		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

Parent: ¹⁵⁵Tb: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=5.32$ d 6; $Q(\varepsilon)=820$ 10; % ε decay=100.0 Additional information 1.

The decay scheme is due primarily to 1976Me10. However, using the results of the (n,γ) study of 1986Sc25 (see 154 Gd (n,γ) dataset for details about this article), the evaluator has chosen to eliminate several of the levels proposed by 1976Me10 and to change the placement of some of their γ rays.

1976Me10: chemical and isotope separated sources. γ radiation studied using Ge(Li), LEPS and Compton-suppression detectors. ce spectra studied using a 2-mm × 1-cm² Si(Li) detector. Measured E γ ,I γ , Ice, α .

Other studies include: γ(θ) in nuclear orientation (1996KrZZ, 1980Bu27, 1975Wa01); electron spectra using magnetic spectrometers and spectrographs (1962Ha24, 1967Ko12, 1969Ga28, 1975Ch04, 1980Ab20). γ radiation using various Ge detectors (1969Me09 (includes one of the authors of 1976Me10), 1969Ga28, 1980Ab20). E0 admixtures are discussed by, e. g., 1986AbZW.

¹⁵⁵Gd Levels

1976Me10 report levels at 346.06 ($J^{\pi}=(5/2^{-})$), 488.65 ($J^{\pi}=(5/2^{-})$, 423.22 ($J^{\pi}=1/2^{-}$) and 721.06 ($J^{\pi}=3/2,5/2^{+}$). The first two of these were shown to deexcite via only one transition each, and these were placed elsewhere in the level scheme from the (n, γ) study of 1986Sc25. The third of these was assigned by 1976Me10 as the bandhead of the 1/2[530] band. 1986Sc25, however, place this $1/2^{-}$ level, and one of its two proposed deexciting γ 's, elsewhere in the scheme. Additionally, 1986Sc25 propose a 454.47 level that is not reported by 1976Me10. Inspection of the γ branching from this level reveals that some of the γ 's reported by 1976Me10 to deexcite their 721 level are associated with the decay of this 454 level. The evaluator has not included the 346, 423, 488.65 and 721 levels but has incorporated the 454 in the decay scheme given here.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	$3/2^{-}$	stable	
59.9994 [#] 24	5/2-		
86.530 [@] 4	5/2+	6.50 ns 4	$T_{1/2}$: from the adopted values. This value is based on a number of studies of both the ¹⁵⁵ Tb ε decay and the ¹⁵⁵ Eu β^- decay.
105.3140 [@] 25	3/2+	1.16 ns <i>1</i>	$T_{1/2}$: from the adopted values. This value is based on a number of studies of both the ¹⁵⁵ Tb ε decay and the ¹⁵⁵ Eu β^- decay.
107.532 [@] 15	9/2+		
117.963 [@] 5	7/2+		
146.064 [#] 10	$7/2^{-}$		
266.601 ^{&} 6	5/2+		
268.582 ^{<i>a</i>} 7	3/2+		
286.944 ^b 5	3/2-		
321.293 ^b 7	5/2-		
326.017 ^a 8	5/2+		
350.313 ^c 17	7/2+		
367.512 ^d 6	1/2+		
427.211 ^a 5	$3/2^+$		
450.009 7 451.572 ^e 9	$\frac{3}{2}$		
454.459 [°] 4	$5/2^{-}$		
488.678 ^d 6	$5/2^{+}$		
559.319 <i>f</i> 10	1/2-		
592.060 ^g 7	3/2-		
614.791 ^{<i>f</i>} 8	3/2-		

¹⁵⁵Tb ε decay 1976Me10 (continued)

155Gd Levels (continued)

E(level) [†]	Jπ‡
647.770 ^g 5	5/2-
658.96 ^f 5	$5/2^{-}$

[†] Listed values were calculated from a least-squares fit of the γ -ray energies. χ^2 norm = 12.4 greater than χ^2 critical = 1.4.

[‡] From adopted values.

- [#] Band(A): g.s. band. Conf=3/2(521).
- ^(a) Band(B): 3/2[651] band. This band is strongly Coriolis mixed with other Nilsson states originating from the i13/2 spherical shell-model state, as well as $\Delta N=2$ mixed with 3/2[402].
- & Band(C): 5/2[642] band. This band is strongly Coriolis mixed with other Nilsson states originating from the i13/2 spherical shell-model state.
- ^{*a*} Band(D): 3/2[402] band. $\Delta N=2$ mixed with 3/2[651].
- ^b Band(E): 3/2[532] band.
- ^c Band(F): Head of 5/2[523] band.
- ^d Band(G): 1/2[400] band.
- ^e Band(H): 1/2[530] band member.
- ^{*f*} Band(I): $K^{\pi} = 1/2^{-}$ band. Contains 1/2[521] and the K-2 γ vibration built on the g.s. band.
- g Band(J): K^{π}=3/2⁻ band. β vibration built on the g.s. band.

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(161 10)	658.96	0.0039 4	9.17 9	εK=0.736 11; εL=0.201 8; εM+=0.063 3
(172 10)	647.770	0.054 5	8.11 8	εK=0.746 9; εL=0.194 7; εM+=0.0604 24
(205 10)	614.791	0.051 4	8.33 7	εK=0.767 6; εL=0.178 4; εM+=0.0548 15
(228 10)	592.060	0.183 15	7.89 6	εK=0.777 4; εL=0.171 3; εM+=0.0522 11
(261 10)	559.319	0.139 11	8.15 6	εK=0.787 3; εL=0.1631 22; εM+=0.0494 8
(331 10)	488.678	0.93 7	7.57 5	εK=0.8018 16; εL=0.1525 12; εM+=0.0457 4
(366 10)	454.459	0.104 9	8.61 5	εK=0.8064 13; εL=0.1491 10; εM+=0.0445 4
(368 10)	451.572	0.020 3	9.34 7	ε K=0.8067 13; ε L=0.1488 9; ε M+=0.0444 4
(369 10)	450.609	0.054 7	8.91 7	εK=0.8068 12; εL=0.1487 9; εM+=0.0444 4
(393 10)	427.211	4.7 4	7.03 5	εK=0.8094 11; εL=0.1469 8; εM+=0.0438 3
(452 10)	367.512	7.1 4	6.99 4	ε K=0.8145 8; ε L=0.1430 6; ε M+=0.04243 20
(494 10)	326.017	0.66 5	8.10 4	εK=0.8173 7; εL=0.1410 5; εM+=0.04172 16
(499 10)	321.293	0.305 22	8.45 4	εK=0.8176 6; εL=0.1408 5; εM+=0.04165 16
(533 10)	286.944	1.18 7	7.92 4	εK=0.8194 6; εL=0.1394 4; εM+=0.04117 14
(551 10)	268.582	7.1 4	7.18 <i>3</i>	εK=0.8203 5; εL=0.1387 4; εM+=0.04094 13
(553 10)	266.601	17.9 10	6.78 <i>3</i>	εK=0.8204 5; εL=0.1387 4; εM+=0.04092 13
(715 10)	105.3140	38 <i>3</i>	6.69 4	εK=0.8261 3; εL=0.13447 20; εM+=0.03947 7
(733 10)	86.530	5.9 19	7.52 14	εK=0.8265 3; εL=0.13411 19; εM+=0.03934 7
(760 10)	59.9994	5.2 5	7.61 5	εK=0.8272 3; εL=0.13364 18; εM+=0.03918 6
(820 10)	0.0	95	7.44 25	εK=0.8285 2; εL=0.13268 15; εM+=0.03885 6
				Is: calculated by 1976Me10 from measured Ice(K) and $\varepsilon(K)/\varepsilon(\text{total})$ ratios using

K-fluorescence yield $\omega(K)=0.934$ 22.

[†] Absolute intensity per 100 decays.

$\gamma(^{155}\text{Gd})$

Iy normalization: Calculated assuming the ε branching to the g.s.=9% 5, deduced by 1976Me10 from the measured K x-ray intensities.

