			Туре	Author	History Citation	Literature Cutoff Date						
			Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019						
$Q(\beta^{-}) = -3830$ $Q(\varepsilon) = 3116$ 17	18; S(n)=	=9472 <i>19</i> ; S 17170 <i>19</i> ; S	(p)=2935 <i>19</i> ; (2p)=9304 <i>19</i>	$Q(\alpha) = 3159 \ I_{0}$ 2017Wa10	8 2017Wa10							
					¹⁵⁵ Ho Levels							
Band structu Band 3 deca Band 5 deca Quasiparticl A: $vi_{13/2}$, α = B: $vi_{13/2}$, α = E: $v(f_{7/2}/h_{9/2})$ F: $v(f_{7/2}/h_{9/2})$ Ap: $\pi h_{11/2}$, Bp: $\pi h_{11/2}$, Cp: $\pi h_{11/2}$, Cp: $\pi h_{11/2}$, Ep: N _{osc} =4, Fp: N _{osc} =4, B(M1)/B(E2) pure dipol transitions	ares are the arys by E2 by by E2 e labeling =+1/2. =-1/2. $\alpha =-1/2^{-1}$ $\alpha =-1/2^{-1}$ $\alpha =-1/2^{-2}$ $\alpha =-1/2^{-2}$ $\alpha =-1/2^{-2}$ $\alpha =-1/2^{-2}$ $\alpha =-1/2$. $\alpha =-1/2$.	nose of 2015 transitions transitions scheme: 2. 2. 2. 3)[Iy(M1)/Iy ning ratio Iy	iRe03 (in ¹²⁴ Si to band 1, whe to band 3, whe (E2)][$E\gamma(\Delta J=2)$ ($\Delta J=1$)/ $I\gamma(\Delta J=2)$	$h(^{37}\text{Cl},6n\gamma)$ d nce for band nce for band $h(^{37}\text{Cl},6n\gamma)$ d hoce for band $h(^{37}\text{Cl},6n\gamma$	lataset). 3 π =+. 5 π =+. ³], where E γ is in MeV mined separately from	V. The $\Delta J=1$ transitions were assumed to be a coincidence spectra with gates on relevant						
				Cross	Reference (XREF) Fla	ags						
				A B C	¹⁵⁵ Er ε decay ¹²⁴ Sn(³⁷ Cl,6nγ) (HI,xnγ)							
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments						
0.0#	5/2+	48 min 2	ABC	$%ε+%β^+=100$ μ=+3.51 3; Q=+1.56 12 J ^π : atomic beam (1969Ek01). M1 transition from 7/2 ⁺ state indicates that $π=+$. Probable configuration=($π$ 5/2[402]). T _{1/2} : weighted average of: 48 min 2 (1972To07), 48 min 2 (1967Av03), 46 min 3 (1960Da14). Other measurements: 1966La11, 1959Ka08. μ: From the compilation 2014StZZ. Q: From the compilation 2016St14. From the measured hyperfine structure using resonance-ionization spectroscopy, 1989A127 report $\Delta < r^2 > (^{155}Ho) = -0.949 \text{ fm}^2 2$. In an evaluation of nuclear rms charge radii, 2013An02 report $< r^2 > ^{1/2} = 5.1076 \text{ fm} 326$.								
110.14 [@] 6	$7/2^{+}$	<0.7 ns	ABC	π : M2 from	$11/2^{-}$ level indicates J	$\pi^{\pi}=7/2^{+}$ through 15/2 ⁺ . M1 to g.s. requires						

 J^{π} : M2 from 11/2⁻ level indicates $J^{\pi}=7/2^+$ through 15/2⁺. M1 to g.s. requires $J^{\pi}=7/2^+$.

 $T_{1/2}$: from 1990AbZS, 1990AbZW, ¹⁵⁵Er ε decay.

0.88 ms 8 **ABC** %IT=100

141.87^a 11

 $11/2^{-}$

 J^{π} : M2-M1 cascade to J=5/2, together with the T_{1/2} value of this state, indicate that J=11/2. Bandhead of h11/2-based band. The similarity of this low-energy level structure to that of the isotone ¹⁵³Tb supports the assertion that this is in fact the

Continued on next page (footnotes at end of table)

¹⁵⁵Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
			$11/2^{-}$ bandhead.
201.02.0			$T_{1/2}$: from 1979Fo11, (HI,xn γ).
201.03 9	3/2',5/2',1/2'	A	J'' : M1 to $S/2^+$ state.
230.58~ 15	9/2	ABC	J [*] : sole mode of population in in-beam studies is via an E2 transition from $13/2$; decays via an M1 transition to an $11/2^-$ state.
233.93 8	5/2-,7/2-	Α	J^{π} : E1 transitions to $5/2^+$ and $7/2^+$ states.
241.50 12	7/2+	A	J^{n} : $3/2^{+}, 5/2^{+}, 7/2^{+}$ from M1 to $5/2^{+}$; $3/2^{+}, 5/2^{+}$ less likely from γ from (11/2 ⁺).
344.81 [#] 16	9/2+	ABC	J^{π} : M1 to 7/2 ⁺ .
388.99 13	_	A	II. M1 to monthing provide state in lighter -
418.90 12	$(7/2^{-})$	A A	J ^{**} : MI to negative-parity state indicates $\pi = -$. I^{π} : $(7/2^{-} 0/2^{-} 11/2^{-})$ from (M1) to $0/2^{-}$: $(0/2^{-} 11/2^{-})$ less likely from α to $5/2^{+}$
470 66 17	(1/2)	A	J : $(1/2, 3/2, 11/2)$ from (M1) to $3/2$, $(3/2, 11/2)$ less fixely from γ to $3/2$.
518.71 ^{<i>a</i>} 24	$15/2^{-}$	BC	J^{π} : E2 in band to $11/2^{-}$.
529.60 14	- 1	Α	
538.16 ^{&} 21	13/2-	BC	J^{π} : E2 in band to $9/2^{-}$.
565.01 [@] 23	$11/2^{+}$	В	J^{π} : E2 in band to $7/2^+$.
565.22 23	$(11/2^+)$	Α	J^{π} : $(11/2^+, 13/2^+, 15/2^+)$ from (M1+E2) from $13/2^+$; $(11/2^+)$ from γ to $7/2^+$.
653.31 16		Α	
683.18 25		Α	
817.27 [#] 23	$13/2^{+}$	В	J^{π} : E2 in band to 9/2 ⁺ .
1001.55 ^{&} 24	$17/2^{-}$	BC	J^{π} : E2 in band to 13/2 ⁻ .
1017.4 ^{<i>a</i>} 3	19/2-	BC	J^{π} : E2 in band to 15/2 ⁻ .
1080.18 [@] 25	$15/2^{+}$	В	J^{π} : E2 in band to $11/2^+$.
1361.9 [#] 3	17/2+	В	J^{π} : E2 in band to 13/2 ⁺ .
1561.2 ^{&} 3	$21/2^{-}$	BC	J^{π} : E2 in band to $17/2^{-}$.
1605.2 ^{<i>a</i>} 3	23/2-	BC	J^{π} : E2 in band to 19/2 ⁻ .
1646.99 25	19/2+	BC	J^{π} : E2 from to 23/2 ⁺ .
1669.4 ^{<i>@</i>} 3	19/2+	В	J^{π} : in band to $15/2^+$.
1973.0 [#] 4	$21/2^+$	В	J^{π} : E2 in band to $17/2^+$.
2129.3° 3	$23/2^+$	BC	J^{π} : E2 to 19/2 ⁺ , bandhead.
2189.3° 3	25/2-	BC	J^{π} : E2 in band to 21/2 ⁻ .
2265.4 ^{<i>u</i>} 4	27/2	BC	J^* : E2 in band to $23/2$.
2297.1 ⁶ 5	$23/2^+$	B	J^{n} : E2 in band to $19/2^{+}$.
2464.4° 4	21/2	BC	J^* : E2 in band to $23/2^*$.
2616.8" 5	(25/21)	В	J [*] : in band γ to $21/2^{+}$.
2643.8 ^{<i>u</i>} 4	$(27/2^+)$	BC	J^{n} : E2 in band from $(31/2^{+})$, bandhead.
2729.9 ⁰ 4	29/2(+)	BC	J ^{π} : D(+Q) inter band to 27/2 ⁺ , bandhead of α =+1/2, π =(+) inferred from π =+ of α =-1/2 partner band.
2858.8 ^{&} 4	29/2-	BC	J^{π} : E2 in band to 25/2 ⁻ .
2876.8 4	$(29/2^+)$	В	level pertaining possibly to the signature partner of band 4 (2015Re03).
2917.4° 4	31/2+	BC	J^{π} : E2 in band to 27/2 ⁺ .
2935.3 ^w 6	$(27/2^+)$	В	J^{π} : in band to 23/2 ⁺ .
29/8.04	51/2	BC	J [*] : E2 in band to $Z//Z$.
3064.7 ^{<i>u</i>} 4	$(31/2^+)$	BC	J^{n} : inter band (M1+E2) to 29/2 ⁺ and band member.
3262.6° 4	33/2(+)	BC	J ^{π} : D inter band to 31/2 ⁺ , π =(+) inferred as α =+1/2 partner of π =+, α =-1/2 band.
3264.9# 6	$(29/2^+)$	В	J^{π} : in band γ to (25/2 ⁺).
3399.6 ^{&} 4	33/2-	BC	J^{π} : E2 in band to $29/2^{-}$.
3489.7° 4	35/2+	BC	J^{n} : E2 in band to $31/2^{+}$.
3031.3° 3	33/2	BC	J^{*} : E2 in band to $31/2$.

