$^{159}{ m W}~lpha$ decay 2011Sa59,1996Pa01,1981Ho10

Type Author Citation Literature Cutoff Date
Full Evaluation N. Nica NDS 160, 1 (2019) 21-Oct-2019

Parent: ¹⁵⁹W: E=0.0; J^{π} =(7/2⁻); $T_{1/2}$ =8.4 ms 7; $Q(\alpha)$ =6450 4; % α decay≈99.5

¹⁵⁹W-J^{π}: suggested in 2011Sa59 based on their 7/2⁻ assignment of ¹⁵⁵Hf g.s. (see comment in Adopted Levels section): the reduced α-decay width of ¹⁵⁹W is compatible with an s-wave decay, indicationg that the g.s. of ¹⁵⁹W is also 7/2⁻.

 159 W-T_{1/2}: From 1996Pa01 report T_{1/2}=8.2 ms 7. 1981Ho10 report T_{1/2}=7.3 ms 27. 2019Hi06 report 10.3 ms +21-15. Weighted average of all values is 8.4 ms +7-6.

 159 W-Q(α): From 2017Wa10.

 159 W-Q(α): Additional information 1.

¹⁵⁹W-%α decay: From the ratio of calculated half-lives for α and for $\varepsilon+\beta^+$ decay, as summarized in 1981HoZM. Calculated $T_{1/2}(\alpha)=5.5$ ms (near the observed $T_{1/2}$ value); calculated $T_{1/2}(\varepsilon+\beta^+)=1.2$ s. 1996Pa01 report %α=92 23, while 1981HoZM quote %α=200 120.

Additional information 2.

Data set includes the XUNDL compilation, by W. D. Kulp (NNDC, BNL) from 2011Sa59.

2011Sa59: source material produced in the reaction $^{106}\text{Cd}(^{58}\text{Ni},p3n\gamma)$. Reaction products separated using recoil ion transport unit (RITU) gas-filled separator and implanted into DSSDs in the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer. Measured α , protons, α and delayed α correlations. Characteristic alpha decay of the ^{159}W ground state and anti-coincidence with any decay within 20 ms after the initial decay observed population of both $11/2^-$ and $1/2^+$ states in ^{155}Lu .

1996Pa01: source material produced in heavy-ion fusion reactions followed by separation in a recoil mass separator and analysis using a double-sided Si strip detector.

1981HoZM: Sources produced in heavy-ion induced reactions followed by velocity separation and implantation into position-sensitive Si detector array.

¹⁵⁵Hf Levels

E(level) J^{π} $T_{1/2}$ Comments

0.0 $(7/2^{-})$ 843 ms 30 J^{π} , $T_{1/2}$: from Adopted Levels dataset.

Eα E(level) $Iα^{\ddagger}$ HF[†] Comments

6295 5 0.0 100 1.96 18 Eα: weighted average of 6292 5 (1996Pa01) and 6299 6 (1981Ho10).

[†] The nuclear radius parameter $r_0(^{155}Hf)=1.5566~82$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

 $^{^{\}ddagger}$ For absolute intensity per 100 decays, multiply by ≈ 0.995 .