²³⁹Pu(n,Fγ):isomer 2010Si03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

Compiled for the XUNDL database by B. Singh (McMaster) and by K. Zuber (IFJ, PAN, Krakow).

2010Si03: masses 155, 153, and 151 fission fragments were observed using the Lohengrin mass spectrometer at the high-flux reactor of the Institute Laue-Langevin, Grenoble. ¹⁵⁵Sm and other mass 155 nuclei were produced by thermal-neutron induced fission of a 0.32 mg/cm²,7×0.5 cm² ²³⁹Pu target and mass spectrometer selecting recoiling fragments. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t) using two Clover Ge detectors. Conversion electrons were detected by two Si(Li) detectors. Theoretical calculations done with the quasiparticle rotor model (QPRM).

Level scheme based on the $\gamma\gamma$ and $\gamma\gamma$ -delayed γ ray coinc. data.

Two new isomeric states were measured and placed in ¹⁵⁵Sm level scheme (see table below). A 29.7-keV γ ray measured in a delayed coin spectrum with A=155 ions gives a half-life of 1.3 μ s 2 for a third isomer in ¹⁵⁵Sm, or in ¹⁵⁵Pm or ¹⁵⁵Nd.

¹⁵⁵Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments			
0.0	3/2-		E(level): 3/2[521], dominant configuration from QPRM calculations.			
16.5 [#] 10	5/2+	2.8 µs 5	$T_{1/2}$: from fitting an exponential function to the time spectra of delayed 16.5 keV transition (2010Si03).			
76.4 [#] 11	7/2+					
152.7 [#] 11	9/2+					
251.0 [#] 11	$11/2^{+}$					
359.2 [#] 11	$13/2^{+}$					
538.4 11	(11/2 ⁻)	1.00 µs 8	J^{π} : $\geq 11/2$ from level scheme arguments; $(11/2^{-})$ based on QPRM calculations (2010Si03). T _{1/2} : from fitting an exponential decay function to the time spectra, sum of 385.6+287.5+76.5+60.0 γ rays +K α +K β x rays in the delayed cascade from the 538.6 keV isomer (2010Si03).			
			E(level): dominant configuration=11/2[505].			

[†] From least-squares fit to $E\gamma's$.

[‡] Unless noted otherwise, from Adopted Levels, Gammas dataset.

[#] Band(A): 5/2[642] band (dominant configuration from QPRM calculations).

$\gamma(^{155}\text{Sm})$

Based on their measured relative γ -ray intensities and internal conversion coefficients, 2010Si03 calculated total transition intensities and deduced experimental branching ratios that were compared with those calculated by the quasiparticle rotor model (QPRM).

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f J'_f	$\frac{\pi}{f}$ Mult.	Comments
16.5		16.5	5/2+	0.0 3/2	- E1	α (M)exp=1.1 3 (2010Si03) α (M)=1.17 5 Mult.: from α (M)exp.
60.0 2	11 <i>1</i>	76.4	$7/2^{+}$	16.5 5/2	+	
76.5 2	18 2	152.7	$9/2^{+}$	76.4 7/2	+	
98.3 [#] 2	71	251.0	$11/2^{+}$	152.7 9/2	+	
108.0 [#] 2	11	359.2	$13/2^{+}$	251.0 11/	2+	
136.1 [#] 2 179.2 2	6 3 6 3	152.7 538.4	9/2 ⁺ (11/2 ⁻)	16.5 5/2 359.2 13/	+ 2 ⁺ [E1]	

Continued on next page (footnotes at end of table)

239 Pu(n,F γ):isomer 2010Si03 (continued)

$\gamma(^{155}\text{Sm})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.
206.5 [#] 2	4 1	359.2	$13/2^{+}$	152.7	9/2+	
287.5 2	11 3	538.4	$(11/2^{-})$	251.0	$11/2^{+}$	[E1]
385.6 2	75 7	538.4	$(11/2^{-})$	152.7	9/2+	[E1]

[†] Typical uncertainty is stated as 0.2 keV in 2010Si03. [‡] Intensities relative to 100 for total intensity of 76.5 γ according to 2010Si03. The placement of most of the weak transitions is uncertain. [#] Placement of transition in the level scheme is uncertain.

¹⁵⁵₆₂Sm₉₃

²³⁹Pu(n,Fγ):isomer 2010Si03</sup>

¹⁵⁵₆₂Sm₉₃