Continued on next page (footnotes at end of table)

¹⁵⁵Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3657.6 ^{<i>d</i>} 4	$(35/2^+)$	BC	J^{π} : inter band (M1+E2) to $33/2^+$ and band member.
3834.2? [#] 12	$(33/2^+)$	В	J^{π} : in band γ to (29/2 ⁺).
3838.4 ^b 4	$37/2^{(+)}$	BC	J^{π} : E2 in band to $33/2^{(+)}$.
3905.9 <mark>&</mark> 5	37/2-	BC	J^{π} : E2 in band to $33/2^{-}$.
4120.3 ^c 5	39/2+	BC	J^{π} : E2 in band to $35/2^+$.
4211.2 ^{<i>a</i>} 5	39/2-	BC	J^{π} : D(+Q) inter band to $37/2^{-}$ and band member.
4278.4 ^{<i>d</i>} 5	$(39/2^+)$	BC	J^{π} : D inter band from $41/2^{(+)}$ and in band γ to $(35/2^+)$.
4489.3 ^b 5	$41/2^{(+)}$	BC	J^{π} : E2 in band to $37/2^{(+)}$.
4493.8 <mark>&</mark> 5	$41/2^{-}$	BC	J^{π} : E2 in band to $37/2^{-}$.
4601.4 5	$41/2^{(+)}$	BC	J^{π} : E2 from $45/2^{(+)}$ band to $43/2^{-}$.
4837.9 ^{<i>a</i>} 5	43/2-	BC	J^{π} : E2 in band to $39/2^{-}$.
4875.5° 5	$43/2^+$	BC	J^{π} : E2 in band to $39/2^+$.
5135.85 5167.3% 5	$(41/2^+)$ $45/2^-$	B BC	J^{n} : D(+Q) to 39/2 ⁺ . I^{π} : D inter hand to $43/2^{-}$ and hand member
$5214.6^{b}5$	$45/2^{(+)}$	BC	J^{π} : E2 in band to $41/2^{(+)}$
5392 3 ^e 5	45/2	BC	$J = E^2$ in band to $41/2^{-1}$. I^{π} : F2 to $41/2^{(+)}$ handhead
5546.8 ^{<i>a</i>} 5	$47/2^{-}$	BC	J^{π} : E2 in band to $43/2^{-}$.
5710.2 ^c 5	$47/2^{+}$	BC	J^{π} : E2 in band to 43/2 ⁺ .
5786.5 6	$(45/2^+)$	В	J^{π} : γ 's from 49/2 ⁽⁺⁾ and to (41/2 ⁺) respectively.
5932.6 <mark>&</mark> 5	49/2-	BC	J^{π} : E2 in band to $45/2^{-}$.
6057.5 ^b 5	$49/2^{(+)}$	BC	J^{π} : E2 in band to $45/2^{(+)}$.
6168.2 ^e 5	$49/2^{(+)}$	BC	J^{π} : E2 in band to $45/2^{(+)}$.
6341.7 ^{<i>a</i>} 5	$51/2^{-}$	BC	J^{π} : E2 in band to $47/2^{-}$.
6576.0 ^h 7	$(51/2^{-})$	В	J^{π} : in band γ from (55/2 ⁻), bandhead.
6617.1 ^c 5	$51/2^{+}$	В	J^{π} : E2 in band to 47/2 ⁺ .
6773.9 ^{&} 5	53/2-	BC	J^{π} : E2 in band to $49/2^{-}$.
6843.5 ^e 5	53/2(+)	BC	J^{π} : E2 in band to $49/2^{(+)}$.
6952.6 ^b 5	$53/2^{(+)}$	В	J^{π} : E2 in band to $49/2^{(+)}$.
7194.5 ^{<i>a</i>} 5	$55/2^{-}$	BC	J^{π} : E2 in band to $51/2^{-}$.
7292.1° 5	57/2(+)	BC	J^{n} : E2 in band to $53/2^{(+)}$.
7421.0 ^{<i>n</i>} 6 7535.6 ^{<i>c</i>} 6	$(55/2^{-})$ $55/2^{+}$	B B	J^{α} : in band γ from (59/2 ⁻). I^{α} : E2 in band to 51/2 ⁺
7680 1 ^{&} 5	57/2 ⁻	BC	I^{π} : E2 in band to $53/2^{-1}$
7711.2 5	$57/2^{-}$	B	J^{π} : E2 to $53/2^{-}$.
7820.3 ^b 5	$57/2^{(+)}$	В	J^{π} : E2 in band to $53/2^{(+)}$.
8053.9 ^{<i>a</i>} 5	59/2-	В	J^{π} : E2 in band to 55/2 ⁻ .
8222.1 ^e 5	$61/2^{(+)}$	BC	J^{π} : E2 in band to 57/2 ⁽⁺⁾ .
8240.9 5	59/2	BC	J^{π} : D(+Q) from 61/2 ⁻ and D to 57/2 ⁽⁺⁾ .
8273.6 ^h 6	$(59/2^{-})$	В	J^{π} : in band γ from (55/2 ⁻).
8387.4 <mark>8</mark> 5	$61/2^{(+)}$	В	J^{π} : E2 to 57/2 ⁽⁺⁾ , bandhead.
8486.6 5	$61/2^{-}$	BC	J^{π} : E2 to 57/2 ⁻ .
8515.5 ^{&} 5	61/2-	BC	J^{π} : E2 in band to 57/2 ⁻ .
8742.1 ^{<i>h</i>} 5	(63/2-)	В	J^{π} : E2 in band from (67/2 ⁻).
8905.5 6	$65/2^{-}$	В	J^{*} : E2 to 61/2 ⁻ .
8924.5 ⁴ 6	$63/2^{-}$	В	J [*] : (M1+E2) inter band to $61/2^-$ and in band γ to $59/2^-$.
9080.9° 0	$03/2^{(+)}$	В D	J [*] : E2 in band to $61/2^{(1)}$.
7217.4° 0	$65/2^{(+)}$	D	J^* . E2 III band to $01/2^{1/2}$. IT: E2 to $61/2^{(+)}$
7430.3 0	03/200	D	$J = EZ = 10 - 0.1/2^{-1/2}$

Continued on next page (footnotes at end of table)

¹⁵⁵Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
9543.7 ^h 6	$(67/2^{-})$	В	J^{π} : (M1+E2) to 65/2 ⁻ .
9617.7 <mark>&</mark> 6	65/2-	В	J^{π} : E2 in band to 61/2 ⁻ .
9649.3 ⁱ 6	(67/2)	В	J^{π} : D+Q to 65/2 ⁻ .
9668.0 f 6	67/2	В	J^{π} : D(+Q) to 65/2 ⁽⁺⁾ , bandhead.
9958.4 ^a 6	67/2-	В	J^{π} : E2 in band to 63/2 ⁻ .
10177.6 ⁸ 6	$69/2^{(+)}$	В	J^{π} : E2 in band to $65/2^{(+)}$.
$10290.3^{f} 6$	71/2	В	J^{π} : E2 in band to 67/2.
10422.7 ^h 6	$(71/2^{-})$	В	J^{π} : E2 in band to (67/2 ⁻).
10519.9 ^{&} 7	69/2-	В	J^{π} : E2 in band to 65/2 ⁻ .
10735.6 ⁱ 7	71/2	В	J^{π} : E2 in band to 67/2.
10858.5 ^{<i>a</i>} 7	$(71/2^{-})$	В	J^{π} : in band γ to $67/2^-$.
11036.2 ^h 7	$(75/2^{-})$	В	J^{π} : E2 in band to (71/2 ⁻).
11159.9 <mark>8</mark> 6	$(73/2^+)$	В	J^{π} : in band γ to $69/2^{(+)}$.
11323.6 ⁱ 7	(75/2)	В	J^{π} : in band γ to 71/2.
11330.7 ^{&} 7	$(73/2^{-})$	В	J^{π} : in band γ to 69/2 ⁻ .
11674.4 ^{h} 7	$(79/2^{-})$	В	J^{π} : E2 in band to (75/2 ⁻).
11810.4? ⁱ 12		В	
12195.8 ^k 7	(77/2)	В	J^{π} : D(+Q) to (75/2 ⁻), bandhead.
12454.3 ^k 7	(81/2)	В	J^{π} : in band γ to $(75/2^{-})$.
12597.2 ^j 7	(81/2)	В	J^{π} : D to (79/2 ⁻), bandhead.
13139.2 ^k 8	(85/2)	В	J^{π} : E2 in band to (81/2).
13489.7 <mark>/</mark> 8	(85/2)	В	J^{π} : E2 in band to (81/2).
13557.0 7	$(83/2^{-})$	В	J^{π} : E2 in band to (79/2 ⁻).
13601.1 7	$(83/2^{-})$	В	J^{π} : E2 to (79/2 ⁻).
13759.2 ^J 8	(87/2)	В	J^{π} : (D+Q) to (81/2).
			Non-collective oblate state with configuration = $\pi[(d_{5/2}/g_{7/2}^{-1} _{3/2})(h_{11/2}^4 _{16})]_{35/2+}\otimes$
12000 0 0	(05/0-)		$v[(i_{13/2}^2 12)(f_{7/2}/h_{9/2}^4 14]_{26+}]$
13989.8 8	(85/2)	В	J^{*} : (M1+E2) to (85/2). I^{π} : E2 to (81/2)
14193.50	(03/2)	D	J. E2 to $(61/2)$.
14202.8 8	(89/2)	В	J ^{**} : (M1+E2) Inter band to (8/2) and in band γ to (8/2). Non-collective oblate state with configuration π^{-1} (6- π/a^{-1} - π/b^4 - π/b^4
			$v(i)^2 = v_0(f_{1/2})^{1/2} + v_{1/2}^{1/2}$
14554.4 8	$(87/2^{-})$	В	J^{π} : E2 to (83/2 ⁻).
			Non-collective oblate state with configuration = $\pi[(d_{5/2}/g_{7/2}^{-1}, 5/2)(h_{11/2}^3, 27/2)(d_{3/2}, 3/2)]$
			$_{35/2-\otimes \nu[(i_{13/2}^2 \ 12)(f_{7/2}/h_{9/2}^4 \ 14]_{26+})}$
14699.9 8	$(87/2^{-})$	В	J^{π} : E2 to $(83/2^{-})$.
14888.5 13		В	

[†] From a least-squares fit to γ -ray energies.

[‡] Unless otherwise indicated, the listed values for those levels observed in the in-beam studies only are those reported by 2015Re03 $(^{124}Sn(^{37}Cl,6n\gamma))$ dataset), as in part amended by evaluator, based on measured E γ multipolarities combined with the rotational band structures, specific high-spin level scheme physical arguments and thorough cranked Nilsson-Strutinsky calculations, and systematics. There is a very good agreement in between 2015Re03 and the previous studies grouped in the (HI,xny) dataset, particluarly the main references therein, 1986HeZR and 1984Ha35.

[#] Band(A): Band 1, $\pi 5/2[402], \alpha = +1/2$ or F_p . Based on $\pi d_{5/2}$ orbital. [@] Band(a): Band 1, $\pi 5/2[402], \alpha = -1/2$ or E_p . Based on $\pi d_{5/2}$ orbital. [&] Band(B): Band 2, $\pi 7/2[523], \alpha = +1/2$. Based on $\pi h_{11/2}$ orbital. Configuration: $B_p \rightarrow B_pAB \rightarrow A_pB_pD_pAB$.

¹⁵⁵Ho Levels (continued)

^{*a*} Band(b): Band 2, $\pi 7/2$ [523], $\alpha = -1/2$. Based on $\pi h_{11/2}$ orbital. Configuration: A_p ->A_pAB ->A_pB_pC_pAB.

^b Band(C): Band 3, based on $29/2^{(+)}, \alpha = +1/2$. Configuration= $\pi h_{11/2} \otimes \nu(i_{13/2} f_{7/2} h_{9/2})$ or A_pAE.

