Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

 $Q(\beta^{-})=-8375$ (syst) 299; S(n)=10901 (syst) 197; S(p)=-98 8; $Q(\alpha)=5803$ 3 2017Wa10 $Q(\varepsilon)=7.96\times10^3 \ 3$; $S(2n)=2.031\times10^{4(syst)} \ 197$; $S(2p)=3150 \ 8$; $Q(\varepsilon p)=4593 \ 16$ 2017Wa10

The two heavy-ion induced reaction dataset are in relatively good agreement. Adopted here are the data from the newer

 102 Pd(58 Ni,p $\alpha\gamma$) dataset that present a more detailed level scheme. Unless noted otherwise all data are from 102 Pd(58 Ni,p $\alpha\gamma$) dataset (2016Ca42).

¹⁵⁵Lu Levels

Cross Reference (XREF) Flags

A ¹⁵⁹ Ta	α	decay	(518	ms)
---------------------	---	-------	------	-----

¹⁵⁹Ta α decay (1.04 s) ¹⁰²Pd(⁵⁸Ni,3p2n γ) ¹⁰²Pd(⁵⁸Ni,p $\alpha\gamma$) В

С

D

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
20 6	<u>11/2</u> -	11/2 68 ms 2 138 ms 9	A D	wa=90 2; %ε+%β ⁺ =10 2 %α: Weighted average of 81 9 (1996Pa01) and 90 2 (1997Da07). This is the same as that reported by 1997Da07. Other: 79 4 (1979Ho10). Eα to g.s. of ¹⁵¹ Tm: 5651.3 21, weighted average of: 5655 5 (2018Pa37), 5655 5 (1996Pa01), 5648 5 (1993Li34), 5648 5 (1991To08), 5647 5 (1989Ho12), 5656 6 (1981HoZM). Unc for 2018Pa37 was assigned by evalutor. One can see that 2018Pa37 and 1996Pa01 give identical values and 2018Pa37 show no evidence of real measurement for this branch, whence the possibility that they quoted this value from 1996Pa01, although on Fig. 1 of 2018Pa37 showing the α decay scheme of both ¹⁵⁵ Lu (11/2 ⁻) g.s. and (25/2 ⁻) isomer they state that they show their measured figures. If one excludes 5655 5 of 2018Pa37 from weighted avarage one gets 5650.5 23 which by rounding off gives the same value as the one including it. Also 2018Pa37 and 1996Pa01 are done by different groups although the first author is the same. Same first authorship with different groups characterizes 1989Ho12 and 1981HoZM, reason for which the results of both references were included in the weighted average. T _{1/2} : weighted average of: 67 ms 7 (1991To08); 70 ms 6 (1979Ho10); 70 ms 2 (1996Pa01); 63 ms 2 (1997Da07); and 70 ms 6 (1989Ho12). 1991To09, from the same group as 1991To08, report T _{1/2} =66 ms 7. 1996Pa01 actually report an uncertainty of 1 ms for their value, but the evaluator has increased it to 2 ms so that it will contribute no more than 50% to the weighted average. J [#] : member of a sequence, headed by ¹⁶⁷ Ir, of favored α transitions connecting π h _{11/2} states (1997Da07). configuration: $\pi h_{11/2} \otimes (\pi^{7}_{7/2})_{0}^{2} \dots$ $% α = 76$ 1/5; $\% e + \% \beta^{+} = 24$ 1/6 Additional information 1. % α: From 1997Da07. E(level): from the energy differences of the relevant α transitions in the α decay chain headed by ¹⁶⁷ Ir (1997Da07). 1996Pa01 report 71 keV 3 for this level
				energy. J^{π} : member of a sequence, headed by ¹⁶⁷ Ir, of favored α transitions connecting π $s_{1/2}$ states (1997Da07). $T_{1/2}$: weighted average of: 140 ms 20 (1991To09); 136 ms 9 (1996Pa01); and 150 ms 24 (1997Da07).
806.70 [‡] 20	(15/2 ⁻)		CD	configuration: $\pi h_{11/2} \otimes (\nu f_{7/2})_{2}^2$.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁵⁵Lu Levels (continued)

