2^{+}$	669.29 10	18 4	658.388	$5/2^{+}$	
		827.61 ^C 10	35 7	500.002	$7/2^{-}$	
		1327.84 14	71 7	0.0	$3/2^{-}$	
1362.134	$3/2^{+}$	193.382 7	12.2 18	1168.746	$3/2^{-}$	
		351.226 13	15.0 23	1010.926	$5/2^{+}$	
		935.55 <i>13</i>	26 7	426.419	$5/2^{-}$	
		1309.14 18	57 5	53.0338	$5/2^{-}$	
		1345.78 11	100 10	16.5467	$5/2^{+}$	
5806.96	$1/2^{+}$	4876.3 ^a 3	62.3 ^a 30	930.644	$3/2^{-}$	
		4891.12 ^a 23	2.73 ^a 35	915.527	$(1/2)^{-}$	
		4941.6 ^a 3	2.12 ^a 27	865.850	$3/2^{+}$	
		4963.11 ^a 23	1.19 ^a 15	844.115	$3/2^{-}$	
		4987.06 ^a 10	100 ^{<i>a</i>} 5	819.882	$1/2^{-}$	
		5028.86 ^a 10	19.6 ^a 12	778.1473	$3/2^{-}$	
		5790.22 ^a 17	1.27 ^a 12	16.5467	$5/2^{+}$	
		5807.10 ^a 14	2.31 ^{<i>a</i>} 15	0.0	$3/2^{-}$	
† From	154 Sm(r	n v) dataset unle	ss otherwise n	oted		
‡ From	154 Sm(1	$(1, \gamma)$ dataset (100	$2S_{0}$	ouu.		
· FIOIII	3111(1 154 c	(190) uataset (190)	23005).			

[#] From ¹⁵⁴Sm(d, $\gamma\gamma$) dataset. [@] From ²³⁹Pu(n, $f\gamma$):isomer dataset. [&] $\alpha(K)exp<0.03$ allows mult=E1 or E2 for the doubly placed 366.9 γ . ^a Primary capture γ rays from ¹⁵⁴Sm(n, γ) dataset. These transitions are expected to represent only a small fraction of the total γ intensity deexciting this state.

11

^b Additional information 1.
 ^c Multiply placed.
 ^d Placement of transition in the level scheme is uncertain.

 $^{155}_{\ 62}Sm_{93}$

 $^{155}_{62}Sm_{93}$

14

 $^{155}_{62}\mathrm{Sm}_{93}$ -14

From ENSDF

 $^{155}_{62}\mathrm{Sm}_{93}$ -14

Adopted Levels, Gammas

¹⁵⁵₆₂Sm₉₃

Band(K): $K^{\pi}=1/2^{+}$ band

5/2+ 1327.528

1/2+,3/2+ 1282.438

Band(J): $K^{\pi}=3/2^+$ band

5/2+ 1154.415

¹⁵⁵₆₂Sm₉₃