^c Band (c): Band 3, based on $23/2^+$, $\alpha = -1/2$. Configuration = $\pi h_{11/2} \otimes \nu(i_{13/2} f_{7/2} h_{9/2})$ or B_pAE.

^d Band(D): Band 4, based on $(27/2^+)$ Configuration= $\pi h_{11/2} \otimes v(i_{13/2} f_{7/2} h_{9/2})$ or A_pAF.

^{*e*} Band(E): Band 5, based on $45/2^{(+)}$ Irregular band.

^f Band(F): Band 5a, based on 67/2.

^g Band(G): Band 5b, based on $61/2^{(+)}$.

^h Band(H): Band 6, based on $(51/2^{-})$.

^{*i*} Band(I): Band 6a, based on (67/2).

^j Band(J): Band 7a, based on (81/2).

^k Band(K): Band 7b, based on (77/2).

					Adopted	Levels, Gam	mas (continu	ued)
						γ (¹⁵⁵ Ho))	
E _i (level)	${ m J}^{\pi}_i$	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_{f}	J_f^π	Mult. [#]	α ^{&}	Comments
110.14	7/2+	110.12 7	100	0.0	5/2+	M1	1.98	$\alpha(K)=1.665\ 24;\ \alpha(L)=0.247\ 4;\ \alpha(M)=0.0545\ 8$ $\alpha(N)=0.01267\ 18;\ \alpha(O)=0.00184\ 3;\ \alpha(P)=0.0001032\ 15$ $P(M1)(W_{12})=0.016\ +20\ 0$
141.87	11/2-	31.7 1	100	110.14	7/2+	M2	998 21	B(M1)(W.u.)=0.016 + 20 - 9 $\alpha(L)=759 \ 16; \ \alpha(M)=188 \ 4$ $\alpha(N)=44.1 \ 9; \ \alpha(O)=6.01 \ 13; \ \alpha(P)=0.259 \ 6$ $B(M1)(W.u.)=0.0282 + 40 \ 23$
201.03	3/2+,5/2+,7/2+	201.1 <i>1</i>	100	0.0	5/2+	M1	0.364	B(M2)(W.u.)=0.0382 +40-33 α (K)=0.306 5; α (L)=0.0450 7; α (M)=0.00993 14 α (N)=0.00231 4; α (Q)=0.000336 5; α (P)=1.89×10 ⁻⁵ 3
230.58	9/2-	88.6 <i>3</i>	100	141.87	11/2-	M1	3.70 7	$\alpha(N)=0.002514; \alpha(O)=0.0005505; \alpha(D)=1.05\times10^{-15}$ $\alpha(K)=3.116; \alpha(L)=0.4628; \alpha(M)=0.102118$ $\alpha(N)=0.02374; \alpha(O)=0.003456; \alpha(P)=0.0001934$
233.93	5/2-,7/2-	123.8 <i>1</i>	68 <i>3</i>	110.14	7/2+	E1	0.179	$\alpha(K)=0.1500\ 22;\ \alpha(L)=0.0230\ 4;\ \alpha(M)=0.00506\ 8$ $\alpha(N)=0.001156\ 17;\ \alpha(Q)=0.0001580\ 23;\ \alpha(P)=7.05\times10^{-6}\ 10$
		234.0 1	100 5	0.0	5/2+	(E1)	0.0335	$\alpha(K)=0.0282 \ 4; \ \alpha(L)=0.00410 \ 6; \ \alpha(M)=0.000899 \ 13 \ \alpha(N)=0.000207 \ 3; \ \alpha(O)=2.91\times10^{-5} \ 4; \ \alpha(P)=1.438\times10^{-6} \ 21$
241.50	$7/2^{+}$	131.2.3	41	110.14	$7/2^{+}$			
	.,=	241 5 2	100 11	0.0	5/2+	M1	0.220	$\alpha(K) = 0.186.3; \alpha(L) = 0.0272.4; \alpha(M) = 0.00599.9$
		211.5 2	100 11	0.0	5/2	1011	0.220	$a(\mathbf{N}) = 0.001201, 20; a(\mathbf{O}) = 0.00202, 2; a(\mathbf{D}) = 1.142 \times 10^{-5}, 17$
344.81	9/2+	234.8 2	100 9	110.14	7/2+	M1(+E2)	0.19 5	$\alpha(N)=0.001391\ 20,\ \alpha(O)=0.000205\ 5,\ \alpha(P)=1.142\times10^{-17}$ $\alpha(K)=0.150\ 51;\ \alpha(L)=0.0316\ 23;\ \alpha(M)=0.0072\ 8$ $\alpha(N)=0.00165\ 16;\ \alpha(O)=0.000224\ 6;\ \alpha(P)=8.6\times10^{-6}\ 37$
		344.9 <i>3</i>	24 8	0.0	$5/2^{+}$			I_{γ} : unc from ¹²⁴ Sn(³⁷ Cl.6n γ).
388.99		147.6.3	32.8	241.50	$7/2^+$			
		188.1.2	57 7	201.03	$3/2^+, 5/2^+, 7/2^+$			
		278 3 5	22 10	110 14	7/2+			
		388 9 2	100 11	0.0	5/2+			
418.96	-	185.1 <i>1</i>	100 11	233.93	5/2-,7/2-	M1	0.458	α (K)=0.385 6; α (L)=0.0567 8; α (M)=0.01251 18 α (N)=0.00291 4; α (O)=0.000423 6; α (P)=2.38×10 ⁻⁵ 4
		308.2 <i>3</i>	16 4	110.14	7/2+			
451.36	$(7/2^{-})$	221.1 2	100	230.58	9/2-	(M1)	0.280	α (K)=0.236 4; α (L)=0.0346 5; α (M)=0.00764 11 α (N)=0.00177 3; α (O)=0.000258 4; α (P)=1.455×10 ⁻⁵ 21
		450.1 4	29	0.0	5/2+			
470.66		229.2 3	100 27	241.50	7/2+			
		360.9 6	≈20	110.14	7/2+			
		470.6 2	85 9	0.0	$5/2^{+}$			
518.71	15/2-	376.7 3	100	141.87	11/2-	E2	0.0341	$\alpha(K)=0.0263 4; \alpha(L)=0.00602 9; \alpha(M)=0.001383 20$ $\alpha(N)=0.000316 5; \alpha(O)=4.21\times10^{-5} 6; \alpha(P)=1.416\times10^{-6} 20$
529.60		288.2 2	46 6	241.50	7/2+			
		295.6 5	15 6	233.93	5/2-,7/2-			
		298.8 2	60 7	230.58	9/2-			
		328.7.2	100 12	201.03	$3/2^+$ $5/2^+$ $7/2^+$			
538 16	$13/2^{-}$	(19.3)	0 10 2	518 71	15/2			L_{ν} estimated in (HI xn ν) dataset
550.10		307.6 3	38 4	230.58	9/2-	E2	0.0619	$\alpha(K)=0.0461\ 7;\ \alpha(L)=0.01222\ 18;\ \alpha(M)=0.00283\ 4$ $\alpha(N)=0.000646\ 10;\ \alpha(O)=8.43\times10^{-5}\ 13;\ \alpha(P)=2.40\times10^{-6}\ 4$

6

From ENSDF

$\gamma(^{155}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ ^{@a}	$\alpha^{\&}$	Comments
538.16	13/2-	396.2 3	100 4	141.87 11	1/2-	M1+E2	+1.5 +8-5	0.039 6	α (K)=0.031 6; α (L)=0.0057 4; α (M)=0.00129 8 α (N)=0.000298 20; α (O)=4.1×10 ⁻⁵ 4; α (P)=1.8×10 ⁻⁶ 4
565.01	11/2+	220.7 454.7 <i>3</i>	<56 100 <i>11</i>	344.81 9/ 110.14 7/	/2 ⁺ /2 ⁺]	E2		0.0203	$I_{\gamma}: \text{ from } {}^{124}\text{Sn}({}^{37}\text{Cl},6n\gamma).$ α(K)=0.01606 23; α(L)=0.00327 5; α(M)=0.000745 11 α(N)=0.0001708 25; α(O)=2.31×10 ⁻⁵ 4; α(P)=8.85×10 ⁻⁷ 13
565.22	$(11/2^+)$	322.9 <i>3</i> 455.9 <i>3</i>	53 <i>12</i> 100 <i>18</i>	241.50 7/ 110.14 7/	/2 ⁺ /2 ⁺				
653.31		264.4 <i>4</i> 412.1 <i>3</i> 422.7 <i>1</i>	12 <i>4</i> 24 <i>4</i> 100 <i>6</i>	388.99 241.50 7/ 230.58 9/	/2 ⁺ /2 ⁻				
683.18 817.27	13/2+	452.6 2 252.1 <i>3</i>	100 37 <i>3</i>	230.58 9/ 565.01 11	/2 ⁻ 1/2 ⁺ ((M1+E2)		0.155 41	α(K)=0.123 42; α(L)=0.0249 9; α(M)=0.0057 4
		472.8 <i>3</i>	100 10	344.81 9/	/2+]	E2		0.0183	$\alpha(N)=0.00130\ 7;\ \alpha(O)=0.000177\ 4;\ \alpha(P)=7.1\times10^{-6}\ 31$ $\alpha(K)=0.01454\ 21;\ \alpha(L)=0.00290\ 4;\ \alpha(M)=0.000659\ 10$ $\alpha(N)=0.0001512\ 22;\ \alpha(O)=2.06\times10^{-5}\ 3;$
1001.55	17/2-	463.3 <i>3</i>	100 5	538.16 13	3/2- 1	E2		0.0193	$\alpha(\mathbf{F}) = 8.05 \times 10^{-1} I_2^{-1}$ $\alpha(\mathbf{K}) = 0.01531 \ 22; \ \alpha(\mathbf{L}) = 0.00309 \ 5; \ \alpha(\mathbf{M}) = 0.000702 \ 10^{-1}$ $\alpha(\mathbf{N}) = 0.0001611 \ 23; \ \alpha(\mathbf{O}) = 2.19 \times 10^{-5} \ 3;$ $\alpha(\mathbf{P}) = 8.45 \times 10^{-7} \ 12$
		482.8 <i>3</i>	67 <i>3</i>	518.71 15	5/2- 1	M1+E2	+1.2 +5-3	0.025 3	$\alpha(K) = 0.0203 \ 25; \ \alpha(L) = 0.00335 \ 24; \ \alpha(M) = 0.00075 \ 5 \\ \alpha(N) = 0.000173 \ 12; \ \alpha(O) = 2.44 \times 10^{-5} \ 20; \\ \alpha(P) = 1.19 \times 10^{-6} \ 16$
1017.4	19/2-	(16.3)	0.10 3	1001.55 17	7/2- 1	M1(+E2)		6.1×10 ³ 60	$\alpha(L)=4.7\times10^3 \ 46; \ \alpha(M)=1.1\times10^3 \ 11$ $\alpha(N)=2.5\times10^2 \ 25; \ \alpha(O)=29 \ 28; \ \alpha(P)=0.025 \ 3$ L: estimated in (HLNny) dataset.
		498.6 <i>3</i>	100 5	518.71 15	5/2- 1	E2		0.01590	α (K)=0.01273 18; α (L)=0.00247 4; α (M)=0.000559 8 α (N)=0.0001285 19; α (O)=1.754×10 ⁻⁵ 25; α (P)=7.08×10 ⁻⁷ 10
1080.18	15/2+	263.1 <i>3</i> 515.2 <i>3</i>	25 3 100 <i>10</i>	817.27 13 565.01 11	3/2 ⁺ 1/2 ⁺ 1	E2		0.01462	$\alpha(K)=0.01174 \ 17; \ \alpha(L)=0.00224 \ 4; \ \alpha(M)=0.000506 \ 8$ $\alpha(N)=0.0001164 \ 17; \ \alpha(O)=1.594\times10^{-5} \ 23;$ $\alpha(P)=6.55\times10^{-7} \ 10$
1361.9	17/2+	541.7 ^c 3 561.2 ^c 3 281.5	20 2 20 2 <100	538.16 13 518.71 15 1080.18 15	3/2 ⁻ 5/2 ⁻ 5/2 ⁺				
		544.6 <i>3</i>	100 10	817.27 13	3/2+]	E2		0.01270	$\alpha(K)=0.01025 \ 15; \ \alpha(L)=0.00190 \ 3; \ \alpha(M)=0.000430 \ 6$ $\alpha(N)=9.88\times10^{-5} \ 14; \ \alpha(O)=1.359\times10^{-5} \ 20; $ $\alpha(P)=5.74\times10^{-7} \ 8$
1561.2	21/2-	543.8 <i>3</i>	55 <i>3</i>	1017.4 19	9/2- 1	M1+E2	+0.59 10	0.0226 10	$\alpha(K)=0.0190 \ 8; \ \alpha(L)=0.00282 \ 9; \ \alpha(M)=0.000623 \ 19$ $\alpha(N)=0.000144 \ 5; \ \alpha(O)=2.09\times10^{-5} \ 7; \ \alpha(P)=1.14\times10^{-6}$ 6

