155 Gd(γ, γ') **1996No10**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019					

Additional information 1.

Enriched (92.8%) Gd₂O₃ target, mass=919 mg, between Al discs of mass 759 mg, irradiated in a bremsstrahlung beam of 4.1 MeV endpoint energy. Scattered γ 's detected by three high-resolution, high-efficiency (\approx 25% to \approx 100%, relative to a 3-in \times 3-in NaI(Tl) detector), HPGe detectors, placed at angles of 90, 127, and 150° with respect to the incident beam direction. Report excitation energies, integrated cross sections, and g Γ_0 . Deduce reduced transition probabilities and B(M1) values, assuming that the exciting transitions are M1.

Some of this information is included in 1997PiZZ, which involves many of the same authors as 1996No10.

¹⁵⁵Gd Levels

The listed B(M1) values are those given by 1996No10. They were computed assuming that the exciting γ transitions are M1, but this has not been established.

E(level) [†]	$J^{\pi \ddagger \#}$	S [@]	Comments				
0	3/2-						
60	5/2-		E(level): nominal value from adopted values.				
118	7/2+		E(level): nominal value from adopted values.				
1675 <i>1</i>	1/2,3/2,5/2	5.3 6	B(M1)↑=0.097 11				
1982 <i>1</i>	1/2,3/2,5/2	2.5 7	B(M1)↑=0.027 7				
2017 1	1/2,3/2,5/2	6.7 7	B(M1)↑=0.071 7				
2283 1	1/2,3/2,5/2	1.9 4	B(M1)↑=0.014 3				
2329 1	1/2,3/2,5/2	2.2 6	B(M1)↑=0.015 4				
2456 1	1/2-,3/2,5/2	4.1 7	B(M1)↑=0.024 4				
2558 1	1/2,3/2,5/2	3.5 6	B(M1)↑=0.018 3				
2596 1	1/2,3/2,5/2	5.5 7	B(M1)↑=0.027 3				
2645 1	1/2,3/2,5/2	2.4 8	B(M1)↑=0.011 4				
2655 1	$(3/2^+), 5/2$	11.3 11	B(M1)↑=0.052 5				
2689 1	1/2,3/2,5/2	2.5 8	B(M1)↑=0.011 4				
2728 1	1/2,3/2,5/2	7.5 10	B(M1)↑=0.032 4				
2743 1	1/2,3/2,5/2	5.1 8	B(M1)↑=0.021 3				
2755 1	$(1/2^{-}), 3/2, 5/2$	7.4 11	B(M1)↑=0.031 5				
2768 1	1/2,3/2,5/2	5.7 7	B(M1)↑=0.023 <i>3</i>				
2814 1	1/2,3/2,5/2	2.8 7	B(M1)↑=0.011 3				
2819 <i>I</i>	1/2,3/2,5/2	2.8 6	B(M1)↑=0.011 2				
2826 1	1/2,3/2,5/2	2.6 7	B(M1)↑=0.010 3				
2854 1	$(3/2^+), 5/2$	17.0 12	B(M1)↑=0.063 4				
2865 1	1/2-,3/2,5/2	6.0 9	B(M1)↑=0.022 3				
2872 1	1/2,3/2,5/2	5.6 7	B(M1)↑=0.020 <i>3</i>				
3011 <i>1</i>	1/2,3/2,5/2	3.2 7	B(M1)↑=0.010 2				
3123 <i>I</i>	1/2-,3/2,5/2	5.9 11	B(M1)↑=0.017 3				
3199 <i>1</i>	1/2,3/2,5/2	3.0 8	B(M1)↑=0.008 2				
3305 1	1/2,3/2,5/2	5.0 10	B(M1)↑=0.012 2				

[†] Authors state that the excitation energies have uncertainties ≤ 1 keV.

[‡] Since ¹⁵⁵Gd has a half-integral spin ($J^{\pi}=3/2^{-}$), the angular distributions do not provide definitive multipolarities for the scattered γ 's and, hence, J^{π} assignments for the levels.

From adopted values.

[@] Label= $g\Gamma_0$ (meV).

				155 Gd(γ, γ') 1996No10 (continued)							
				γ ⁽¹⁵⁵ Gd)							
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J	\mathbf{J}_f^{π}	E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
1675	1/2,3/2,5/2	1675	100	0 3/	/2-	2755	(1/2 ⁻),3/2,5/2	2755	100	0	3/2-
1982	1/2,3/2,5/2	1982	100	0 3/	/2-	2768	1/2,3/2,5/2	2768	100	0	$3/2^{-}$
2017	1/2,3/2,5/2	2017	100	0 3/	/2-	2814	1/2,3/2,5/2	2814	100	0	$3/2^{-}$
2283	1/2,3/2,5/2	2283	100	0 3/	/2-	2819	1/2,3/2,5/2	2819	100	0	3/2-
2329	1/2,3/2,5/2	2329	100	0 3/	/2-	2826	1/2,3/2,5/2	2826	100	0	$3/2^{-}$
2456	1/2-,3/2,5/2	2396	98 <i>4</i>	60 5/	/2-	2854	$(3/2^+), 5/2$	2736	76 10	118	$7/2^{+}$
		2456	100	0 3/	/2-			2794	48 9	60	$5/2^{-}$
2558	1/2,3/2,5/2	2558	100	0 3/	/2-			2854	100	0	$3/2^{-}$
2596	1/2,3/2,5/2	2596	100	0 3/	/2-	2865	1/2-,3/2,5/2	2805	$1.1 \times 10^2 \ 3$	60	$5/2^{-}$
2645	1/2,3/2,5/2	2645	100	0 3/	/2-			2865	100	0	3/2-
2655	$(3/2^+), 5/2$	2537	225 24	118 7/	/2+	2872	1/2,3/2,5/2	2872	100	0	$3/2^{-}$
		2655	100	0 3/	/2-	3011	1/2,3/2,5/2	3011	100	0	3/2-
2689	1/2,3/2,5/2	2689	100	0 3/	/2-	3123	1/2-,3/2,5/2	3063	59 25	60	$5/2^{-}$
2728	1/2,3/2,5/2	2728	100	0 3/	/2-			3123	100	0	$3/2^{-}$
2743	1/2,3/2,5/2	2743	100	0 3/	/2-	3199	1/2,3/2,5/2	3199	100	0	$3/2^{-}$
2755	(1/2 ⁻),3/2,5/2	2698	$1.7 \times 10^2 5$	60 5/	/2-	3305	1/2,3/2,5/2	3305	100	0	3/2-

[†] Computed from the level-energy difference. Authors do not report γ -ray energies. [‡] Relative branching from each level. In most instances, 1996No10 report only one γ deexciting the various levels.

155 Gd(γ, γ') 1996No10

Level Scheme

Intensities: Relative photon branching from each level

 $^{155}_{64}Gd_{91}$