ω

E_{γ}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ ^{@a}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{c}$	Comments
10.49 4	0.6 2	117.963	7/2+	107.532	9/2+	M1+E2	0.033 +9-12	3.3×10 ² 6		$\begin{aligned} \alpha(\text{L}) = 2.6 \times 10^2 5; \ \alpha(\text{M}) = 58 \ 11 \\ \alpha(\text{N}) = 13.2 \ 23; \ \alpha(\text{O}) = 1.9 \ 3; \ \alpha(\text{P}) = 0.0972 \ 18 \\ \text{E}_{\gamma}: \text{ from } 1975\text{Ch04.} \\ \text{I}_{\gamma}: \text{ calculated from } \text{I}_{\gamma}(57.98\gamma) \text{ and the ratio} \\ \text{I}_{\gamma}(10.4\gamma)/I_{\gamma}(57.98\gamma) \text{ determined in } ^{155}\text{Eu} \\ \beta^{-} \text{ decay. } 1976\text{Me10 report } \text{I}(\gamma + ce) \approx 183, \\ \text{ deduced from ce}(10.4\gamma)/ce}(31.4\gamma), \text{ as} \\ \text{ determined in } ^{155}\text{Eu} \ \beta^{-} \text{ decay, and} \\ \text{I}(\gamma + ce)(31.4\gamma). \text{ This leads to } \text{I}_{\gamma}(10.4\gamma) \approx 0.5 \\ \text{ in agreement with the listed value.} \\ \delta: \text{ adopted value, calculated by evaluator from subshell ratios } \text{L1/L1=1.0 } I, \text{ L2/L1=0.28 } I4, \\ \text{L3/L1=0.27 } I2 \ (1975\text{Ch04}). \end{aligned}$
18.769 <i>15</i>	2.52 15	105.3140	3/2+	86.530	5/2+	M1+E2	+0.274 4	361 11		$\alpha(L)=280 \ 8; \ \alpha(M)=64.8 \ 19$ $\alpha(N)=14.4 \ 4; \ \alpha(O)=1.87 \ 6; \ \alpha(P)=0.01652 \ 24$ δ : adopted value. Values calculated by evaluator for this dataset: 0.274 4 from L1/L1=1.000 45, L2/L1=3.605 60, L3/L1=5.000 70 (1975Ch04); 0.283 17 from L1/L1=1.00 10, L2/L1=3.30 33, L3/L1=4.50 45, M/L1=3.20 32, N/L1=0.750 75 (1962Ha24, with 10% unc adopted by evalutor).
20.999 23	≈0.065	107.532	9/2+	86.530	5/2+	E2 [‡]		2.62×10 ³	≈170	ce(L)/(γ +ce)=0.774 8; ce(M)/(γ +ce)=0.181 4 ce(N)/(γ +ce)=0.0400 9; ce(O)/(γ +ce)=0.00509 11; ce(P)/(γ +ce)=1.51×10 ⁻⁶ 4 α (L)=2.03×10 ³ 3; α (M)=475 8 α (N)=105.0 16; α (O)=13.36 20; α (P)=0.00395 6 E _{γ} : from 1975Ch04. I _{γ} : calculated from listed I(γ +ce) and α (E2). I _(γ+ce) : estimated from I γ (18.77 γ) and Ice ratio from 1962Ha24.
26.533 6	15.7 5	86.530	5/2+	59.9994	5/2-	E1		1.95		α (L)=1.530 22; α (M)=0.336 5 α (N)=0.0738 11; α (O)=0.00965 14; α (P)=0.000328 5
31.43 9	0.87 20	117.963	7/2+	86.530	5/2+	M1+E2	0.370 14	51 3		α (L)=39.2 23; α (M)=9.1 6 α (N)=2.03 12; α (O)=0.268 16; α (P)=0.00336 6 I_{γ} : calculated from $I_{\gamma}(57\gamma)$ and ratio $I_{\gamma}(31\gamma)/I_{\gamma}(57\gamma)$ measured in ¹⁵⁵ Eu β^{-1}

1						¹⁵⁵ Τb ε d	ecay 1976	Me10 (cont	inued)
							$\gamma(^{155}\text{Gd})$ (cor	tinued)	
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ ^{@a}	α b	Comments
									decay (1969Me09).
rao o#									δ : adopted value.
×39.8"									
45.29	95 63.9.8	105.3140	$3/2^{+}$	59,9994	$5/2^{-}$	E1		0.437	$\alpha(L) = 0.343.5; \alpha(M) = 0.0747.11$
13.27	, , , , , , , , , , , , , , , , , , , ,	105.5110	572	57.777	5/2	D 1		0.157	$\alpha(\text{N}) = 0.01665\ 24;\ \alpha(\text{O}) = 0.00231\ 4;\ \alpha(\text{P}) = 9.60 \times 10^{-5}\ 14$
^x 55.65	0.08 0.08 6								Shown deexciting the 647.7 level by 1976Me10. 1986Sc25, in their
57.00	2 5 9 1 7 2	2 117.062	7/0+	50.0004	5/2-	E 1		1 0 2 0	(n,γ) study, do not report a γ having this energy.
57.98.	5.5 6.172	2 117.905	1/2	39.9994	5/2	EI		1.238	$\alpha(\mathbf{N}) = 1.020 \ 15; \ \alpha(\mathbf{L}) = 0.1/12 \ 24; \ \alpha(\mathbf{M}) = 0.05/2 \ 0$ $\alpha(\mathbf{N}) = 0.00834 \ 12; \ \alpha(\mathbf{O}) = 0.001181 \ 17; \ \alpha(\mathbf{P}) = 5.31 \times 10^{-5} \ 8$
59.63	0.85 1	5 427.211	$3/2^{+}$	367.512	$1/2^{+}$	E2(+M1)	≥0.50	14.7 39	$\alpha(K)=4.9 \ I8; \ \alpha(L)=7.6 \ 43; \ \alpha(M)=1.8 \ I1$
			- /		1				$\alpha(N)=0.40\ 23;\ \alpha(O)=0.052\ 29;\ \alpha(P)=3.4\times10^{-4}\ 16$
									E_{γ} : from 1967Ko12.
									I_{γ} : from $I_{\gamma}(59.6\gamma)/I_{\gamma}(160.5\gamma+340.6\gamma)$ as given in the Adopted
									Levels, Gammas data set and from $1\gamma(160.5\gamma+340.6\gamma)$ reported here one computes $1\gamma(59.6\gamma)=1.1.4$, 1976Me10 give
									$I_{\nu}(59.6\nu) < 1$. The listed value represents a reasonable
									combination of these two.
60.012	2 <i>3</i> 44.2 <i>15</i>	59.9994	5/2-	0.0	3/2-	M1+E2	-0.198 8	9.14	$\alpha(K)=7.25 \ 11; \ \alpha(L)=1.47 \ 4; \ \alpha(M)=0.329 \ 9$
									$\alpha(N)=0.0749$ 20; $\alpha(O)=0.0110$ 3; $\alpha(P)=0.000543$ 8
									0.165 15 from $L1/L1=1.0$ 1 $L2/L1=0.277.28$ $L3/L1=0.239.24$
									M1/L1=0.196 20, M2/L1=0.047 5, M3/L1=0.047 5, N/L1=0.044
									4 (1967Ko12, with 10% unc adopted by evalutor); 0.207 12
									(1967Ha24) from L1/L1=1.00 <i>10</i> , L2/L1=0.276 28, L3/L1=0.248
									23, M/L1=0.510 57, N/L1=0.114 77 (1902Ha24, with 10% unc adopted by evalutor)
61.49	4 1.14 1.	5 488.678	$5/2^{+}$	427.211	$3/2^{+}$	M1+E2	≈0.42	≈9.41	$\alpha(K) \approx 6.33; \ \alpha(L) \approx 2.39; \ \alpha(M) \approx 0.549$
									$\alpha(N) \approx 0.1236; \ \alpha(O) \approx 0.01704; \ \alpha(P) \approx 0.000467$
^x 79.2	<1	267.512	1/0+	206.044	2/2-	not E1		0.501	Mult.: from Ice(K) \approx 0.8, as reported by 1976Me10.
80.6 /	0.6 4	367.512	1/2*	286.944	3/2	(E1)		0.521	$\alpha(\mathbf{K}) = 0.435$ /; $\alpha(\mathbf{L}) = 0.06/8$ <i>IU</i> ; $\alpha(\mathbf{M}) = 0.014/0$ <i>22</i> $\alpha(\mathbf{N}) = 0.00221$ 5; $\alpha(\mathbf{O}) = 0.000470$ 7; $\alpha(\mathbf{M}) = 2.26\times10^{-5}$ 4
86.0.2	2 06	146 064	$7/2^{-}$	59 9994	5/2-	M1+E2	-0 184 23	3 1 5	$\alpha(K) = 0.005515; \alpha(C) = 0.0004797; \alpha(P) = 2.50 \times 10^{-4} 4$ $\alpha(K) = 2.594; \alpha(L) = 0.436.16; \alpha(M) = 0.096.4$
00.0 2		110.001	1/2	57.777	5/2	1011 1 22	0.101 25	5.10	$\alpha(N) = 0.0220 \ 9; \ \alpha(O) = 0.00332 \ 11; \ \alpha(P) = 0.000192 \ 4$
									E_{γ} : from 1962Ha24.
									I_{γ} : from 1969Ga28. Other: ≈ 0.7 , from Ice(K) ≈ 2 (1976Me10).
									From e.g. the 155 Eu β^{-} decay. From that decay, I/2 would be
									expected to be ≈ 5.9 . Note that the very strong 86.55 γ may have
									influenced the value deduced for $I\gamma(86.0 \gamma)$ in the ¹⁵⁵ Tb ε
									decay.
01.77	2 1054 05	06 500	C 10+	0.0	2/2-	F 1		0.424	δ: adopted value. 0.19 4 (1975Kr04, γγ(θ)) for this dataset.
86.55	3 12/6 25	86.530	5/2+	0.0	3/2-	EI		0.431	$\alpha(\mathbf{K})=0.3500.5; \ \alpha(\mathbf{L})=0.00555.8; \ \alpha(\mathbf{M})=0.01203.17$
1									$\alpha(N)=0.002/14$; $\alpha(O)=0.0003946$; $\alpha(P)=1.9/\times 10^{-5}3$