-

						Adopted	Levels, Ga	<mark>mmas</mark> (conti	nued)
							γ(¹⁵⁵ Ho) (α	continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ [‡]	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ ^{@a}	α &	Comments
1561.2	21/2-	559.6 <i>3</i>	100 5	1001.55	17/2-	E2		0.01186	α (K)=0.00960 <i>14</i> ; α (L)=0.001759 <i>25</i> ; α (M)=0.000397 <i>6</i> α (N)=9.13×10 ⁻⁵ <i>13</i> ; α (O)=1.259×10 ⁻⁵ <i>18</i> ; α (P)=5.39×10 ⁻⁷ <i>8</i>
1605.2	23/2-	(44.0)	0.50 15	1561.2	21/2-	M1(+E2)		46 42	α (L)=35 32; α (M)=8.4 77 α (N)=1.9 18; α (O)=0.22 20; α (P)=8.7×10 ⁻⁴ 62 I _y : estimated in (HI,xny) dataset.
		587.9 ^b 3	100 ^b 5	1017.4	19/2-	E2		0.01051	$\alpha(K)=0.00854 \ 12; \ \alpha(L)=0.001530 \ 22; \ \alpha(M)=0.000344 \ 5 \ \alpha(N)=7.93 \times 10^{-5} \ 12; \ \alpha(O)=1.098 \times 10^{-5} \ 16; \ \alpha(P)=4.81 \times 10^{-7} \ 7$
1646.99	$19/2^{+}$	285.3 <i>3</i>	12.1 16	1361.9	$17/2^{+}$				
		566.9 <i>3</i>	100 5	1080.18	$15/2^{+}$				
		629.5 <i>3</i>	36 4	1017.4	$19/2^{-}$				
		645.3 <i>3</i>	33 <i>3</i>	1001.55	$17/2^{-}$				
1669.4	$19/2^{+}$	307.3 <i>3</i>	33 4	1361.9	$17/2^{+}$				
		589.4 <i>3</i>	100 11	1080.18	$15/2^+$				
1973.0	21/2+	611.1 3	100	1361.9	17/2+	E2		0.00956	$\alpha(K)=0.00780 \ II; \ \alpha(L)=0.001375 \ 20; \ \alpha(M)=0.000309 \ 5$ $\alpha(N)=7.12\times10^{-5} \ I0; \ \alpha(O)=9.88\times10^{-6} \ I4; \ \alpha(P)=4.40\times10^{-7} \ 7$
2129.3	23/2+	459.8 <i>3</i>	22 3	1669.4	19/2+	E2		0.0197	$\alpha(K)=0.01561\ 22;\ \alpha(L)=0.00316\ 5;\ \alpha(M)=0.000719\ 11$ $\alpha(N)=0.0001649\ 24;\ \alpha(O)=2.24\times10^{-5}\ 4;\ \alpha(P)=8.61\times10^{-7}\ 13$
		482.4 3	44 <i>4</i>	1646.99	19/2+	E2		0.01733	α (K)=0.01383 20; α (L)=0.00273 4; α (M)=0.000619 9 α (N)=0.0001421 20; α (O)=1.93×10 ⁻⁵ 3; α (P)=7.66×10 ⁻⁷ 11
		524.1 <i>3</i>	17 2	1605.2	$23/2^{-}$				
		568.1 <i>3</i>	100 5	1561.2	$21/2^{-}$	D			
2189.3	25/2-	584.2 <i>3</i>	58 <i>3</i>	1605.2	23/2-	M1+E2	+0.42 6	0.0200 5	α (K)=0.0169 5; α (L)=0.00245 6; α (M)=0.000540 12 α (N)=0.000125 3; α (O)=1.82×10 ⁻⁵ 4; α (P)=1.02×10 ⁻⁶ 3
		628.1 <i>3</i>	100 5	1561.2	21/2-	E2		0.00896	$\alpha(K) = 0.00732 \ 11; \ \alpha(L) = 0.001275 \ 18; \ \alpha(M) = 0.000286 \ 4 \\ \alpha(N) = 6.60 \times 10^{-5} \ 10; \ \alpha(O) = 9.18 \times 10^{-6} \ 13; \ \alpha(P) = 4.14 \times 10^{-7} \ 6$
2265.4	27/2-	(75.7)	1.5 6	2189.3	25/2-	M1(+E2)		7.0 13	$\alpha(K)=3.4$ 15; $\alpha(L)=2.8$ 21; $\alpha(M)=0.67$ 51 $\alpha(N)=0.15$ 12; $\alpha(O)=0.018$ 13; $\alpha(P)=1.9\times10^{-4}$ 11 L ₂ : estimated in (HL xny) dataset
		660.1 <i>3</i>	100 5	1605.2	23/2-	E2		0.00796	$\alpha(K)=0.00653 \ I0; \ \alpha(L)=0.001116 \ I6; \ \alpha(M)=0.000250 \ 4 \ \alpha(N)=5.76\times10^{-5} \ 9; \ \alpha(O)=8.05\times10^{-6} \ I2; \ \alpha(P)=3.70\times10^{-7} \ 6$
2297.1	23/2+	627.7 3	100	1669.4	19/2+	E2		0.00897	$\alpha(K) = 0.00733 \ 11; \ \alpha(L) = 0.001277 \ 18; \ \alpha(M) = 0.000287 \ 4 \ \alpha(N) = 6.61 \times 10^{-5} \ 10; \ \alpha(O) = 9.19 \times 10^{-6} \ 13; \ \alpha(P) = 4.14 \times 10^{-7} \ 6$
2464.4	$27/2^{+}$	275.3 <i>3</i>	75 4	2189.3	$25/2^{-}$	D			
	,	335.0 <i>3</i>	100 5	2129.3	23/2+	E2		0.0479	$\alpha(K)=0.0363 \ 6; \ \alpha(L)=0.00902 \ 13; \ \alpha(M)=0.00208 \ 3 \ \alpha(N)=0.000476 \ 7; \ \alpha(O)=6.25\times10^{-5} \ 9; \ \alpha(P)=1.92\times10^{-6} \ 3$
2616.8	$(25/2^+)$	643.8 <i>3</i>	100	1973.0	$21/2^{+}$				
2643.8	$(27/2^+)$	454.5 3	49 2	2189.3	$\frac{25}{2}$				
	(514.5.3	100.5	2129.3	$\frac{23}{2^+}$				
2729.9	$29/2^{(+)}$	265.5.3	100.5	2464.4	$27/2^+$	D(+O)			
,,,	_>/ _	464.5 3	27.3	2265.4	$\frac{27}{2^{-1}}$	D			
2858.8	29/2-	593.3 3	26 3	2265.4	$27/2^{-}$				