E(level)	J^{π^+}	T _{1/2}	XREF	Comments
1491.5 [‡] 3	$(19/2^{-})$		CD	configuration: $\pi h_{11/2} \otimes (v f_{7/2})_{4}^2$.
1780 [#] 4	(25/2 ⁻)	2.69 ms <i>3</i>	CD	 %α=99.964 6 (2018Pa37) Additional information 2. %α: from the presently established level scheme of ¹⁵⁵Lu, γ emission can take place only via E4 and/or M3 transitions. α emission becomes the most probable decay mode, confirmed by 2018Pa37 result here adopted. J^π: from the systematics of the level structure of the near-lying odd-mass N=84 nuclides (see 2001Di17, 2016Ca42) and references therein). Eα to g.s. of ¹⁵¹Tm: 7385.7 <i>34</i>, weighted average of: 7383 <i>4</i> (2018Pa37) and 7390 <i>5</i> (1996Pa01). Others: 7379 <i>15</i> (1993Li34), 7408 <i>10</i> (1981HoZM). E(level): calculated from the difference of the energies of the α transitions from this level and from the ¹⁵⁵Lu g.s. (<i>J</i>^π=11/2⁻): 7385.7 <i>34</i> – 5651.3 <i>21</i> = 1734.4 <i>40</i> (corrected for the recoil loss). T_{1/2}: weighted average of 2.71 ms <i>3</i> (1996Pa01) and 2.60 ms 7 (1989Ho12). Other: 2.7 ms <i>3</i> (1979Ho10).
+ .				configuration: $(\pi h_{11/2})^3 \otimes v f_{7/2} h_{9/2}$, with $[\pi h_{11/2}, v h_{9/2}]_{1^+}$.
1820.2+ 5	$(23/2^{-})$		CD	configuration: $\pi h_{11/2} \otimes (\nu f_{7/2})_{6}^2$.
2298.50# 20	(27/2 ⁻)		CD	Proposed as the fully aligned configuration. configuration: $\pi h_{11/2} \otimes v f_{7/2} h_{9/2}$.
2958.2 [#] 3	$(29/2^+)$		CD	configuration: $\pi h_{11/2} \otimes v f_{7/2} i_{13/2}$.
3064.5 [#] 3 3418.6 4 3445.7 4 3774.0 4	(31/2 ⁺)		D D D	configuration: $\pi h_{11/2} \otimes \nu f_{7/2} i_{13/2}$.
3861 9 4	$(35/2^+)$		ם	
4073.9 4 4633.6 5 4938.1 6 5031.8 5 5128.1 6 5285.9 6 5372.9 5 5482.8 6 5667.4 6	(37/2-)		D D D D D D D D D D	
6033.0 6			D	
6059.9? [@] 6			D	
6265.3 6			D	
6436.9? [@]			D	
7095.9? [@]			D	

[†] Values from ${}^{102}Pd({}^{58}Ni, p\alpha\gamma)$ dataset (2016Ca42) are adopted based solely on systematics of odd-A N=84 istones of ${}^{155}Lu$ and

shell model calculations. [‡] Band(A): Band based on $(11/2^-)$ g.s.. Based on $\pi h_{11/2} \otimes (\nu f_{7/2})^2$ (2016Ca42). $\Delta E \gamma'$ s not given in 2016Ca42 were adopted by evaluator in analogy with those given by authors for γ 's in Table 1 "Energy and efficiency-corrected relative intensities".

[#] Seq.(B): Cascade based on the $(25/2^-)$ isomer. [@] Level marked as uncertain in Fig. 2 "Level Scheme" of 2016Ca42 ¹⁰²Pd(⁵⁸Ni,p $\alpha\gamma$) dataset presumably because the order of the γ rays in cascade is not certain.