 $^{155}_{64}\mathrm{Gd}_{91}$ -4

						155 Tb ε de	ecay 1	.976Me10 (co	ontinued)
							γ(¹⁵⁵ Gd)	(continued)	
E_{γ}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [@]	δ ^{@a}	$\alpha^{\boldsymbol{b}}$	Comments
99.02 25	3.46 15	367.512	$1/2^{+}$	268.582	3/2+	M1 [‡]		2.07 4	$\alpha(K)=1.75$ 3; $\alpha(L)=0.253$ 4; $\alpha(M)=0.0549$ 9
101.16 <i>1</i>	6.4 4	427.211	3/2+	326.017	5/2+	M1+E2	≈0.50	≈2.04	$\alpha(N)=0.01263\ 20;\ \alpha(O)=0.00196\ 3;\ \alpha(P)=0.0001305\ 21$ $\alpha(K)\approx 1.541;\ \alpha(L)\approx 0.388;\ \alpha(M)\approx 0.0880$
^x 102.4 1	0.6 2					E2,M1		2.09 22	$\begin{array}{l} \alpha(N) \approx 0.0199; \ \alpha(O) \approx 0.00284; \ \alpha(P) \approx 0.0001093 \\ \alpha(K) = 1.34 \ 25; \ \alpha(L) = 0.58 \ 36; \ \alpha(M) = 0.135 \ 86 \end{array}$
^x 103.3 <i>1</i>	0.4 2					M1		1.83	$\alpha(N)=0.030\ 19;\ \alpha(O)=0.0041\ 24;\ \alpha(P)=8.6\times10^{-3}\ 33$ $\alpha(K)=1.549\ 23;\ \alpha(L)=0.224\ 4;\ \alpha(M)=0.0486\ 7$ $\alpha(N)=0.01118\ 16;\ \alpha(O)=0.001734\ 25;\ \alpha(P)=0.0001156\ 17$ Tentatively placed by 1976Me10 between the 592 and 488.65 levels. This latter level is now not believed to exist, and the γ branching from the 592 level, as reported by 1986Sc25, does not include a 103.3 γ .
105.318 <i>3</i>	1000	105.3140	3/2+	0.0	3/2-	E1		0.254	$\alpha(K)=0.213 \ 3; \ \alpha(L)=0.0320 \ 5; \ \alpha(M)=0.00693 \ 10 \ \alpha(N)=0.001567 \ 22; \ \alpha(O)=0.000230 \ 4; \ \alpha(P)=1.201\times10^{-5} \ 17$
^x 118.0 [#]	< 0.1					not E1			1976Me10 indicate that the existence of this transition is doubtful.
120.6 <i>3</i>	2.74 25	266.601	5/2+	146.064	7/2-	E1		0.176 <i>3</i>	Mult: from fee(K)=0.2 and fy. $\alpha(K)=0.1483\ 23;\ \alpha(L)=0.0219\ 4;\ \alpha(M)=0.00474\ 8$ $\alpha(L)=0.001075\ 42;\ \alpha(M)=0.00474\ 8$
^x 125.1 <i>1</i> ^x 129.3 ^e 1	0.2 <i>1</i> 0.23 ^{<i>e</i>} 16								α (N)=0.001075 17; α (O)=0.0001386 25; α (P)=8.51×10 ° 15 I _γ : 1976Me10 report I _γ =0.25 15 for this γ and suggest two possible placements for it. A small fraction (0.020 4 units) of this intensity can be associated with the decay of the 450.6 level. The other placement suggested by 1976Me10 is out of a 721.06 level. However, such a level is now not believed to be populated in the ¹⁵⁵ Tb ε decay. It has been assumed here that the remainder of this 129.3 γ intensity is unplaced.
129.3 ^{ef} 1	0.020 ^e 4	450.609	3/2-	321.293	5/2-				I_{γ} : calculated using $I_{\gamma}(129.3\gamma)/I_{\gamma}(450.5\gamma)$ from the Adopted Levels, Gammas data set and $I_{\gamma}(450.6\gamma)$. 1976Me10 report $I_{\gamma}=0.25$ 15 for this γ and suggest two possible placements for it. One of these is from this level and the other is out of a 721.06 level. However, a 721.06 level now is not believed to be populated in the ¹⁵⁵ Tb decay.
132.0 ^{<i>f</i>} 1 ^{<i>x</i>} 136.2 1	0.3 <i>I</i> 0.15 <i>I0</i>	559.319	1/2-	427.211	3/2+				1976Me10 suggest two placements for this γ , namely out of the the 423.2 and the 559.3 levels. However, the evaluator has not adopted the 423.2 level proposed by these authors, and the (n,γ) data do not find a 136.2 γ that deexcites the 559 level.
138.29 ^{<i>f</i>} 7	0.96 9	488.678	5/2+	350.313	7/2+	(M1)		0.800	α (K)=0.676 <i>10</i> ; α (L)=0.0972 <i>14</i> ; α (M)=0.0211 <i>3</i> α (N)=0.00486 <i>7</i> ; α (O)=0.000754 <i>11</i> ; α (P)=5.04×10 ⁻⁵ <i>7</i>

