¹⁵⁵Sm β⁻ decay **1969Un01,2005Ra33**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

Parent: ¹⁵⁵Sm: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=22.18 \text{ min } 6$; $Q(\beta^-)=1627.3 \ 12$; $\%\beta^-$ decay=100.0

The decay scheme is due primarily to 1969Un01 conbined with 2005Ra33.

1969Un01: source produced in ¹⁵⁴Sm(n, γ). Measured E γ , I γ , $\gamma\gamma$ -coincidence, T_{1/2} using Ge(Li), Si(Li) and NaI detectors.

2005Ra33: source produced in 154 Sm(n, γ). Measured E γ , I γ , $\gamma\gamma$ -coincidence, deduced log *ft* values. Used angular correlation results from 2004Ge20.

There is a general good agreement in between 1969Un01 (and earlier studies) and 2005Ra33. The differences are noted in the text. Other measurements: 2004Ge20, 1974BeYP, 1971Be23, 1970Re08, 1969BoZO, 1968Wi12, 1968Ma15, 1967Wi12, 1967Wi11,

1966Fu11, 1965Ma24, 1965Fu13, 1963Kr04, 1961Ve04, 1960Su03, 1959Sc37, 1950Wi07, 1942Ku03.

¹⁵⁵ Eu	Levels
-------------------	--------

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	Comments
0.0^{\ddagger}	5/2+	4.753 y <i>14</i>	
78.61 [‡] 4	7/2+		
104.320 [#] 5	5/2-	0.104 ns 10	$T_{1/2}$: from β -ce(K)(t) (1968Ma15).
168.99 [#] 12	7/2-		
245.734 [@] 12	3/2+	1.35 ns 10	$T_{1/2}$: from $\beta \gamma$ (t) (1967Ko17).
307.32 [@] 6	5/2+		
391.38 [@] 19	7/2+		
768.23 9	3/2-		
817.56 12	5/2-		
876.90 15	$(1/2)^+$		
911.14 <i>19</i>	3/2+		
923.18 23	$1/2^{+}$		
1096.7 6	$(3/2^+, 5/2^+)$		
1101.78 19	3/2-		
1107.00 18	3/2-,5/2-		
1263.60 25	3/2-,5/2-		
1301.41 15	5/2,7/2+		

[†] From Adopted Levels.

^{\ddagger} Band(A): Member of the g.s. band. Configuration=5/2[413].

[#] Band(B): 5/2[532] band member.

[@] Band(C): 3/2[411] band member.

β^{-} radiations

E(decay)	E(level)	Ι <i>β</i> -‡	$\log ft^{\dagger}$	Comments
(325.9 12)	1301.41	0.12 1	6.1	av E β =93.29 39
				E(decay): from $\beta\gamma$ coincidences, 1965Fu13 measure E β =300 20.
(363.7 12)	1263.60	0.017 2	7.1	av $E\beta = 105.50 \ 40$
(520.3 12)	1107.00	0.031 2	7.3	av E β =158.54 43
(525.5 12)	1101.78	0.030 2	7.4	av $E\beta = 160.38 \ 43$
(530.6 14)	1096.7	0.0031 6	8.4	av $E\beta = 162.16 \ 48$
				E(decay): from $\beta\gamma$ coincidences, 1965Fu13 measure E β =550 30.
(704.1 12)	923.18	0.0043 15	8.7	av $E\beta = 225.1446$
(716.2 12)	911.14	0.0094 20	8.3	av $E\beta = 229.64 \ 46$
(750.4 12)	876.90	0.014 2	8.2	av $E\beta = 242.52 \ 46$

Continued on next page (footnotes at end of table)

155 Sm β^- decay 1969Un01,2005Ra33 (continued)

				p radiations (continued)
E(decay)	E(level)	Ι <i>β</i> -‡	$\log ft^{\dagger}$	Comments
(809.7 12)	817.56	0.065 4	7.7	av Eβ=265.14 47
(859.1 12)	768.23	0.32 2	7.1	av $E\beta = 284.17 \ 47$
				E(decay): from $\beta\gamma$ coincidences, 1965Fu13 measure E β =850 50.
(1320.0 12)	307.32	1.91 <i>11</i>	7.0	av E β =471.07 51
(1381.6 12)	245.734	4.62 12	6.7	av E β =497.00 51
(1523.0 12)	104.320	92.5 14	5.5	av E β =557.10 52
				E(decay): measured values: 1530 15 (1963Kr04); 1520 15 (1965Fu13).
(1627.3 [#] <i>12</i>)	0.0	≤1	≥7.6	av E β =601.98 52

 β^{-} radiations (continued)

[†] Rounded off values given without uncertainties (see comments on the γ (¹⁵⁵Eu) table). [‡] Absolute intensity per 100 decays. [#] Existence of this branch is questionable.