 ∞

$\gamma(^{155}\text{Ho})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ ^{@a}	α &	Comments
2858.8	29/2-	669.7 <i>3</i>	100 5	2189.3 25/2	- E2		0.00770	$\alpha(K)=0.00632 \ 9; \ \alpha(L)=0.001074 \ 15; \ \alpha(M)=0.000241 \ 4 \ \alpha(N)=5.55\times10^{-5} \ 8; \ \alpha(O)=7.75\times10^{-6} \ 11; \ \alpha(P)=3.59\times10^{-7} \ 5$
2876.8	$(29/2^+)$	233.0 3	30 3	2643.8 (27/2	2+)			
		611.5 3	100 10	2265.4 27/2	(1) (1)			
2917.4	$31/2^{+}$	187.4 <i>3</i>	40 2	2729.9 29/2	+) D			
		273.6 <i>3</i>	57 <i>3</i>	2643.8 (27/2	2+)			
		453.0 <i>3</i>	100 5	2464.4 27/2	+ E2		0.0205	$\alpha(K)=0.01622\ 23;\ \alpha(L)=0.00331\ 5;\ \alpha(M)=0.000753\ 11$ $\alpha(N)=0.0001729\ 25;\ \alpha(O)=2.34\times10^{-5}\ 4;\ \alpha(P)=8.93\times10^{-7}\ 13$
2935.3	$(27/2^+)$	638.4 ^C 3	100	2297.1 23/2	÷			
2978.0	31/2-	(119.0 3)	8 1	2858.8 29/2	- M1(+E2)		1.54 6	$\alpha(K)=1.02 \ 32; \ \alpha(L)=0.40 \ 20; \ \alpha(M)=0.094 \ 51 \ \alpha(N)=0.021 \ 12; \ \alpha(Q)=0.0027 \ 13; \ \alpha(P)=5.6\times10^{-5} \ 27$
		712.5 3	100 5	2265.4 27/2	- E2		0.00667	$\alpha(K) = 0.00550 \ 8; \ \alpha(L) = 0.000914 \ 13; \ \alpha(M) = 0.000204 \ 3 \\ \alpha(N) = 4.71 \times 10^{-5} \ 7; \ \alpha(O) = 6.61 \times 10^{-6} \ 10; \ \alpha(P) = 3.13 \times 10^{-7} \ 5$
3064.7	$(31/2^+)$	187.9 <i>3</i>	4.5 5	2876.8 (29/2	2+)			
		334.8.3	23.2	2729 9 29/2	(M1+E2)		0 070 22	$\alpha(K) = 0.057.21; \alpha(L) = 0.0101.11; \alpha(M) = 0.00228.20$
		420.0.2	10.0		(0.0250	$\alpha(N) = 0.000525; \alpha(O) = 7.3 \times 10^{-5} 11; \alpha(P) = 3.3 \times 10^{-6} 14$
		420.9 3	42.2	2643.8 (27/2	E') E2		0.0250	$\alpha(\mathbf{K})=0.0196\ 3;\ \alpha(\mathbf{L})=0.00418\ 6;\ \alpha(\mathbf{M})=0.000955\ 14$ $\alpha(\mathbf{N})=0.000219\ 4;\ \alpha(\mathbf{O})=2.94\times10^{-5}\ 5;\ \alpha(\mathbf{P})=1.071\times10^{-6}\ 16$
		600.3 <i>3</i>	100 5	2464.4 27/2	F			
3262.6	$33/2^{(+)}$	345.2 <i>3</i>	100	2917.4 31/2	+ D			
3264.9	$(29/2^+)$	648.1.3	100	2616.8 (25/	(+) -			
3399.6	33/2-	421.5.3	71.3	2978.0 31/2	- (M1+E2)	+0.065.24	0.0499.8	$\alpha(K)=0.0422.6; \alpha(L)=0.00607.9; \alpha(M)=0.001337.19$
	00/2	12110 0	110		(111122)	101000 21	01017770	$\alpha(N) = 0.000311 \text{ 5}; \alpha(O) = 4.53 \times 10^{-5} \text{ 7}; \alpha(P) = 2.57 \times 10^{-6} \text{ 4}$ Mult δ : small amount of mixing does not exclude E1
		540.9 <i>3</i>	100 5	2858.8 29/2	- E2		0.01292	$\alpha(K) = 0.01042 \ 15; \ \alpha(L) = 0.00194 \ 3; \ \alpha(M) = 0.000438 \ 7 \ \alpha(N) = 0.001008 \ 15; \ \alpha(Q) = 1.386 \times 10^{-5} \ 20; \ \alpha(P) = 5.84 \times 10^{-7} \ 9$
3480 7	35/2+	227.0.3	117	3767 6 33/7	(+) D			
3407.7	55/2	57233	100.5	$3202.0 \ 33/2$	+ E2		0.01122	$\alpha(\mathbf{K}) = 0.00010.13; \alpha(\mathbf{L}) = 0.001650.24; \alpha(\mathbf{M}) = 0.000372.6$
		512.5 5	100 5	2917.4 31/2	E2		0.01122	$\alpha(R) = 0.00510 \ 15, \ \alpha(L) = 0.001050 \ 24, \ \alpha(M) = 0.00572 \ 0$ $\alpha(R) = 8.56 \times 10^{-5} \ 12; \ \alpha(O) = 1.183 \times 10^{-5} \ 17; \ \alpha(P) = 5.12 \times 10^{-7} \ 8$
3651.3	35/2-	251.7 3	39 4	3399.6 33/2	- (M1+E2)	+0.07 4	0.197	$\alpha(K)=0.1655\ 25;\ \alpha(L)=0.0243\ 4;\ \alpha(M)=0.00535\ 8$ $\alpha(N)=0.001243\ 18;\ \alpha(O)=0.000181\ 3;\ \alpha(P)=1.018\times10^{-5}\ 16$ Mult. δ : small amount of mixing does not exclude E1.
		673.2 <i>3</i>	100 5	2978.0 31/2	- E2		0.00760	$\alpha(K) = 0.00625 \ 9; \ \alpha(L) = 0.001059 \ 15; \ \alpha(M) = 0.000237 \ 4$ $\alpha(K) = 5.47 \times 10^{-5} \ 8; \ \alpha(O) = 7.65 \times 10^{-6} \ 11; \ \alpha(P) = 3.54 \times 10^{-7} \ 5$
3657.6	(35/2+)	395.0 <i>3</i>	35 <i>3</i>	3262.6 33/2	(M1+E2)		0.045 15	$\alpha(K) = 0.037 \ 14; \ \alpha(L) = 0.0062 \ 11; \ \alpha(M) = 0.00138 \ 21 \\ \alpha(N) = 0.00032 \ 5; \ \alpha(O) = 4.5 \times 10^{-5} \ 9; \ \alpha(P) = 2.16 \times 10^{-6} \ 90$
		592.9 <i>3</i>	100 5	3064.7 (31/2	2+)			
3834.2?	$(33/2^+)$	569.6 ^c	100	3264.9 (29/2	2+)			
3838.4	$37/2^{(+)}$	348.8 <i>3</i>	100 5	3489.7 35/2	+ D			
		575.8.3	72.8	3262 6 33/2	(+)			
3905 9	37/2-	25473	100 5	3651 3 35/2	- D			
5705.7	5112	201.10	100 5	5051.5 55/2				

9

From ENSDF

$\gamma(^{155}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
3905.9	37/2-	506.2 3	90 5	3399.6	33/2-	E2	0.01529	α (K)=0.01226 <i>18</i> ; α (L)=0.00236 <i>4</i> ; α (M)=0.000534 <i>8</i> α (N)=0.0001227 <i>18</i> ; α (O)=1.678×10 ⁻⁵ <i>24</i> ; α (P)=6.83×10 ⁻⁷ <i>10</i>
4120.3	39/2+	281.9 <i>3</i> 630.6 <i>3</i>	9 <i>1</i> 100 5	3838.4 3489.7	37/2 ⁽⁺⁾ 35/2 ⁺	D(+Q) E2	0.00887	$\alpha(K) = 0.00725 \ II; \ \alpha(L) = 0.001262 \ I8; \ \alpha(M) = 0.000283 \ 4$ $\alpha(N) = 6.52 \times 10^{-5} \ I0; \ \alpha(O) = 0.08 \times 10^{-6} \ I3; \ \alpha(P) = 4.10 \times 10^{-7} \ 6$
4211.2	39/2-	305.3 <i>3</i> 559.9 <i>3</i>	100 <i>5</i> 90 <i>4</i>	3905.9 3651.3	37/2 ⁻ 35/2 ⁻	D(+Q)		$a(10) = 0.52 \times 10^{-10}, a(0) = 9.08 \times 10^{-13}, a(1) = 4.10 \times 10^{-0}$
4278.4	$(39/2^+)$	620.9 <i>3</i>	100	3657.6	$(35/2^+)$			
4489.3	$41/2^{(+)}$	369.0 3	100 5	4120.3	39/2+	D		
		650.9 3	94 5	3838.4	37/2(+)	E2	0.00823	$ \alpha(K) = 0.00674 \ 10; \ \alpha(L) = 0.001158 \ 17; \ \alpha(M) = 0.000260 \ 4 \\ \alpha(N) = 5.99 \times 10^{-5} \ 9; \ \alpha(O) = 8.35 \times 10^{-6} \ 12; \ \alpha(P) = 3.82 \times 10^{-7} \ 6 $
4493.8	$41/2^{-}$	282.6 3	66 3	4211.2	39/2-	D		
		587.9 ⁰ 3	100 ⁰ 5	3905.9	37/2-	E2	0.01051	$\alpha(K)=0.00854 \ I2; \ \alpha(L)=0.001530 \ 22; \ \alpha(M)=0.000344 \ 5 \\ \alpha(N)=7.93\times10^{-5} \ I2; \ \alpha(O)=1.098\times10^{-5} \ I6; \ \alpha(P)=4.81\times10^{-7} \ 7$
4601.4	$41/2^{(+)}$	323.4 <i>3</i> 481.0 <i>3</i>	96 <i>10</i> 100 <i>10</i>	4278.4 4120.3	(39/2 ⁺) 39/2 ⁺	D		
4837.9	43/2-	344.1 ^b 3	58 <mark>6</mark> 3	4493.8	$41/2^{-}$	D(+Q)		
		626.7 <i>3</i>	100 5	4211.2	39/2-	E2	0.00900	α (K)=0.00736 <i>11</i> ; α (L)=0.001283 <i>18</i> ; α (M)=0.000288 <i>4</i> α (N)=6.64×10 ⁻⁵ <i>10</i> ; α (O)=9.23×10 ⁻⁶ <i>13</i> ; α (P)=4.16×10 ⁻⁷ 6
4875.5	$43/2^{+}$	274.1 3	14 <i>I</i>	4601.4	$41/2^{(+)}$			
		386.3 <i>3</i>	32 <i>3</i>	4489.3	$41/2^{(+)}$	D(+Q)		
		596.9 <i>3</i>	61 3	4278.4	$(39/2^+)$			
		755.3 3	100 5	4120.3	39/2+	E2	0.00585	$\alpha(K)=0.00484\ 7;\ \alpha(L)=0.000788\ 11;\ \alpha(M)=0.0001757\ 25$ $\alpha(N)=4.06\times10^{-5}\ 6;\ \alpha(O)=5.71\times10^{-6}\ 8;\ \alpha(P)=2.76\times10^{-7}\ 4$
5135.8	$(41/2^+)$	1015.4 3	100	4120.3	39/2+	D(+Q)		
5167.3	45/2-	329.4 3	44 5	4837.9	43/2-	D		
5014 (450(+)	6/3.4 3	100 5	4493.8	41/2	$\mathbf{D}(\cdot,\mathbf{O})$		
5214.6	45/2(1)	339.0 3	100 51	48/5.5	$43/2^{+}$	D(+Q)	0.00(11	
		125.3 3	5/3	4489.3	41/2(*)	E2	0.00641	$\alpha(\text{K})=0.00529 \ 8; \ \alpha(\text{L})=0.000873 \ 13; \ \alpha(\text{M})=0.000195 \ 3$ $\alpha(\text{N})=4.50\times10^{-5} \ 7; \ \alpha(\text{O})=6.32\times10^{-6} \ 9; \ \alpha(\text{P})=3.01\times10^{-7} \ 5$
5392.3	$45/2^{(+)}$	256.5 3	49 5	5135.8	$(41/2^+)$	D(O)	0.0001.54	
		516.7 3	90.5	48/5.5	43/21	D(+Q)	0.0221 76	$\alpha(K) = 0.0183 67; \alpha(L) = 0.0029 7; \alpha(M) = 0.00064 15$
		701.0.3	100.5	4601.4	41/0(+)	50	0.00507	$\alpha(N)=0.00015$ 4; $\alpha(O)=2.12\times10^{-5}$ 55; $\alpha(P)=1.08\times10^{-6}$ 44
		/91.2 3	100.5	4601.4	$41/2^{(1)}$	E2	0.00527	$\alpha(K) = 0.004377; \alpha(L) = 0.00070270; \alpha(M) = 0.000156322$
		002 0 3	70.0	4400.2	41/0(+)	F 2	0.00207	$\alpha(N)=3.61\times10^{-5}$ 5; $\alpha(O)=5.10\times10^{-6}$ 8; $\alpha(P)=2.50\times10^{-7}$ 4
		902.9 3	198	4489.3	41/2(.)	EZ	0.00396	$\alpha(\mathbf{N})=0.00551\ 5;\ \alpha(\mathbf{L})=0.000511\ 5;\ \alpha(\mathbf{M})=0.0001134\ 76$ $\alpha(\mathbf{N})=2.62\times10^{-5}\ 4;\ \alpha(\mathbf{O})=3.73\times10^{-6}\ 6;\ \alpha(\mathbf{P})=1.89\times10^{-7}\ 3$
5546.8	$47/2^{-}$	379.5 3	92 5	5167.3	$45/2^{-}$	50	0.00/75	
		708.9 3	100 5	4837.9	43/2-	E2	0.00675	$\alpha(K)=0.00556 \ \delta; \ \alpha(L)=0.000926 \ I3; \ \alpha(M)=0.000207 \ 3$
5710.2	47/2+	834.7 3	100	4875.5	43/2+	E2	0.00469	$\alpha(N)=4.7/\times10^{-5}$ 7; $\alpha(O)=6.70\times10^{-6}$ 10; $\alpha(P)=3.16\times10^{-7}$ 5 $\alpha(K)=0.00390$ 6; $\alpha(L)=0.000616$ 9; $\alpha(M)=0.0001370$ 20 $\alpha(N)=3.16\times10^{-5}$ 5; $\alpha(O)=4.48\times10^{-6}$ 7; $\alpha(P)=2.23\times10^{-7}$ 4
								$u(1)-5.10\times 10^{-5}, u(0)-4.40\times 10^{-7}, u(1)-2.25\times 10^{-6}$