S

From ENSDF

 $^{155}_{64}\mathrm{Gd}_{91}$ -5

 $^{155}_{64}\text{Gd}_{91}$ -5

Т

						¹⁵⁵ Τb ε	decay 1976N	Me10 (con	tinued)	
							$\gamma(^{155}\text{Gd})$ (cor	ntinued)		
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ [@] a	α b	$I_{(\gamma+ce)}^{c}$	Comments
141.5 <i>1</i>	0.16 8	592.060	3/2-	450.609	3/2-	(M1)		0.750		$\begin{array}{l} \alpha(\mathrm{K}) = 0.634 \ 9; \ \alpha(\mathrm{L}) = 0.0911 \ 13; \ \alpha(\mathrm{M}) = 0.0198 \ 3\\ \alpha(\mathrm{N}) = 0.00456 \ 7; \ \alpha(\mathrm{O}) = 0.000707 \ 10; \ \alpha(\mathrm{P}) = 4.72 \times 10^{-5} \\ 7 \end{array}$
146.05 <i>3</i>	1.9 4	146.064	7/2-	0.0	3/2-	(E2)		0.649		$\alpha(K)=0.398\ 6;\ \alpha(L)=0.194\ 3;\ \alpha(M)=0.0453\ 7$ $\alpha(N)=0.01015\ 15;\ \alpha(O)=0.001361\ 19;$ $\alpha(P)=2\ 12\times 10^{-5}\ 3$
148.64 <i>1</i>	105.5 9	266.601	5/2+	117.963	7/2+	M1+E2	-0.14 <i>I</i>	0.653		$\alpha(I) = 2.12 \times 10^{-5}$ S $\alpha(L) = 0.0812 \ I2; \ \alpha(M) = 0.0177 \ 3$ $\alpha(N) = 0.00407 \ 6; \ \alpha(O) = 0.000628 \ 9; \ \alpha(P) = 4.07 \times 10^{-5} \ 6$ δ : weighted average of $-0.14 \ I \ (1996 \text{ krZZ}) \text{ and } -0.12$ $2 \ (1975 \text{ Wall}) \ 1976 \text{ Me}(10 \text{ report } \delta = 0.14 \ 4$
150.63 <i>5</i>	1.19 7	268.582	3/2+	117.963	7/2+	(E2)		0.583		$\alpha(K)=0.363 5; \alpha(L)=0.1702 24; \alpha(M)=0.0397 6$ $\alpha(N)=0.00888 13; \alpha(O)=0.001194 17;$ $\alpha(P)=1.95\times10^{-5} 3$ E _{\gamma} : 1976Me10 suggest that this peak may be a doublet. However, from the γ branching from this level as observed in (n, γ), the I γ value computed for this γ is 1.04 16, reasonably close to that seen here. From I γ considerations, then, this peak is probably not a doublet
158.57 5	1.73 9	427.211	3/2+	268.582	3/2+	(M1)		0.545		$\alpha(K)=0.461\ 7;\ \alpha(L)=0.0661\ 10;\ \alpha(M)=0.01436\ 21$ $\alpha(N)=0.00330\ 5;\ \alpha(O)=0.000513\ 8;\ \alpha(P)=3.43\times10^{-5}\ 5$
159.1 <i>1</i>	0.3 1	266.601	5/2+	107.532	9/2+					
160.51 <i>10</i>	31.1 6	427.211	3/2+	266.601	5/2+	M1(+E2) [‡]		0.50 3		$\alpha(K)=0.37 \ 8; \ \alpha(L)=0.097 \ 33; \ \alpha(M)=0.0220 \ 82$ $\alpha(N)=0.0050 \ 18; \ \alpha(O)=7.0\times10^{-4} \ 21; \ \alpha(P)=2.48\times10^{-5}$ 84
161.29 <i>1</i>	109.8 <i>11</i>	266.601	5/2+	105.3140	3/2+	M1+E2	-0.28 +6-7	0.515		α (K)=0.429 8; α (L)=0.068 3; α (M)=0.0148 7 α (N)=0.00340 14; α (O)=0.000518 17; α (P)=3.15×10 ⁻⁵ 8 δ : from 1996KrZZ. Others: -0.47 +14-97 (1975Wa01); \approx 0.31 (1976Me10).
162.65 2	≈0.7	488.678	5/2+	326.017	5/2+	[M1,E2]		0.48 3	≈1	ce(K)/(γ+ce)=0.24 4; ce(L)/(γ+ce)=0.062 20; ce(M)/(γ+ce)=0.0142 51 ce(N)/(γ+ce)=0.0032 12; ce(O)/(γ+ce)=4.5×10 ⁻⁴ 14; ce(P)/(γ+ce)=1.62×10 ⁻⁵ 55 α(K)=0.36 7; α(L)=0.092 31; α(M)=0.0209 76 α(N)=0.0047 17; α(O)=6.7×10 ⁻⁴ 20; α(P)=2.39×10 ⁻⁵ 81 E _γ : from 1980Ab20. I _γ : photons not observed by 1976Me10, who report I(γ+ce)≈1. Listed value computed by the evaluator from I(γ+ce) and the listed α value
163.28 <i>1</i>	176.9 <i>18</i>	268.582	3/2+	105.3140	3/2+	M1+E2	0.05 4	0.502		$\alpha(K)=0.424~6; ~\alpha(L)=0.0610~10; ~\alpha(M)=0.01326~21$ $\alpha(N)=0.00305~5; ~\alpha(O)=0.000473~7; ~\alpha(P)=3.16\times10^{-5}~5$

From ENSDF

 $^{155}_{64}$ Gd₉₁-6

 $^{155}_{64}\mathrm{Gd}_{91}$ -6

						¹⁵⁵ Τb ε ο	decay 1976	Me10 (cor	ntinued)
							$\gamma(^{155}\text{Gd})$ (cc	ntinued)	
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^{@a}	α ^b	Comments
^x 169.0 <i>1</i> 175.29 <i>2</i>	0.1 <i>1</i> 1.77 <i>18</i>	321.293	5/2-	146.064	7/2-	(M1)		0.412	δ: weighted average of: 0.03 5 (1996KrZZ) and 0.13 9 (1975Wa01). 1976Me10 report δ≈0.1. Existence of this γ is questionable (1976Me10). α (K)=0.349 5; α (L)=0.0499 7; α (M)=0.01084 <i>16</i> α (N)=0.00249 4; α (O)=0.000387 6; α (P)=2.59×10 ⁻⁵ 4
^x 178.0 <i>1</i> 180.08 <i>1</i>	0.3 2 297 6	266.601	5/2+	86.530	5/2+	M1+E2	-0.214 10	0.380	α (K)=0.319 5; α (L)=0.0478 7; α (M)=0.01043 15 α (N)=0.00240 4; α (O)=0.000368 6; α (P)=2.35×10 ⁻⁵ 4 δ : weighted average of -0.215 14 (1975Wa01), -0.188 +16-22
181.69 9	16.8 2	286.944	3/2-	105.3140	3/2+	E1		0.0586	(1980Bu27),and $-0.24\ 2$ (1996KrZZ). 1976Me10 list δ =0.18. α (K)=0.0496 7; α (L)=0.00707 10; α (M)=0.001529 22 α (N)=0.000348 5: α (O)=5.21×10 ⁻⁵ 8: α (P)=3.00×10 ⁻⁶ 5
182.1 <i>I</i> <i>x</i> 185.3 <i>I</i> <i>x</i> 186.0 <i>I</i>	4.4 2 0.3 2 0.05 5	268.582	3/2+	86.530	5/2+	(M1)		0.371	$\alpha(K)=0.314\ 5;\ \alpha(L)=0.0449\ 7;\ \alpha(M)=0.00974\ 14$ $\alpha(N)=0.00224\ 4;\ \alpha(O)=0.000348\ 5;\ \alpha(P)=2.33\times10^{-5}\ 4$
^x 188.3 <i>I</i> ^x 191.4 <i>I</i>	0.03 5 0.10 4 0.036 15					(M1)		0.323	$\alpha(K)=0.273 \ 4; \ \alpha(L)=0.0391 \ 6; \ \alpha(M)=0.00848 \ 12 \ \alpha(N)=0.00195 \ 3; \ \alpha(O)=0.000303 \ 5; \ \alpha(P)=2.03\times10^{-5} \ 3$ Placed between the 614 and 423 levels by 1976Me10. However, this latter level is now not believed to exist and the α branching from
193.319 <i>4</i>	0.038 7	647.770	5/2-	454.459	5/2-	M1,E2		0.28 4	the 614 level is now not beneved to exist, and the γ branching from the 614 level, as reported by 1986Sc25, does not include a 191.4 γ . $\alpha(K)=0.22 \ 5; \ \alpha(L)=0.049 \ 11; \ \alpha(M)=0.0110 \ 28$ $\alpha(N)=0.0025 \ 6; \ \alpha(O)=0.00036 \ 7; \ \alpha(P)=1.48\times10^{-5} \ 50$ 1976Me10 report Ice(K)≈0.11. E_{γ} ,Mult.: from 1986Sc25, (n, γ). I _{γ} : computed by the evaluator from I $\gamma(501.7\gamma+529.7\gamma)$ and the γ branching out of this level as reported by 1986Sc25. This γ is
200.411 4	9.16 20	286.944	3/2-	86.530	5/2+	E1		0.0452	shown unplaced by 1976Me10. $\alpha(K)=0.0383 \ 6; \ \alpha(L)=0.00542 \ 8; \ \alpha(M)=0.001171 \ 17$ $\alpha(N)=0.000267 \ 4; \ \alpha(O)=4.01\times10^{-5} \ 6; \ \alpha(P)=2.34\times10^{-6} \ 4$ $\delta: 1996KrZZ \text{ report } \delta=0.17 \ 13. \ 1975Wa01 \text{ report } \delta=-0.16 \ 12.$
201.0 <i>10</i> 203.37 <i>2</i> 206.54 <i>2</i>	0.5 <i>3</i> 1.15 <i>12</i> 6.8 5	488.678 321.293 266.601	5/2+ 5/2- 5/2+	286.944 117.963 59.9994	3/2 ⁻ 7/2 ⁺ 5/2 ⁻	E1		0.0417	$\alpha(K)=0.0353 5; \alpha(L)=0.00500 7; \alpha(M)=0.001080 16$
208.05 5	9.2 5	326.017	5/2+	117.963	7/2+	M1		0.257	α (N)=0.000246 4; α (O)=3.70×10 ⁻⁵ 6; α (P)=2.17×10 ⁻⁶ 3 α (K)=0.217 3; α (L)=0.0310 5; α (M)=0.00673 10 α (N)=0.001550 22; α (O)=0.000241 4; α (P)=1.614×10 ⁻⁵ 23
208.58 5	2.3 5	268.582	3/2+	59.9994	5/2-	E1		0.0406	$\alpha(N)=0.001350\ 22;\ \alpha(G)=0.000241\ 4;\ \alpha(P)=1.014\times10^{-2}\ 25$ $\alpha(K)=0.0344\ 5;\ \alpha(L)=0.00487\ 7;\ \alpha(M)=0.001052\ 15$ $\alpha(N)=0.000240\ 4;\ \alpha(O)=3.61\times10^{-5}\ 5;\ \alpha(P)=2.12\times10^{-6}\ 3$
216.02 5 218.4 ^f 1	5.4 <i>4</i> 0.3 <i>2</i>	321.293 326.017	5/2 ⁻ 5/2 ⁺	105.3140 107.532	3/2 ⁺ 9/2 ⁺				