¹⁵⁵Sm β^- decay **1969Un01,2005Ra33** (continued)

 $\gamma(^{155}\text{Eu})$

I γ normalization: Calculated by the evaluator assuming I β (g.s.)=0.5% 5 and requiring intensity balance at each level. 1963Kr04 report I β (g.s.) \leq 1%. 2005Ra33 give very small I $_{\gamma}$ uncertainties that most likely seem to not completely include the uncertainties of the efficiency calibration procedure (mentioned without descriptive details), which implies that the weighted average values are dominated by their values, with small uncertainties. For these reasons the log *ft* values are rounded off and listed without uncertainties (see β^{-} radiations table).

I(K x ray)/I(104γ)=0.229 10. Weighted average of: 0.236 24 (1969Un01); 0.230 16 (1969BoZO semi); 0.225 16 (1969BoZO scin).

S

The very precise values for $E\gamma$'s given by 2005Ra33 (much more precise than those measured very precisely with curved-crystal spectrometer (from 1970Re08, marked in the text)) were not adopted here (exceptions are noted separately). Unless special developments or precautions were taken (not mentioned by 2005Ra33), HPGe detectors are not usually trusted to such precision.

$E_{\gamma}^{\dagger a}$	Ι _γ ‡0	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{#@}	<i>δ</i> #& <i>lm</i>	α^{n}	Comments
25.69 ^{cb} 6	14 2	104.320	5/2-	78.61	7/2+	E1		2.06 4	 α(L)=1.62 3; α(M)=0.353 6 α(N)=0.0772 12; α(O)=0.01027 16; α(P)=0.000521 8 %Iγ=0.53 8. I_γ: 1968Wi12 report Iγ=49 5 for this transition. This was not used in computing the listed Iγ value.
x30.5 ^{cb} 5	15 <i>I</i>								%I γ =0.57 4, using the calculated normalization. I $_{\gamma}$: from 1968Wi12. Since the I γ value reported by these authors for the near-lying 25.6 γ is much larger that that reported in the other studies, this value may also be too large.
$x_{53.1}^{cb} 4$	0.40 ^e 15	207.22	5 /0+	0.45 70.4	2/2+	$\mathbf{M}(1)$	0.050.26	7.51	$\%$ I γ =0.015 6.
61.55° 0	5.5 3	307.32	5/2	245.734	3/2*	M1(+E2)	0.050 26	7.51	$\alpha(K)=6.32$ 9; $\alpha(L)=0.93$ 3; $\alpha(M)=0.203$ 8 $\alpha(N)=0.0463$ 16; $\alpha(O)=0.00731$ 22; $\alpha(P)=0.000703$ 11 %I γ =0.210 12. δ : adopted value; deduced from 1968Wi12 (this dataset): 0.29 +6-4.
$x_{63.1}^{cb}$ 5	0.3 ^e 1								%Iγ=0.011 <i>4</i> .
64.5 ^{<i>fb</i>} 5	0.20 4	168.99	7/2-	104.320	5/2-	M1+E2	$0.11^{k} + 5 - 9$	6.62 20	$\alpha(K)=5.50\ 15;\ \alpha(L)=0.88\ 9;\ \alpha(M)=0.191\ 22$ $\alpha(N)=0.044\ 5;\ \alpha(O)=0.0068\ 7;\ \alpha(P)=0.000610\ 17$ $\%_{I}\gamma=0.0076\ 16.$ Mult. δ : adopted values: δ from 2004Ge20 (this dataset):
78.65 ^c 7	8.4 8	78.61	7/2+	0.0	5/2+	M1+E2	0.641 +29–28	4.34 8	$(+0.09 \ II)$ $\alpha(K)=2.83 \ 5; \ \alpha(L)=1.17 \ 5; \ \alpha(M)=0.269 \ I2$ $\alpha(N)=0.060 \ 3; \ \alpha(O)=0.0085 \ 4; \ \alpha(P)=0.000290 \ 6$ $\%_{I\gamma}=0.32 \ 3.$ δ : adopted value; deduced from 1968Wi12 (this dataset): $0.60 \ 8.$
^x 80.0 ^{cb} 5	0.85 ^e 20					E1		0.518 12	$\alpha(K)=0.433$ 10; $\alpha(L)=0.0666$ 15; $\alpha(M)=0.0144$ 4