Adopted Levels, Gammas (continued)

$\gamma(^{155}Lu)$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
806.70 1491.5 1820.2 2298.50	(15/2 ⁻) (19/2 ⁻) (23/2 ⁻) (27/2 ⁻)	806.7 2 684.8 2 328.7 3 518.5 2	100 100 100 100	0.0 806.70 1491.5 1780	11/2 ⁻ (15/2 ⁻) (19/2 ⁻) (25/2 ⁻)	[M1]	0.0404	$\alpha(K)=0.0339\ 5;\ \alpha(L)=0.00505\ 7;$ $\alpha(M)=0.001132\ 16$ $\alpha(N)=0.000267\ 4;\ \alpha(O)=3.97\times10^{-5}\ 6;$
2958.2	(29/2+)	659.7 2	100	2298.50	(27/2 ⁻)	[E1]	0.00351	$\begin{array}{l} \alpha(\mathbf{r})=0.50207 \ 1, \alpha(\mathbf{c})=2.57\times10^{-5} \ 0, \\ \alpha(\mathbf{P})=2.49\times10^{-6} \ 4 \\ \alpha(\mathbf{K})=0.00297 \ 5; \ \alpha(\mathbf{L})=0.000420 \ 6; \\ \alpha(\mathbf{M})=9.35\times10^{-5} \ 14 \\ \alpha(\mathbf{N})=2.20\times10^{-5} \ 3; \ \alpha(\mathbf{O})=3.23\times10^{-6} \ 5; \\ \alpha(\mathbf{D})=1.03\times10^{-7} \ 2 \end{array}$
3064.5	(31/2 ⁺)	106.3 <i>1</i>	100	2958.2	(29/2+)	(M1)	3.09	$\alpha(F) = 1.95 \times 10^{-5} \text{ s}$ $\alpha(K) = 2.58 \alpha(L) = 0.398 \alpha(M) = 0.0895 13$ $\alpha(N) = 0.0211 \alpha(O) = 0.00313 \alpha(P) = 0.000193 $
3418.6 3774.0		354.2 <i>2</i> 709.2 <i>3</i>	100 100	3064.5 3064.5	(31/2 ⁺) (31/2 ⁺)			
3861.9	(35/2+)	416.2 2 443.3 2 797.5 3	9.2 5 25.0 5 100 <i>I</i>	3445.7 3418.6 3064.5	(31/2+)	[E2]	0.00625	α (K)=0.00512 8; α (L)=0.000880 13; α (M)=0.000200 3 α (N)=4.71×10 ⁻⁵ 7; α (O)=6.74×10 ⁻⁶ 10; α (D)=2.52×10 ⁻⁷ 5
4073.9	(37/2 ⁻)	212.1 2	100.0 6	3861.9	(35/2+)	[E1]	0.0492	$\alpha(P)=3.52\times10^{-5} \text{ s}^{-5}$ $\alpha(K)=0.0411 6; \ \alpha(L)=0.00629 9;$ $\alpha(M)=0.001408 20$ $\alpha(N)=0.000329 5; \ \alpha(O)=4.67\times10^{-5} 7;$ $\alpha(P)=2.45\times10^{-6} 4$
		299.8 2	21.7 4	3774.0				
4633.6		559.5 2	100	4073.9	$(37/2^{-})$			
4938.1		307.9.2	100	3801.9 4633.6	$(35/2^{+})$			
5051.0		958.5 3	26.9 12	4073.9	$(37/2^{-})$			
5128.1		1054.2 4	100	4073.9	$(37/2^{-})$			
5285.9		1212.0 4	100	4073.9	$(37/2^{-})$			
5372.9		341.1 2	100	5031.8				
5482.8		544.7 2	100	4938.1				
5007.4		381.5 2	100	5285.9				
6059.0		687 0 3	100	5372 9				
6265.3		1233.5 4	100 3	5031.8				
6436.9?		377	100	6059.92				
7095.9?		659 [‡]	100	6436.9?				

[†] Additional information 3.
 [‡] Placement of transition in the level scheme is uncertain.

 $^{155}_{71}Lu_{84}$

4

Adopted Levels, Gammas

¹⁵⁵₇₁Lu₈₄