 $^{155}_{64}\mathrm{Gd}_{91}$ -7

						155 Tb ε d	ecay 1976M	e10 (continue	ed)
							$\gamma(^{155}\text{Gd})$ (conti	nued)	
E_{γ}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@a}$	$\alpha^{\boldsymbol{b}}$	Comments
220.07 5	6.63 19	488.678	5/2+	268.582	3/2+	M1,E2		0.19 3	$\alpha(K)=0.15 \ 4; \ \alpha(L)=0.031 \ 5; \ \alpha(M)=0.0070 \ 13$ $\alpha(N)=0.0016 \ 3; \ \alpha(O)=0.000231 \ 25; \ \alpha(P)=1.03\times10^{-5} \ 36$ Mult.: from 1986Sc25, (n, γ). 1976Me10 report mult=(E1).
220.70 5	20.24 20	326.017	5/2+	105.3140	3/2+	M1(+E2)	-0.1 3	0.218 8	$\alpha(K)=0.184 \ 10; \ \alpha(L)=0.0264 \ 12; \ \alpha(M)=0.0057 \ 4 \\ \alpha(N)=0.00132 \ 7; \ \alpha(O)=0.000205 \ 7; \ \alpha(P)=1.37\times10^{-5} \ 10 \\ \delta: \ from \ 1975Wa01. \ 1976Me10 \ report \ \delta \le 0.33.$
222.0 <i>1</i> 226.95 <i>1</i>	0.8 <i>4</i> 5.91 <i>8</i>	488.678 286.944	5/2+ 3/2-	266.601 59.9994	5/2+ 5/2-	M1		0.203	α (K)=0.1715 24; α (L)=0.0244 4; α (M)=0.00530 8 α (N)=0.001219 17; α (O)=0.000189 3; α (P)=1.272×10 ⁻⁵ 18
230.2 1	0.07 3 0.69 8	350.313	7/2+	117.963	7/2+	(M1)		0.190	$\alpha(K)=0.1609\ 23;\ \alpha(L)=0.0229\ 4;\ \alpha(M)=0.00497\ 7$ $\alpha(N)=0.001143\ 16;\ \alpha(O)=0.0001776\ 25;\ \alpha(P)=1.193\times10^{-5}\ 17$
234.78 1	1.32 8	321.293	5/2-	86.530	$5/2^{+}$				
237.5 ^f 4	0.11 8	559.319	1/2-	321.293	5/2-				
239.45 1	9.03 8	326.017	5/2+	86.530	5/2+	M1(+E2)	0.0 +2-3	0.175 4	$\alpha(K)=0.148 \ 3; \ \alpha(L)=0.0211 \ 4; \ \alpha(M)=0.00457 \ 9$ $\alpha(N)=0.001053 \ 18; \ \alpha(O)=0.0001635 \ 25; \ \alpha(P)=1.10\times10^{-5} \ 3$ $\delta: \ from \ 1975Wa01. \ 1996KrZZ \ report \ \delta=0.0 \ +5-2 \ or \ 1.5 \ +11-8. \ 1976Me10 \ report \ \delta<0.25.$
242.80 2	0.62 3	350.313	7/2+	107.532	9/2+	E2(+M1)		0.14 3	$\alpha(K)=0.11 \ 3; \ \alpha(L)=0.0223 \ 21; \ \alpha(M)=0.0050 \ 6 \\ \alpha(N)=0.00113 \ 12; \ \alpha(O)=0.000166 \ 9; \ \alpha(P)=7.9\times10^{-6} \ 27$
245.00^{f} 9	0.11 6	350.313	7/2+	105.3140	$3/2^{+}$				
x246.05 9	$0.05\ 2$ 0.2 1								Shown deexciting the 592 level by 1976Me10.
261.25 1	1.58 25	321.293	5/2-	59.9994	5/2-	(M1)		0.1384	α (K)=0.1172 <i>17</i> ; α (L)=0.01662 <i>24</i> ; α (M)=0.00361 <i>5</i> α (N)=0.000830 <i>12</i> ; α (O)=0.0001289 <i>18</i> ; α (P)=8.67×10 ⁻⁶ <i>13</i>
262.27 1	210.6 21	367.512	1/2+	105.3140	3/2+	M1(+E2)	-0.06 +8-6	0.1368	$\alpha(K)=0.1158\ 17;\ \alpha(L)=0.01645\ 23;\ \alpha(M)=0.00357\ 5$ $\alpha(N)=0.000822\ 12;\ \alpha(O)=0.0001276\ 18;\ \alpha(P)=8.57\times10^{-6}\ 13$ δ : from 1975Wa01.
266.02 8	0.11 1	326.017	$5/2^+$	59.9994	5/2-	51		0.0011	
268.56 1	28.3 19	268.582	3/2	0.0	3/2	EI		0.0211	$\alpha(K)=0.0179 \ 3; \ \alpha(L)=0.00249 \ 4; \ \alpha(M)=0.000539 \ 8 \ \alpha(N)=0.0001230 \ 18; \ \alpha(O)=1.86\times10^{-5} \ 3; \ \alpha(P)=1.129\times10^{-6} \ 16$
271.0 ^{<i>f</i>} 5 <i>x</i> 275.38 8	0.08 5 0.12 5	592.060	3/2-	321.293	5/2-				
⁴ 278.6 1	0.1 1	267 510	1/2+	06 500	510+	E2		0.0729	· (V) 0.0559 9. · (I) 0.01400 20. (M) 0.00210 5
281.06 1	12.05 15	307.512	1/2 '	80.530	5/2'	E2		0.0738	$\alpha(\mathbf{N})=0.00518 \ \delta; \ \alpha(\mathbf{L})=0.01400 \ 20; \ \alpha(\mathbf{M})=0.00318 \ S \ \alpha(\mathbf{N})=0.000719 \ 10; \ \alpha(\mathbf{O})=0.0001016 \ 15; \ \alpha(\mathbf{P})=3.44\times10^{-6} \ S$
286.96 1	12.62 25	286.944	3/2-	0.0	3/2-	M1+E2	-0.14 5	0.1069 17	$\alpha(K) = 0.0904 \ 14; \ \alpha(L) = 0.01289 \ 18; \ \alpha(M) = 0.00280 \ 4$ $\alpha(N) = 0.000644 \ 9; \ \alpha(O) = 9.99 \times 10^{-5} \ 14; \ \alpha(P) = 6.67 \times 10^{-6} \ 11$ $\delta: \text{ from } 1996\text{KrZZ}. \ 1975\text{Wa01 report } -0.24 \le \delta \le 0.21.$ $1976\text{Me} 10 \text{ report } \delta \le 0.50$
290.2 ^{df} 1	0.08^{d} 3	350.313	$7/2^{+}$	59.9994	5/2-				1970/1010 Teport 0<0.50.
	0.00 5	2001010	., 2	0,,,,,,	0,2				