				¹⁵⁵ Sı	$\mathbf{m}\beta^-\mathbf{d}$	ecay 196	9Un01,2005Ra33	(continued)	
						<u>γ(¹⁵⁵Eι</u>	a) (continued)		
$\mathrm{E}_{\gamma}^{\dagger a}$	$I_{\gamma}^{\ddagger o}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{#@}	$\delta^{\#\&lm}$	α^{n}	Comments
									α (N)=0.00322 8; α (O)=0.000478 11; α (P)=3.50×10 ⁻⁵ 8 %I γ =0.032 8.
84.1 ^{<i>f</i>} 5	0.061 15	391.38	7/2+	307.32	5/2+	M1+E2	0.113 +25-31	3.06 7	α (K)=2.56 6; α (L)=0.391 <i>14</i> ; α (M)=0.085 <i>4</i> α (N)=0.0194 8; α (O)=0.00304 <i>11</i> ; α (P)=0.000282 7 %I γ =0.0023 6.
90.1 ^{<i>fb</i>} 5	0.25 6	168.99	7/2-	78.61	7/2+	E1		0.376 8	$\alpha(K)=0.315\ 7;\ \alpha(L)=0.0476\ 10;\ \alpha(M)=0.01026\ 22$ $\alpha(N)=0.00231\ 5;\ \alpha(O)=0.000344\ 8;\ \alpha(P)=2.59\times10^{-5}$
104.320 ^g 5	1950 <i>18</i>	104.320	5/2-	0.0	5/2+	E1		0.253	% I_{γ} =0.0095 23. $\alpha(K)$ =0.213 3; $\alpha(L)$ =0.0316 5; $\alpha(M)$ =0.00679 10 $\alpha(N)$ =0.001530 22; $\alpha(O)$ =0.000230 4; $\alpha(P)$ =1.79×10 ⁻⁵ 3 % I_{γ} =74.4 5. Additional information 1. I_{γ} : average includes I_{γ} =2000 90, as reported by 1970Re08, but excludes I_{γ} =2200 40, reported by
138.30 ^c 15	2.5 5	307.32	5/2+	168.99	7/2-	E1		0.1180	1967Ag05. $\alpha(K)=0.0997 \ 15; \ \alpha(L)=0.01435 \ 21; \ \alpha(M)=0.00309 \ 5$ $\alpha(N)=0.000697 \ 10; \ \alpha(O)=0.0001062 \ 16;$ $\alpha(P)=8.70\times10^{-6} \ 13$
141.411 ⁸ 11	51.8 5	245.734	3/2+	104.320	5/2-	E1		0.1111	%Iγ=0.095 19. α (K)=0.0939 14; α (L)=0.01349 19; α (M)=0.00290 4 α (N)=0.000656 10; α (O)=9.99×10 ⁻⁵ 14; α (P)=8.22×10 ⁻⁶ 12 %Iγ=1.98 3. I _γ : average includes Iγ=56 5, as reported by 1070P=08
167.16 ^c 6	0.98 2	245.734	3/2+	78.61	7/2+	E2 ^j		0.395	$\alpha(K)=0.264 \ 4; \ \alpha(L)=0.1020 \ 15; \ \alpha(M)=0.0235 \ 4 \\ \alpha(N)=0.00523 \ 8; \ \alpha(O)=0.000734 \ 11; \\ \alpha(P)=2.16\times10^{-5} \ 3$
169.1 <i>3</i>	1.04 10	168.99	7/2-	0.0	5/2+	E1		0.0686	%Iγ=0.0374 9. α (K)=0.0581 9; α (L)=0.00824 13; α (M)=0.00177 3 α (N)=0.000401 6; α (O)=6.14×10 ⁻⁵ 9; α (P)=5.20×10 ⁻⁶ 8 %Iγ=0.040 4
178.3 ^{<i>f</i>} 5	0.07 2	1101.78	3/2-	923.18	1/2+	E1		0.0595 10	$\alpha(K) = 0.0505 \ 8; \ \alpha(L) = 0.00712 \ 12; \ \alpha(M) = 0.001531$ 25 $\alpha(N) = 0.000347 \ 6; \ \alpha(O) = 5.32 \times 10^{-5} \ 9;$ $\alpha(P) = 4.54 \times 10^{-6} \ 8$
183.4 ^{<i>fb</i>} 5	0.05 1	1107.00	3/2-,5/2-	923.18	1/2+				%Iγ=0.0027 8. %Iγ=0.0019 4.