γ (¹⁵⁵Ho) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
5786.5	$(45/2^+)$	650.0	100	5135.8	$(41/2^+)$			
5932.6	49/2-	385.8 <i>3</i> 765 3 3	38 4 100 5	5546.8 5167 3	$4^{7}/2^{-}$ $45/2^{-}$	F2	0.00568	$\alpha(\mathbf{K}) = 0.00470.7; \alpha(\mathbf{I}) = 0.000762.11; \alpha(\mathbf{M}) = 0.0001700.24$
		100.00	100 5	5107.5	13/2	112	0.00500	$\alpha(N) = 3.92 \times 10^{-5} 6; \ \alpha(O) = 5.53 \times 10^{-6} 8; \ \alpha(P) = 2.68 \times 10^{-7} 4$
6057.5	$49/2^{(+)}$	347.4 3	38 4	5710.2	47/2+	D(+Q)		
		842.8 <i>3</i>	100 5	5214.6	$45/2^{(+)}$	E2	0.00459	$\alpha(K)=0.00382$ 6; $\alpha(L)=0.000602$ 9; $\alpha(M)=0.0001338$ 19 $\alpha(N)=2.00\times10^{-5}$ 5; $\alpha(O)=4.28\times10^{-6}$ 7; $\alpha(D)=2.18\times10^{-7}$ 2
6168.2	$49/2^{(+)}$	381.6 <i>3</i>	18 2	5786.5	$(45/2^+)$			$u(1) = 5.07 \times 10^{-5}, u(0) = 4.50 \times 10^{-7}, u(1) = 2.10 \times 10^{-5}$
	,	457.9 <i>3</i>	25 <i>3</i>	5710.2	47/2+			
		776.1 3	100 5	5392.3	$45/2^{(+)}$	E2	0.00550	$\alpha(K)=0.00456\ 7;\ \alpha(L)=0.000736\ 11;\ \alpha(M)=0.0001641\ 23$
(2417	51/2-	400.0.2	20.4	5022 (40/2-			$\alpha(N)=3.79\times10^{-3}$ 6; $\alpha(O)=5.34\times10^{-6}$ 8; $\alpha(P)=2.60\times10^{-7}$ 4
0341.7	51/2	409.0 3	39 4 100 5	5952.0 5546.8	49/2 47/2 ⁻	F2	0.00522	$\alpha(\mathbf{K}) = 0.00433.6$; $\alpha(\mathbf{I}) = 0.000694.10$; $\alpha(\mathbf{M}) = 0.0001545.22$
		194.9 5	100 5	5540.0	47/2	62	0.00522	$\alpha(N)=3.57\times10^{-5}$ 5; $\alpha(O)=5.04\times10^{-6}$ 7; $\alpha(P)=2.47\times10^{-7}$ 4
6617.1	$51/2^{+}$	559.6 ^{bc} 3	55 <mark>b</mark> 6	6057.5	$49/2^{(+)}$			
		906.9 <i>3</i>	100 5	5710.2	$47/2^{+}$	E2	0.00392	$\alpha(K)=0.003285; \alpha(L)=0.0005067; \alpha(M)=0.000112216$
(772.0	52/2-	100.0.0	07.0	62.41.7	51/0-	$\mathbf{D}(\cdot, \mathbf{O})$		$\alpha(N)=2.59\times10^{-5} 4; \ \alpha(O)=3.69\times10^{-6} 6; \ \alpha(P)=1.88\times10^{-7} 3$
6//3.9	53/2	432.23	2/3	5022 6	$\frac{51}{2}$	D(+Q) E2	0.00461	$\alpha(K) = 0.00282.6; \alpha(L) = 0.000605.0; \alpha(M) = 0.0001244.10$
		041.3 3	100 5	3932.0	49/2	E2	0.00401	$\alpha(N)=3.10\times10^{-5}$ 5; $\alpha(O)=4.40\times10^{-6}$ 7; $\alpha(P)=2.19\times10^{-7}$ 3
6843.5	$53/2^{(+)}$	226.3 <i>3</i>	71	6617.1	$51/2^{+}$			
		675.4 <i>3</i>	100 5	6168.2	49/2 ⁽⁺⁾	E2	0.00755	α (K)=0.00620 9; α (L)=0.001050 15; α (M)=0.000235 4
					(.)			$\alpha(N) = 5.42 \times 10^{-5} 8$; $\alpha(O) = 7.58 \times 10^{-6} 11$; $\alpha(P) = 3.52 \times 10^{-7} 5$
		785.9 <i>3</i>	31 2	6057.5	$49/2^{(+)}$	E2	0.00535	$\alpha(K)=0.004447; \alpha(L)=0.00071410; \alpha(M)=0.000159023$
6052.6	53/2(+)	335 6 3	21.2	6617.1	$51/2^{+}$			$\alpha(N)=3.67\times10^{-5}$ 0; $\alpha(O)=3.18\times10^{-5}$ 8; $\alpha(P)=2.53\times10^{-7}$ 4
0952.0	55/2	895.1.3	100 5	6057.5	$\frac{31/2}{49/2^{(+)}}$	E2	0.00403	$\alpha(K)=0.00337.5; \alpha(L)=0.000522.8; \alpha(M)=0.0001158.17$
								$\alpha(N)=2.68\times10^{-5}$ 4; $\alpha(O)=3.81\times10^{-6}$ 6; $\alpha(P)=1.93\times10^{-7}$ 3
7194.5	$55/2^{-}$	420.5 3	23 3	6773.9	53/2-			
		852.7 3	100 5	6341.7	51/2-	E2	0.00448	$\alpha(\mathbf{K}) = 0.00373 \ 6; \ \alpha(\mathbf{L}) = 0.000585 \ 9; \ \alpha(\mathbf{M}) = 0.0001301 \ 19$
7202 1	57/2(+)	11873	100	6813 5	53/2(+)	F2	0.0210	$\alpha(N) = 3.00 \times 10^{-5}$ 5; $\alpha(U) = 4.26 \times 10^{-6}$ 6; $\alpha(P) = 2.13 \times 10^{-7}$ 3 $\alpha(K) = 0.01662.24$; $\alpha(L) = 0.00341.5$; $\alpha(M) = 0.000777.11$
1292.1	51/2	440.7 5	100	0045.5	55/2	E2	0.0210	$\alpha(\mathbf{N})=0.000178$ 3; $\alpha(\mathbf{O})=2.41\times10^{-5}$ 4; $\alpha(\mathbf{P})=9.14\times10^{-7}$ 13
7421.0	(55/2-)	845.0 <i>3</i>	100	6576.0	$(51/2^{-})$			
7535.6	55/2+	583.0 [°] 3	100 5	6952.6	53/2(+)			
		918.5 <i>3</i>	50 <i>3</i>	6617.1	$51/2^{+}$	E2	0.00382	$\alpha(K)=0.003195; \alpha(L)=0.0004917; \alpha(M)=0.000108916$
7680-1	57/2-	18563	58.6	7104 5	55/2-			$\alpha(N)=2.52\times10^{-5}$ 4; $\alpha(O)=3.59\times10^{-6}$ 5; $\alpha(P)=1.83\times10^{-7}$ 3
/000.1	51/2	906.5 3	100 5	6773.9	$53/2^{-}$	E2	0.00393	$\alpha(K)=0.00328$ 5; $\alpha(L)=0.000507$ 8; $\alpha(M)=0.0001124$ 16
					,			$\alpha(N)=2.60\times10^{-5} 4; \alpha(O)=3.70\times10^{-6} 6; \alpha(P)=1.88\times10^{-7} 3$
7711.2	$57/2^{-}$	937.1 <i>3</i>	100	6773.9	53/2-	E2	0.00366	$\alpha(K)=0.00306\ 5;\ \alpha(L)=0.000469\ 7;\ \alpha(M)=0.0001039\ 15$
								$\alpha(N)=2.40\times10^{-5} 4; \ \alpha(O)=3.42\times10^{-6} 5; \ \alpha(P)=1.753\times10^{-7} 25$