 ∞

From ENSDF

 $^{155}_{64}\mathrm{Gd}_{91}$ -8

 $^{155}_{64}\text{Gd}_{91}$ -8

Т

						155 Tb $arepsilon$ de	ecay 197	6Me10 (cont	tinued)
							$\gamma(^{155}\text{Gd})$ (c	ontinued)	
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^{@a}	$\alpha^{\boldsymbol{b}}$	Comments
290.2 ^{<i>df</i>} 1 x294.75 15	$0.08^{d} \ 3$ $0.05 \ 2$	559.319	1/2-	268.582	3/2+				Tentatively proposed by 1976Me10 to deexcite a 721.06 level. However, the evaluator does not regard the evidence for such a level in the ¹⁵⁵ Tb decay as convincing.
x303.1 <i>1</i> 304.6 5	0.09 <i>6</i> 0.020 <i>3</i>	450.609	3/2-	146.064	7/2-				Shown as unplaced by 1976Me10 and having $I\gamma \le 0.05$. However, in (n,γ) a 304.53 γ with $I\gamma = 0.020$ 3 (on this intensity scale) is is found to deexcite this level. I_{γ} : calculated using $I\gamma(304.5\gamma)/I\gamma(450.5\gamma)$ from the Adopted Levels. Common data set and $I_{\gamma}(450.5\gamma)$
305.11 10	0.12 5	592.060	3/2-	286.944	3/2-	(M1)		0.0914	$\alpha(K)=0.0774 \ 11; \ \alpha(L)=0.01093 \ 16; \ \alpha(M)=0.00237 \ 4 \ \alpha(N)=0.000546 \ 8; \ \alpha(O)=8.48 \times 10^{-5} \ 12; \ \alpha(P)=5.72 \times 10^{-6} \ 8$
309.21 <i>3</i> ^x 317.9 <i>1</i>	0.19 <i>3</i> 0.08 <i>4</i>	427.211	3/2+	117.963	7/2+				Shown deexciting a 423.2 level by 1976Me10. However, the (n,γ) data do not confirm the existence of a level with the properties proposed by these authors. The evaluator has assumed that such a
321.83 <i>I</i>	7.2 3	427.211	3/2+	105.3140	3/2+	M1+E2	≈0.77	≈0.0679	level does not exist and thus has shown this γ as being unplaced. $\alpha(K)\approx 0.0562; \ \alpha(L)\approx 0.00914; \ \alpha(M)\approx 0.00201$ $\alpha(N)\approx 0.000460; \ \alpha(O)\approx 6.95\times 10^{-5}; \ \alpha(P)\approx 4.00\times 10^{-6}$ δ : 1996KrZZ report $-5.2 \leq \delta \leq -0.5$.
323.53 8 325.44 9 ^x 328 1 3	0.9 <i>3</i> 0.18 <i>5</i> 0.08 <i>4</i>	592.060 592.060	3/2 ⁻ 3/2 ⁻	268.582 266.601	3/2 ⁺ 5/2 ⁺				· – –
336.56 1	1.3 1	454.459	5/2-	117.963	7/2+	E1		0.01197	$\alpha(K)=0.01019 \ 15; \ \alpha(L)=0.001402 \ 20; \ \alpha(M)=0.000303 \ 5 \\ \alpha(N)=6.92\times10^{-5} \ 10; \ \alpha(O)=1.054\times10^{-5} \ 15; \ \alpha(P)=6.54\times10^{-7} \ 10 \\ \text{Shown unplaced by 1976Me10.} \\ \text{Mult.: from 1986Sc25,(n,\gamma). From } \alpha(K)\exp=0.023 \ 5, \ 1976Me10 \\ \text{give mult}=E1+M2 \text{ or } E22 \\ \end{array}$
340.67 1	47.1 9	427.211	3/2+	86.530	5/2+	M1(+E2)	0.02 7	0.0683	$\alpha(K)=0.0579 \ 9; \ \alpha(L)=0.00814 \ 12; \ \alpha(M)=0.001765 \ 25 \ \alpha(N)=0.000406 \ 6; \ \alpha(O)=6.32\times10^{-5} \ 9; \ \alpha(P)=4.26\times10^{-6} \ 7 \ \delta: \ 1976Me10 \ report \ \delta<0.50 \ 1975Wa01 \ report \ \delta=2.5 \ +5-4$
342.58 5	0.31 8	488.678	5/2+	146.064	7/2-				
346.036 <i>25</i>	0.3 <i>3</i> 0.26 <i>4</i>	451.572	1/2-	105.3140	3/2+	E1		0.01118	α (K)=0.00952 <i>14</i> ; α (L)=0.001308 <i>19</i> ; α (M)=0.000282 <i>4</i> α (N)=6.45×10 ⁻⁵ <i>9</i> ; α (O)=9.84×10 ⁻⁶ <i>14</i> ; α (P)=6.13×10 ⁻⁷ <i>9</i> Reported by 1976Me10 to deexcite a 346.06 level. Mult.: from the adopted values. 1976Me10 report mult=(E2).
x349.1 9 364.06 <i>1</i> 367.36 ^e <i>1</i>	0.039 <i>16</i> 0.46 8 31 ^e 5	450.609 367.512	3/2 ⁻ 1/2 ⁺	86.530 0.0	5/2 ⁺ 3/2 ⁻	E1+M2	≈0.04	≈0.00999	$\alpha(K) \approx 0.00850; \ \alpha(L) \approx 0.001173; \ \alpha(M) \approx 0.000253$ $\alpha(N) \approx 5.80 \times 10^{-5}; \ \alpha(O) \approx 8.85 \times 10^{-6}; \ \alpha(P) \approx 5.55 \times 10^{-7}$ I_{γ} : computed by the evaluator using $I_{\gamma}(367.3\gamma)/I_{\gamma}(262.7\gamma)$ from