4

				155 S	$\mathrm{Sm}\beta^-$ de	cay 1969	Un01,2005Ra3	33 (continue	ed)		
γ ⁽¹⁵⁵ Eu) (continued)											
$\mathrm{E}_{\gamma}^{\dagger a}$	Ι _γ ‡0	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{#@}	$\delta^{\#\&lm}$	α^{n}	Comments		
195.7 4	0.23 2	1107.00	3/2-,5/2-	911.14	3/2+	E1		0.0464	$\begin{array}{c} \alpha(\mathrm{K}) = 0.0394 \ 6; \ \alpha(\mathrm{L}) = 0.00553 \ 9; \ \alpha(\mathrm{M}) = 0.001188 \ 18 \\ \alpha(\mathrm{N}) = 0.000269 \ 4; \ \alpha(\mathrm{O}) = 4.15 \times 10^{-5} \ 7; \ \alpha(\mathrm{P}) = 3.59 \times 10^{-6} \\ 6 \\ \end{array}$		
203.1 2	1.3 3	307.32	5/2+	104.320	5/2-	E1		0.0421			
x205.7 ^d 1	0.65 2								%Iy=0.0248 8.		
$220.1^{fb} 6$	0.056 14	1096.7	$(3/2^+, 5/2^+)$	876.90	$(1/2)^+$				$\%$ I γ =0.0021 6.		
224.8 ^{<i>a</i>} 2	0.055 11	1101.78	3/2-	876.90	$(1/2)^+$	E1		0.0322	α (K)=0.0273 4; α (L)=0.00381 6; α (M)=0.000818 12 α (N)=0.000186 3; α (O)=2.87×10 ⁻⁵ 4; α (P)=2.53×10 ⁻⁶ 4		
228.7 6	1.36 4	307.32	5/2+	78.61	7/2+	M1+E2	1.0 +4-3	0.160 8	$%1\gamma$ =0.0021 5. α (K)=0.128 10; α (L)=0.0252 13; α (M)=0.0056 4 α (N)=0.00127 7; α (O)=0.000190 8; α (P)=1.30×10 ⁻⁵ 14 %I γ =0.0519 17. Mult.,δ: adopted values; 1968Wi12 list mult=E1(or E2).		
230.2 ^d 2	0.087 7	1107.00	3/2-,5/2-	876.90	$(1/2)^+$				%Iγ=0.0033 <i>3</i> .		
245.73 ^g 5	100	245.734	3/2+	0.0	5/2+	M1+E2	+0.281 ^k 22	0.1471	α(K)=0.1239 18; α(L)=0.0182 3; α(M)=0.00394 6 α(N)=0.000901 13; α(O)=0.0001419 20; α(P)=1.350×10-5 21 %Iγ=3.82 4. δ: adopted value, from 2004Ge20 (this dataset).		
^x 280 ^{hb} 1 287.1 4	0.4 <i>I</i> 0.037 <i>7</i>	391.38	7/2+	104.320	5/2-	E1		0.01711	%Iγ=0.015 4. α (K)=0.01457 21; α (L)=0.00200 3; α (M)=0.000430 7 α (N)=9.77×10 ⁻⁵ 15; α (O)=1.519×10 ⁻⁵ 22; α (P)=1.377×10 ⁻⁶ 20 %Iγ=0.0014 3.		
307.3 <i>3</i> 426.2 <i>2</i>	0.32 <i>5</i> 0.38 <i>4</i>	307.32 817.56	5/2 ⁺ 5/2 ⁻	0.0 391.38	5/2 ⁺ 7/2 ⁺	E1		0.00651	%I γ =0.0122 20. α (K)=0.00556 8; α (L)=0.000749 11; α (M)=0.0001606 23		
460.80 <i>13</i>	1.95 20	768.23	3/2-	307.32	5/2+	E1		0.00543	$\begin{aligned} &\alpha(N) = 3.66 \times 10^{-5} \ 6; \ \alpha(O) = 5.73 \times 10^{-6} \ 8; \\ &\alpha(P) = 5.40 \times 10^{-7} \ 8 \\ &\% I\gamma = 0.0145 \ 16. \\ &\alpha(K) = 0.00464 \ 7; \ \alpha(L) = 0.000623 \ 9; \ \alpha(M) = 0.0001335 \ 19 \\ &\alpha(N) = 3.04 \times 10^{-5} \ 5; \ \alpha(O) = 4.77 \times 10^{-6} \ 7; \\ &\alpha(P) = 4.53 \times 10^{-7} \ 7 \\ &\% I\gamma = 0.074 \ 8. \end{aligned}$		