$\gamma(^{155}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α ^{&}	Comments
7820.3	57/2 ⁽⁺⁾	867.7 <i>3</i>	100	6952.6 53/2(+)	E2	0.00431	α (K)=0.00359 5; α (L)=0.000562 8; α (M)=0.0001247 18 α (N)=2.88×10 ⁻⁵ 4; α (O)=4.09×10 ⁻⁶ 6; α (P)=2.06×10 ⁻⁷ 3
8053.9	59/2-	374.2 <i>3</i>	69 7	7680.1 57/2-			
		859.2 <i>3</i>	100 5	7194.5 55/2-	E2	0.00440	α (K)=0.00367 6; α (L)=0.000575 8; α (M)=0.0001277 18 α (N)=2.95×10 ⁻⁵ 5; α (O)=4.19×10 ⁻⁶ 6; α (P)=2.10×10 ⁻⁷ 3
8222.1	61/2 ⁽⁺⁾	401.9 <i>3</i>	34 <i>3</i>	7820.3 57/2 ⁽⁺⁾	E2	0.0284	$\alpha(K)=0.0221 4; \alpha(L)=0.00486 7; \alpha(M)=0.001112 16$ $\alpha(N)=0.000255 4; \alpha(O)=3.41\times10^{-5} 5; \alpha(P)=1.202\times10^{-6} 17$
		930.1 <i>3</i>	100 5	7292.1 57/2 ⁽⁺⁾	E2	0.00372	$\alpha(K)=0.003115; \alpha(L)=0.0004777; \alpha(M)=0.0001058 I5$ $\alpha(N)=2.44\times10^{-5}4; \alpha(Q)=3.48\times10^{-6}5; \alpha(P)=1.780\times10^{-7} 25$
8240.9	59/2	559.8 <i>3</i>	80 8	7680.1 57/2-			E_{v} : poor fit, level-energy difference=560.8.
	,	820.0 <i>3</i>	49 5	7421.0 (55/2-	1		
		948.8 <i>3</i>	100 10	7292.1 57/2(+)	D		
8273.6	$(59/2^{-})$	851.5	100	7421.0 (55/2-	1		
8387.4	61/2 ⁽⁺⁾	1095.1 <i>3</i>	100	7292.1 57/2(+)	E2	0.00266	α (K)=0.00223 4; α (L)=0.000331 5; α (M)=7.30×10 ⁻⁵ 11 α (N)=1.688×10 ⁻⁵ 24; α (O)=2.42×10 ⁻⁶ 4; α (P)=1.281×10 ⁻⁷ 18
8486.6	$61/2^{-}$	213.0 <i>3</i>	12 <i>I</i>	8273.6 (59/2-	D(+Q)		
	,	244.8 <i>3</i>	100 5	8240.9 59/2	D(+Q)		E_{ν} : poor fit, level-energy difference=245.7.
		775.2 3	31 3	7711.2 57/2-	E2	0.00552	$\alpha(K)=0.00457\ 7;\ \alpha(L)=0.000738\ 11;\ \alpha(M)=0.0001645\ 23$ $\alpha(N)=3.80\times10^{-5}\ 6;\ \alpha(O)=5.36\times10^{-6}\ 8;\ \alpha(P)=2.61\times10^{-7}\ 4$
		807.6 <i>3</i>	25 5	7680.1 57/2-			E_{γ} : poor fit, level-energy difference=806.5.
8515.5	$61/2^{-}$	461.7 <i>3</i>	66 7	8053.9 59/2-			
		804.3 <i>3</i>	82 8	7711.2 57/2-			
		835.2 <i>3</i>	100 5	7680.1 57/2-	E2	0.00468	α (K)=0.00389 6; α (L)=0.000615 9; α (M)=0.0001368 20 α (N)=3.16×10 ⁻⁵ 5; α (O)=4.48×10 ⁻⁶ 7; α (P)=2.23×10 ⁻⁷ 4
8742.1	$(63/2^{-})$	226.6 <i>3</i>	76 8	8515.5 61/2-	D(+Q)		
		255.4 <i>3</i>	100 9	8486.6 61/2-	D(+Q)		
		354.9 <i>3</i>	44 4	8387.4 61/2(+)	D		
		468.2	<14	8273.6 (59/2-))		
		519.8 <i>3</i>	78 8	8222.1 61/2 ⁽⁺⁾	D		
8905.5	$65/2^{-}$	163.4 <i>3</i>	100 5	8742.1 (63/2-)	D		
		418.8 3	89 <i>4</i>	8486.6 61/2-	E2	0.0253	$\alpha(K)=0.0199 \ 3; \ \alpha(L)=0.00425 \ 6; \ \alpha(M)=0.000970 \ 14 \ \alpha(N)=0.000222 \ 4; \ \alpha(O)=2.99\times10^{-5} \ 5; \ \alpha(P)=1.084\times10^{-6} \ 16$
8924.5	63/2-	408.9 <i>3</i>	39 4	8515.5 61/2-	(M1+E2)	0.041 14	$\alpha(K)=0.033 \ 13; \ \alpha(L)=0.0056 \ 10; \ \alpha(M)=0.00125 \ 20 \ \alpha(N)=0.00029 \ 5; \ \alpha(O)=4.1\times10^{-5} \ 9; \ \alpha(P)=1.97\times10^{-6} \ 82$
		870.7 <i>3</i>	100 10	8053.9 59/2-			
9086.9	65/2 ⁽⁺⁾	864.9 <i>3</i>	100	8222.1 61/2 ⁽⁺⁾	E2	0.00434	α (K)=0.00362 5; α (L)=0.000566 8; α (M)=0.0001257 18 α (N)=2.90×10 ⁻⁵ 4; α (O)=4.12×10 ⁻⁶ 6; α (P)=2.07×10 ⁻⁷ 3
9279.4	65/2(+)	892.5 <i>3</i>	100 5	8387.4 61/2 ⁽⁺⁾	E2	0.00406	$\alpha(K) = 0.00339 5; \alpha(L) = 0.000525 8; \alpha(M) = 0.0001166 17$ $\alpha(K) = 0.001165 4; \alpha(Q) = 3.83 \times 10^{-6} 6; \alpha(P) = 1.94 \times 10^{-7} 3$
		1057.1 3	81 8	8222.1 61/2 ⁽⁺⁾	E2	0.00285	$\alpha(K) = 0.00240 \ 4; \ \alpha(L) = 0.000357 \ 5; \ \alpha(M) = 7.89 \times 10^{-5} \ 11 \\ \alpha(N) = 1.83 \times 10^{-5} \ 3; \ \alpha(O) = 2.62 \times 10^{-6} \ 4; \ \alpha(P) = 1.374 \times 10^{-7} \ 20$

 $\gamma(^{155}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α &	Comments
9430.5	$65/2^{(+)}$	1042.4 3	100 10	8387.4	$61/2^{(+)}$			
	ŗ	1208.8 <i>3</i>	90 10	8222.1	61/2 ⁽⁺⁾	E2	0.00219	$\alpha(\mathbf{K})=0.00184 \ 3; \ \alpha(\mathbf{L})=0.000267 \ 4; \ \alpha(\mathbf{M})=5.88\times10^{-5} \ 9 \\ \alpha(\mathbf{N})=1.362\times10^{-5} \ 19; \ \alpha(\mathbf{O})=1.96\times10^{-6} \ 3; \ \alpha(\mathbf{P})=1.055\times10^{-7} \ 15; \\ \alpha(\mathbf{PE})=6.16\times10^{-6} \ 10 $
9543.7	(67/2 ⁻)	638.1 <i>3</i>	100 5	8905.5	65/2-	(M1+E2)	0.0130 44	$\alpha(M) = 0.0109 \ 39; \ \alpha(L) = 0.00165 \ 43; \ \alpha(M) = 3.66 \times 10^{-4} \ 92$ $\alpha(N) = 8.5 \times 10^{-5} \ 22; \ \alpha(O) = 1.22 \times 10^{-5} \ 34; \ \alpha(P) = 6.4 \times 10^{-7} \ 25$
		801.8 <i>3</i>	17 2	8742.1	(63/2 ⁻)	E2	0.00512	$\alpha(K) = 0.00425 \ 6; \ \alpha(L) = 0.000679 \ 10; \ \alpha(M) = 0.0001512 \ 22 \ \alpha(N) = 3.49 \times 10^{-5} \ 5; \ \alpha(O) = 4.94 \times 10^{-6} \ 7; \ \alpha(P) = 2.43 \times 10^{-7} \ 4$
9617.7	65/2-	1102.2 3	100	8515.5	61/2-	E2	0.00262	$\alpha(K) = 0.00220 \ 3; \ \alpha(L) = 0.000326 \ 5; \ \alpha(M) = 7.19 \times 10^{-5} \ 10$ $\alpha(K) = 1.664 \times 10^{-5} \ 24; \ \alpha(O) = 2.39 \times 10^{-6} \ 4; \ \alpha(P) = 1.265 \times 10^{-7} \ 18;$ $\alpha(IPF) = 2.87 \times 10^{-7} \ 6$
9649.3	(67/2)	743.7 <i>3</i>	100	8905.5	65/2-	D+Q	0.0089 29	$\alpha(K)=0.0075\ 26;\ \alpha(L)=0.00112\ 30;\ \alpha(M)=2.47\times10^{-4}\ 64$ $\alpha(N)=5.7\times10^{-5}\ 15;\ \alpha(O)=8.2\times10^{-6}\ 23;\ \alpha(P)=4.4\times10^{-7}\ 16$
9668.0 9958.4	67/2 67/2 ⁻	581.1 <i>3</i> 340.6 <i>3</i>	100 100 <i>10</i>	9086.9 9617.7	$65/2^{(+)}$ $65/2^{-}$	D(+Q)		
	1	1033.9 3	70 7	8924.5	63/2-	E2	0.00299	$\alpha(K)=0.00251 4; \alpha(L)=0.000375 6; \alpha(M)=8.29\times10^{-5} 12$ $\alpha(N)=1.92\times10^{-5} 3; \alpha(Q)=2.75\times10^{-6} 4; \alpha(P)=1.437\times10^{-7} 21$
10177.6	69/2(+)	746.8 <i>3</i>	88 9	9430.5	65/2 ⁽⁺⁾	E2	0.00600	$\alpha(K) = 0.00496 \ 7; \ \alpha(L) = 0.000811 \ 12; \ \alpha(M) = 0.000181 \ 3 \ \alpha(N) = 4.17 \times 10^{-5} \ 6; \ \alpha(O) = 5.88 \times 10^{-6} \ 9; \ \alpha(P) = 2.82 \times 10^{-7} \ 4$
		898.4 <i>3</i>	100 10	9279.4	65/2 ⁽⁺⁾	E2	0.00400	$\alpha(K) = 0.003345; \alpha(L) = 0.0005178; \alpha(M) = 0.0001148 I6$ $\alpha(K) = 2.65 \times 10^{-5} 4; \alpha(Q) = 3.77 \times 10^{-6} 6; \alpha(P) = 1.91 \times 10^{-7} 3$
10290.3	71/2	622.4 <i>3</i>	100	9668.0	67/2	E2	0.00915	$a(K)=0.00747 \ 11; \ \alpha(L)=0.001307 \ 19; \ \alpha(M)=0.000294 \ 5$ $\alpha(K)=0.676 \ 10^{-5} \ 10; \ \alpha(D)=9.41 \times 10^{-6} \ 14; \ \alpha(P)=4.22 \times 10^{-7} \ 6$
10422.7	$(71/2^{-})$	879.1 <i>3</i>	100	9543.7	(67/2 ⁻)	E2	0.00419	a(K)=0.00350 5; a(L)=0.00544 8; a(M)=0.0001209 17 a(K)=0.00350 5; a(L)=0.00544 8; a(M)=0.0001209 17
10519.9	69/2-	902.1 3	100	9617.7	65/2-	E2	0.00397	a(K)=2.00315; a(L)=0.005128; a(M)=0.000113716 a(K)=0.00315; a(L)=0.005128; a(M)=0.000113716
10735.6	71/2	1086.2 <i>3</i>	100	9649.3	(67/2)	E2	0.00270	$\alpha(K) = 0.00227 \ 4; \ \alpha(L) = 0.000336 \ 5; \ \alpha(M) = 7.43 \times 10^{-5} \ 11$ $\alpha(K) = 1.719 \times 10^{-5} \ 24; \ \alpha(D) = 2.47 \times 10^{-6} \ 4; \ \alpha(P) = 1.302 \times 10^{-7} \ 10^{-$
10858.5	$(71/2^{-})$	900.1.3	100	9958.4	$67/2^{-}$			$u(1)=1.719\times10$ 27, $u(0)=2.47\times10$ 7, $u(1)=1.502\times10$ 19
11036.2	$(75/2^{-})$	613.5 3	100	10422.7	$(71/2^{-})$	E2	0.00947	α (K)=0.00773 <i>11</i> ; α (L)=0.001360 <i>20</i> ; α (M)=0.000306 <i>5</i> α (N)=7.04×10 ⁻⁵ <i>10</i> ; α (O)=9.78×10 ⁻⁶ <i>14</i> ; α (P)=4.36×10 ⁻⁷ <i>7</i>
11159.9	$(73/2^+)$	869.7 <i>3</i>	100 11	10290.3	71/2			
		982.2 <i>3</i>	52 5	10177.6	$69/2^{(+)}$			
11323.6	(75/2)	588.0 <i>3</i>	100	10735.6	71/2			
11330.7	$(73/2^{-})$	810.8 <i>3</i>	100	10519.9	$69/2^{-}$			
11674.4	$(79/2^{-})$	350.7 <i>3</i>	26 3	11323.6	(75/2)			
	、. /	638.3 <i>3</i>	100 5	11036.2	(75/2 ⁻)	E2	0.00862	α (K)=0.00705 <i>10</i> ; α (L)=0.001221 <i>18</i> ; α (M)=0.000274 <i>4</i> α (N)=6.31×10 ⁻⁵ <i>9</i> ; α (O)=8.79×10 ⁻⁶ <i>13</i> ; α (P)=3.99×10 ⁻⁷ <i>6</i>
11810.4?		487.0 ^C	100	11323.6	(75/2)			
12195.8	(77/2)	1159.6 <i>3</i>	100	11036.2	$(75/2^{-})$	D(+Q)	1.01×10^{-3}	$\alpha(K)=0.000852$ 12; $\alpha(L)=0.0001133$ 16; $\alpha(M)=2.47\times10^{-5}$ 4