From ENSDF

						¹⁵⁵ Tb	ε decay 1976	Ae10 (continu	ued)
							$\gamma(^{155}\text{Gd})$ (con	tinued)	
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$\delta^{@a}$	$\alpha^{\boldsymbol{b}}$	Comments
367.36 ^e 1	59 ^e 7	427.211	3/2+	59.9994	5/2-	E1		0.00967	the Adopted Levels, Gammas data set and $I\gamma(262.2\gamma)$, with the result then scaled up so that the summed γ intensity for the two placements equals 90, the value (92.3 8) given by 1976Me10 for their 367.36 γ , after removal of the contribution (2.0) of a 367.9 γ seen in (n, γ) but not reported by 1976Me10 (see comment on the 367.9 γ from the 454.4 level). Note that the split reported by these authors (\approx 37) agrees well with that given here, but they associate it with the other placement (out of the 427.2 level) of this γ . α (K)=0.00823 12; α (L)=0.001129 16; α (M)=0.000243 4
									$ α(N)=5.57×10^{-5} 8; α(O)=8.50×10^{-6} 12; α(P)=5.32×10^{-7} 8 $ I_{γ} : computed by the evaluator using $I_{\gamma}(160.5\gamma+340.6\gamma)/I_{\gamma}(367.2\gamma)$ from the Adopted Levels, Gammas data set and $I_{\gamma}(160.5\gamma+340.6\gamma)$, with the result then scaled up so that the summed γ intensity for the two placements equals 90, the value (92.3 8) given by 1976Me10 for their 367.36 γ , after removal of the contribution (2.0) of a 367.9 γ seen in (n, γ) but not reported by 1976Me10 (see comment on the 367.9 γ from the 454.4 level). Note that the split reported by these authors (≈57) agrees well with that given here, but they associate it with the other placement (from the 367.3 level) of this γ . $ δ: 1996KrZZ$ report $δ=-0.03 5$, 1976Me10 report $δ\approx0.04$.
367.929 1	2.0 2	454.459	5/2-	86.530	5/2+				 b) for 1986Sc25, (n,γ). E_γ: from 1986Sc25, (n,γ). I_γ: computed by the evaluator from Iγ(454.45γ) and the γ branching out of this level, as reported by 1986Sc25. Note that this is only ≈2% of the intensity of the 367.35 peak, as reported by 1976Me10, and was not separately indicated by them.
370.73 1	9.07 25	488.678	5/2+	117.963	7/2+	M1+E2	-0.25 +14-18	0.0534 24	α(K)=0.0452 22; α(L)=0.00643 15; α(M)=0.00140 3 α(N)=0.000321 7; α(O)=4.98×10-5 14; α(P)=3.31×10-6 18 Iγ: γ shown doubly placed by 1976Me10. From the γ branching out of this level as observed in (n,γ) (1986Sc25), however, one computes Iγ=9.02 for this γ. The evaluator has thus concluded that all the intensity (9.07) reported by 1976Me10 for this γ is associated with the deexcitation of this level. δ: from 1996KrZZ. 1976Me10 report δ<0.33.
379.14 3	0.28 8	647.770	5/2-	268.582	3/2+				
381.06 3	0.21 2	488.678	$5/2^+$ $5/2^+$	107.532	$9/2^+$ $3/2^+$	M1		0.0501	$\alpha(\mathbf{K}) = 0.0425.6; \alpha(\mathbf{I}) = 0.00596.0; \alpha(\mathbf{M}) = 0.001201.18$
303.33 1	1.05 15	400.0/0	5/2	105.5140	5/2	171 1		0.0501	$\alpha(N)=0.004250, \alpha(L)=0.005900, \alpha(N)=0.00129176$ $\alpha(N)=0.0002975; \alpha(O)=4.62\times10^{-5}7; \alpha(P)=3.13\times10^{-6}5$
390.62 1	0.75 15	450.609	3/2-	59.9994	5/2-	M1		0.0477	$\alpha(K)=0.0405\ 6;\ \alpha(L)=0.00567\ 8;\ \alpha(M)=0.001229\ 18$ $\alpha(N)=0.000283\ 4;\ \alpha(O)=4.40\times10^{-5}\ 7;\ \alpha(P)=2.98\times10^{-6}\ 5$
391.60 <i>1</i>	0.12 5	451.572	$1/2^{-}$	59.9994	$5/2^{-}$	E2		0.0273	Mult.: 1976Me10 indicate the possibility of an E0 component.

						¹⁵⁵ Τb ε deca	ay <mark>197</mark>	6Me10 (contin	nued)			
$\gamma(^{155}\text{Gd})$ (continued)												
Eγ	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ ^{@a}	$\alpha^{\boldsymbol{b}}$	Comments			
394.6 5	0.08 5	454.459	5/2-	59.9994	5/2-							
x396.0 5	0.08 1											
402.16 <i>1</i>	2.87 18	488.678	5/2+	86.530	5/2+	M1		0.0443	$\alpha(K)=0.0376 \ 6; \ \alpha(L)=0.00525 \ 8; \ \alpha(M)=0.001138 \ 16 \ \alpha(N)=0.000262 \ 4; \ \alpha(O)=4.07\times10^{-5} \ 6; \ \alpha(P)=2.76\times10^{-6} \ 4$			
									Mult.: 1976Me10 indicate the possibility of an E0 component.			
427.18 <i>1</i>	1.09 <i>3</i>	427.211	3/2+	0.0	3/2-	E1		0.00676	$\alpha(K)=0.00576\ 8;\ \alpha(L)=0.000783\ 11;\ \alpha(M)=0.0001689\ 24$ $\alpha(N)=3.87\times10^{-5}\ 6;\ \alpha(Q)=5.92\times10^{-6}\ 9;\ \alpha(P)=3.76\times10^{-7}\ 6$			
428 7 1	0.04.2	488 678	$5/2^{+}$	59 9994	$5/2^{-}$				$u(1)=3.07\times10^{-0}, u(0)=3.02\times10^{-0}, u(1)=3.70\times10^{-0}$			
445 98 1	0.39.9	592.060	$3/2^{-}$	146 064	$\frac{3}{2}$							
450 64 2	1 12 9	450 609	$3/2^{-}$	0.0	3/2-	M1(+F2)		0.0257.73	$\alpha(K) = 0.0214.66$; $\alpha(L) = 0.0033.6$; $\alpha(M) = 0.00073.12$			
150.012	1.12 >	150.009	5/2	0.0	5/2	111(122)		0.0237 73	$\alpha(\mathbf{N}) = 0.0017 \ 3; \ \alpha(\mathbf{D}) = 2.6 \times 10^{-5} \ 5; \ \alpha(\mathbf{D}) = 1.52 \times 10^{-6} \ 54$			
451.60 2	0.39 9	451.572	1/2-	0.0	3/2-	M1,E2		0.0256 73	$\begin{array}{l} \alpha(N)=0.00017 \ 3, \ \alpha(O)=2.0\times10^{-5} \ 5, \ \alpha(P)=1.02\times10^{-5} \ 54 \\ \alpha(N)=0.00017 \ 3; \ \alpha(O)=2.5\times10^{-5} \ 5; \ \alpha(P)=1.51\times10^{-6} \ 54 \end{array}$			
454.45 <i>1</i>	0.79 8	454.459	5/2-	0.0	3/2-	M1		0.0323	α: computed assuming δ =1. α(K)=0.0274 4; α(L)=0.00382 6; α(M)=0.000827 12 α(N)=0.000190 3: α(Q)=2.96×10 ⁻⁵ 5: α(P)=2.01×10 ⁻⁶ 3			
XA7A 11 & 15	<0.015								$u(1)=0.000190$ 5, $u(0)=2.90\times10$ 5, $u(1)=2.01\times10$ 5			
4/4.11 <i>13</i>	≤0.015											
^x 484.8 [∞] 1	0.012 6											
486.88 15	0.96 8	592.060	$3/2^{-}$	105.3140	3/2+	E1		0.00500	$\alpha(K)=0.00427$ 6; $\alpha(L)=0.000577$ 8; $\alpha(M)=0.0001242$ 18			
488.65 15	0.68 12	488.678	5/2+	0.0	3/2-	E1		0.00496	$\alpha(N)=2.85\times10^{-5} 4; \ \alpha(O)=4.37\times10^{-6} 7; \ \alpha(P)=2.81\times10^{-7} 4 \\ \alpha(K)=0.00423 6; \ \alpha(L)=0.000572 8; \ \alpha(M)=0.0001232 18$			
									$\alpha(N)=2.82\times10^{-5} 4; \ \alpha(O)=4.33\times10^{-6} 6; \ \alpha(P)=2.78\times10^{-7} 4$			
^x 493.9 1	0.014 7											
^x 496.1 ^f 1	0.018 9								Shown deexciting a questionable 556.1 level by 1976Me10.			
499.24 6	0.037 6	559.319	$1/2^{-}$	59,9994	$5/2^{-}$							
501.70 7	0.46 3	647.770	5/2-	146.064	$7/2^{-}$	M1+E2	<1.0	0.022 3	$\alpha(K)=0.019$ 3; $\alpha(L)=0.00272$ 24; $\alpha(M)=0.00059$ 5			
			- 1						$\alpha(N) = 0.000136 \ l^2; \ \alpha(O) = 2.10 \times 10^{-5} \ 20; \ \alpha(P) = 1.36 \times 10^{-6} \ 21$			
505 52 1	1 81 11	592,060	$3/2^{-}$	86 530	$5/2^{+}$	E1+M2	≈0.14	≈0.00602	$\alpha(K) \approx 0.000190 12$, $\alpha(C) \approx 2.100010 - 20$, $\alpha(C) = 1.00010 - 21$			
0001021	1101 11	07210000	0/2	001000	0/2			0100002	$\alpha(N) \sim 3.58 \times 10^{-5}$: $\alpha(O) \sim 5.50 \times 10^{-6}$: $\alpha(P) \sim 3.55 \times 10^{-7}$			
50972	0.010.4	614 791	3/2-	105 3140	3/2+				$u(1) \sim 5.56 \times 10^{-5}, u(0) \sim 5.50 \times 10^{-5}, u(1) \sim 5.55 \times 10^{-5}$			
512.80.0	0.051.8	658.96	5/2-	146.064	7/2-							
520.76.6	0.051 0	647 770	5/2-	117 063	7/2+	F1		0.00414	$\alpha(\mathbf{K}) = 0.00354.5; \alpha(\mathbf{I}) = 0.000476.7; \alpha(\mathbf{M}) = 0.0001024.15$			
529.70 0	0.47 8	047.770	5/2	117.905	112	EI		0.00414	$a(\mathbf{K}) = 0.00534.5, a(\mathbf{L}) = 0.000470.7, a(\mathbf{K}) = 0.0001024.15$ $a(\mathbf{K}) = 2.25 \times 10^{-5}.4, a(\mathbf{C}) = 2.61 \times 10^{-6}.5, a(\mathbf{D}) = 2.22 \times 10^{-7}.4$			
532.09 5	1.81 25	592.060	3/2-	59.9994	5/2-	E2		0.01186	$\alpha(N) = 2.53 \times 10^{-5} 4; \ \alpha(L) = 0.001693 24; \ \alpha(M) = 0.00975 6$ $\alpha(N) = 8.54 \times 10^{-5} 42; \ \alpha(Q) = 1.260 \times 10^{-5} 42; \ \alpha(R) = 6.54 \times 10^{-7} 40$			
x538 15 3	0.013.9								$\alpha_{(11)} = 0.34 \times 10^{-12}, \alpha_{(0)} = 1.209 \times 10^{-10}, \alpha_{(\Gamma)} = 0.34 \times 10^{-10}$			
542 45 2	0.015.0	647 770	5/2-	105 2140	$2/2^{+}$							
551 70 1	0.10 0	047.770 617 701	3/2-	50 0004	5/2 5/2-	M1(+E2)	<0.50	0.0196 10	$\alpha(K) = 0.0157.8 \alpha(I) = 0.00221.0 \alpha(M) = 0.000478.19$			
JJ4./8 I	0.199	014./91	3/2	37.7774	5/2	$WII(\pm E2)$	≥0.30	0.0180 10	$u(\mathbf{K}) = 0.01376, u(\mathbf{L}) = 0.002217, u(191) = 0.00047676$			
550 22 1	512	550 210	1/2-	0.0	2/2-	MICEO	<0.50	0.0192.0	$\alpha(N)=0.000110$ 5; $\alpha(O)=1.71\times10^{-5}$ /; $\alpha(P)=1.15\times10^{-6}$ /			
559.32 1	5.4 5	559.519	1/2	0.0	3/2	MI(+E2)	≤0.50	0.0182 9	$\alpha(\mathbf{K}) = 0.0134 6; \ \alpha(\mathbf{L}) = 0.00216 9; \ \alpha(\mathbf{M}) = 0.000468 18$			
507 (0. 1	0.15.2		5 / <u>0</u> -	50.000 (5 IO -	E0. E2.14		0.0120.20	$\alpha(N)=0.000108\ 4;\ \alpha(O)=1.67\times10^{-5}\ 7;\ \alpha(P)=1.12\times10^{-6}\ 7$			
587.69 4	0.16 3	647.770	5/2-	59.9994	$5/2^{-}$	E0+E2,M1		0.0130 38	$\alpha(K)=0.0109\ 34;\ \alpha(L)=0.0016\ 4;\ \alpha(M)=0.00035\ 8$			