Adopted Levels, Gammas (continued)								
							γ ⁽¹⁵⁵ Ho) (co	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	α &	Comments
								α (N)=5.72×10 ⁻⁶ 8; α (O)=8.32×10 ⁻⁷ 12; α (P)=4.72×10 ⁻⁸ 7; α (IPF)=9.98×10 ⁻⁶ 16
12454.3	(81/2)	258.7 779.7 <i>3</i>	<33 100 <i>3</i>	12195.8 11674.4	(77/2) $(79/2^{-})$			
12597.2	(81/2)	922.9.3	100	11674.4	$(79/2^{-})$	D		
13139.2	(85/2)	684.8 <i>3</i>	100	12454.3	(81/2)	E2	0.00731	$\alpha(K)=0.00601\ 9;\ \alpha(L)=0.001013\ 15;\ \alpha(M)=0.000227\ 4$ $\alpha(N)=5\ 23\times10^{-5}\ 8;\ \alpha(O)=7\ 32\times10^{-6}\ 11;\ \alpha(P)=3\ 41\times10^{-7}\ 5$
13489.7	(85/2)	892.7 <i>3</i>	100	12597.2	(81/2)	E2	0.00406	$\alpha(K) = 0.00339 5; \ \alpha(L) = 0.000525 8; \ \alpha(M) = 0.0001165 17$ $\alpha(K) = 2.69 \times 10^{-5} 4; \ \alpha(Q) = 3.83 \times 10^{-6} 6; \ \alpha(P) = 1.94 \times 10^{-7} 3$
13557.0	(83/2 ⁻)	1882.6 <i>3</i>	100	11674.4	(79/2 ⁻)	E2	1.17×10 ⁻³	$\alpha(\mathbf{K})=0.000799 \ I2; \ \alpha(\mathbf{L})=0.0001097 \ I6; \ \alpha(\mathbf{M})=2.40\times10^{-5} \ 4 \\ \alpha(\mathbf{N})=5.56\times10^{-6} \ 8; \ \alpha(\mathbf{O})=8.10\times10^{-7} \ I2; \ \alpha(\mathbf{P})=4.58\times10^{-8} \ 7; \\ \alpha(\mathbf{PE})=0.000229 \ 4 $
13601.1	(83/2 ⁻)	1926.6 <i>3</i>	100	11674.4	(79/2 ⁻)	E2	1.15×10 ⁻³	$\alpha(\text{M}=0.000766 \ 1I; \ \alpha(\text{L})=0.0001049 \ 15; \ \alpha(\text{M})=2.30\times10^{-5} \ 4$ $\alpha(\text{N})=5.32\times10^{-6} \ 8; \ \alpha(\text{O})=7.75\times10^{-7} \ 1I; \ \alpha(\text{P})=4.39\times10^{-8} \ 7; \ \alpha(\text{PE})=0.000249 \ 4$
13759.2	(87/2)	269.6 <i>3</i> 620.0	100 <i>10</i>	13489.7 13139 2	(85/2)	(D+Q)		
13989.8	$(85/2^{-})$	388 7 3	100 14	13601.1	$(83/2^{-})$	D(+0)		
15707.0	(00/2)	432.8 3	100 14	13557.0	$(83/2^{-})$	(M1+E2)	0.035 12	$\alpha(K)=0.029 \ 11; \ \alpha(L)=0.0047 \ 10; \ \alpha(M)=0.00106 \ 19 \ \alpha(N)=0.00024 \ 5; \ \alpha(O)=3.5\times10^{-5} \ 8; \ \alpha(P)=1.70\times10^{-6} \ 71$
14195.5	(85/2)	1598.3 <i>3</i>	100	12597.2	(81/2)	E2	1.38×10 ⁻³	$\alpha(K) = 0.001081 \ I6; \ \alpha(L) = 0.0001509 \ 22; \ \alpha(M) = 3.31 \times 10^{-5} \ 5$ $\alpha(K) = 7.67 \times 10^{-6} \ I1; \ \alpha(O) = 1.113 \times 10^{-6} \ I6; \ \alpha(P) = 6.20 \times 10^{-8} \ 9;$ $\alpha(IPF) = 0.0001075 \ I5$
14202.8	(89/2)	443.7 <i>3</i>	100 8	13759.2	(87/2)	(M1+E2)	0.033 11	$\alpha(K) = 0.027 \ 10; \ \alpha(L) = 0.0044 \ 9; \ \alpha(M) = 0.00099 \ 19$ $\alpha(N) = 0.00023 \ 5; \ \alpha(O) = 3.2 \times 10^{-5} \ 8; \ \alpha(P) = 1.60 \times 10^{-6} \ 66$
		1063.4 <i>3</i>	8 1	13139.2	(85/2)			
14554.4	(87/2 ⁻)	997.4 <i>3</i>	100	13557.0	(83/2-)	E2	0.00322	α (K)=0.00269 4; α (L)=0.000407 6; α (M)=9.00×10 ⁻⁵ 13 α (N)=2.08×10 ⁻⁵ 3; α (O)=2.97×10 ⁻⁶ 5; α (P)=1.544×10 ⁻⁷ 22
14699.9	(87/2 ⁻)	1142.9 <i>3</i>	100	13557.0	(83/2 ⁻)	E2	0.00244	$\alpha(K)=0.00205 \ 3; \ \alpha(L)=0.000301 \ 5; \ \alpha(M)=6.64\times10^{-5} \ 10 \\ \alpha(N)=1.538\times10^{-5} \ 22; \ \alpha(O)=2.21\times10^{-6} \ 3; \ \alpha(P)=1.177\times10^{-7} \ 17; \\ \alpha(IPF)=1.236\times10^{-6} \ 21$
14888.5		1287.5 ^C 1331.5	100	13601.1 13557.0	(83/2 ⁻) (83/2 ⁻)			

14

[†] When the same $E\gamma$ was measured in the ε decay dataset and in the reaction datasets, the more precise value in the ε decay is adopted. For the reaction datasets (that are similar), the $E\gamma$ values from the ¹²⁴Sn(³⁷Cl,6n γ) dataset set were preferred because the measurement is the most extensive, more recent, and it also gives $E\gamma$ uncertainties (while the (HI,xn γ) does not).

[‡] From ε decay dataset for γ 's from levels ≤ 683 and from 124 Sn(37 Cl, $6n\gamma$) dataset for γ 's from levels populated in this and in (HI,xn γ) datasets (from the latter if exclusively measuren therein); exceptions are noted in comments.

$\gamma(^{155}\text{Ho})$ (continued)

- [#] For those levels populated in the ε decay dataset, the values are obtained from the α (K)exp data. For those populated in the ¹²⁴Sn(³⁷Cl,6n γ) or (HI,Xn γ) reaction datasets, they are deduced from $\gamma(\theta)$ data (for the first reaction by a so called angular-intensity ratio method see the dataset for definition). For both of these datasets quadrupole transitions are assumed to be stretched E2 (rather than M2), which are generally observed in the heavy ion reactions. For dipole transitions where the electric or magnetic character is more difficult to assess witout polarization measurements D character was generally adopted except for cases where the measured mixing ratio of the Q component suggests that M1+E2 can be adopted (the E1 transitions being rather pure dipole).
- [@] From (HI,xnγ). The positive signs have been inserted by the evaluator, since 1984Ha35 do not include them. For ¹²⁴Sn(³⁷Cl,6nγ) 2015Re03 did not measure mixing ratios.
- & Additional information 1.
- ^{*a*} Additional information 2.
- ^b Multiply placed with intensity suitably divided.
- ^c Placement of transition in the level scheme is uncertain.

From ENSDF

Legend

Adopted Levels, Gammas

 $^{155}_{67}\mathrm{Ho}_{88}$