 $^{155}_{64}\mathrm{Gd}_{91}$ -11

 $^{155}_{64}\mathrm{Gd}_{91}$ -11

From ENSDF

¹⁵⁵ Tb ε decay 1976Me10 (continued)												
							$\gamma(^{155}\text{Gd})$) (continued)				
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	δ ^{@a}	$\alpha^{\boldsymbol{b}}$	Comments			
592.08 1	0.78 8	592.060	3/2-	0.0	3/2-	E0+E2,M1		0.0128 38	$\begin{aligned} &\alpha(\mathrm{N}) = 8.1 \times 10^{-5} \ 18; \ \alpha(\mathrm{O}) = 1.2 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 7.8 \times 10^{-7} \ 27 \\ &\alpha: \text{ weighted average of } 0.24 \ 5 \ (1976\mathrm{Me10}) \text{ and } 0.205 \ 40 \\ &(1986\mathrm{AbZW}). \\ &\alpha(\mathrm{K}) = 0.0107 \ 33; \ \alpha(\mathrm{L}) = 0.0016 \ 4; \ \alpha(\mathrm{M}) = 0.00035 \ 8 \\ &\alpha(\mathrm{N}) = 8.0 \times 10^{-5} \ 17; \ \alpha(\mathrm{O}) = 1.2 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 7.7 \times 10^{-7} \ 26 \\ &\alpha: \text{ weighted average of } 0.174 \ 19 \ (1976\mathrm{Me10}) \text{ and } 0.190 \ 30 \\ &(1986\mathrm{AbZW}). \end{aligned}$			
598.96 0 x603 25 15	0.093 11 0.03 2	658.96	5/2	59.9994	5/2							
614.80 <i>1</i>	1.21 8	614.791	3/2-	0.0	3/2-	E2(+M1)	>1.53	0.0093 11	α (K)=0.0077 9; α (L)=0.00122 10; α (M)=0.000268 21 α (N)=6.1×10 ⁻⁵ 5; α (O)=9.3×10 ⁻⁶ 8; α (P)=5.3×10 ⁻⁷ 7			
x615.7 1 x634.51 9	0.08 6 0.037 <i>14</i>								1986Sc25 report a 634.543 γ deexciting a 752.551 level. If this is the same transition, then the 752.55 level is fed also in the ¹⁵⁵ Tb ε decay.			
647.73 <i>1</i>	0.56 5	647.770	5/2-	0.0	3/2-	E2+M1	>2.0	0.0079 6	$\alpha(K)=0.0065 \ 6; \ \alpha(L)=0.00103 \ 6; \ \alpha(M)=0.000227 \ 13$			
658.93 15	0.012 3	658.96	$5/2^{-}$	0.0	$3/2^{-}$				$\alpha(N)=5.2\times10^{\circ}$ 3; $\alpha(O)=7.8\times10^{\circ}$ 3; $\alpha(P)=4.5\times10^{\circ}$ 5			

[†] I(Gd K x rays)=4654 *100*, relative to $I\gamma(105.32\gamma)=1000$ (1976Me10).

[‡] Deduced by 1976Me10 from comparison of L-subshell ratios given in 1962Ha24 and 1967Ko12 with theoretical values.

[#] From 1962Ha24 or 1967Ko12.

^(a) Unless otherwise noted, reported by 1976Me10 and based on measured α (mostly α (K)exp) values. In normalizing the measured electron-line intensities to those of the γ -ray lines, 1976Me10 used α (K)=0.118 for the theoretical M1 K-conversion coefficient of the 262.27 γ transition. This multipolarity is established independently from a variety of sources. Included among these are α (K)exp values (1969Ga28,1967B111) and $\gamma(\theta)$ (1975Wa01). Such studies, of course, cannot exclude a small admixture of E2.

[&] Two γ rays, 474.53 17 and 484.85 11, were found and placed at 592.5 level in (p,d),(p,d γ) dataset (2010A115).

^{*a*} Additional information 2.

^b Additional information 3.

^c For absolute intensity per 100 decays, multiply by 0.0251 13.

^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{155}_{64}\text{Gd}_{91}\text{--}12$

Decay Scheme

 $^{155}_{64}\text{Gd}_{91}$

Decay Scheme (continued)

 $^{155}_{64}\text{Gd}_{91}$

14

Decay Scheme (continued)

¹⁵⁵**Tb** ε decay 1976Me10

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

 $^{155}_{64}\text{Gd}_{91}$

¹⁵⁵Tb ε decay 1976Me10 (continued)

¹⁵⁵ Tb ε decay 1976Me10 (continued)

Band(I): $K^{\pi}=1/2^{-}$ band

5/2- 658.96

Band(J): $K^{\pi}=3/2^{-}$ band

5/2- 647.770

3/2- 614.791

3/2- 592.060

1/2- 559.319

 $^{155}_{64}\text{Gd}_{91}$