S

From ENSDF

¹⁵⁵₆₃Eu₉₂-5

					155	$\operatorname{Sm} \beta^- \operatorname{deca}$	y 1969Un0 1	1,2005Ra33 (co	ontinued)
							$\gamma(^{155}\text{Eu})$ (con	ntinued)	
$\mathrm{E}_{\gamma}^{\dagger a}$	Ι _γ ‡0	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^{#@}	_δ #&lm	α^{n}	Comments
510.2 2	0.36 6	817.56	5/2-	307.32	5/2+	E1		0.00431	α (K)=0.00368 6; α (L)=0.000492 7; α (M)=0.0001054 15 α (N)=2.40×10 ⁻⁵ 4; α (O)=3.78×10 ⁻⁶ 6; α (P)=3.61×10 ⁻⁷ 5 %I γ =0.0137 23.
522.54 15	4.4 4	768.23	3/2-	245.734	3/2+	E1		0.00409	$\alpha(K)=0.00349 5; \ \alpha(L)=0.000466 7; \ \alpha(M)=9.98\times10^{-5} 14$ $\alpha(N)=2.28\times10^{-5} 4; \ \alpha(O)=3.58\times10^{-6} 5; \ \alpha(P)=3.43\times10^{-7} 5$ %Iy=0.168 16.
571.8 2	0.53 3	817.56	5/2-	245.734	3/2+	E1		0.00335	α (K)=0.00287 4; α (L)=0.000381 6; α (M)=8.15×10 ⁻⁵ 12 α (N)=1.86×10 ⁻⁵ 3; α (O)=2.93×10 ⁻⁶ 5; α (P)=2.83×10 ⁻⁷ 4 %I γ =0.0202 12.
603.8 2	0.28 2	911.14	3/2+	307.32	5/2+	M1		0.01452	$\alpha(K)=0.01237 \ 18; \ \alpha(L)=0.001690 \ 24; \ \alpha(M)=0.000363 \ 5 \\ \alpha(N)=8.33\times10^{-5} \ 12; \ \alpha(O)=1.325\times10^{-5} \ 19; \\ \alpha(P)=1.339\times10^{-6} \ 19 \\ \%I_{V}=0.0107 \ 8.$
631.2 2 648.6 2	0.48 2 0.25 5	876.90 817.56	(1/2) ⁺ 5/2 ⁻	245.734 168.99	3/2 ⁺ 7/2 ⁻	M1		0.01216	% $I_{\gamma} = 0.0183 \ 8.$ $\alpha(K) = 0.01036 \ 15; \ \alpha(L) = 0.001411 \ 20; \ \alpha(M) = 0.000304 \ 5.$ $\alpha(N) = 6.95 \times 10^{-5} \ 10; \ \alpha(O) = 1.107 \times 10^{-5} \ 16;$ $\alpha(P) = 1.119 \times 10^{-6} \ 16.$ % $I_{\gamma} = 0.0095 \ 20.$
664.00 <i>16</i>	1.8 2	768.23	3/2-	104.320	5/2-	M1+E2	$-0.231^{k} 21$	0.01122 17	
665 ^b 1	0.15 4	911.14	3/2+	245.734	3/2+	M1		0.01143	$\alpha(K)=0.00974 \ 15; \ \alpha(L)=0.001326 \ 20; \ \alpha(M)=0.000285 \ 5 \\ \alpha(N)=6.53\times10^{-5} \ 10; \ \alpha(O)=1.040\times10^{-5} \ 15; \\ \alpha(P)=1.052\times10^{-6} \ 16 \\ \%_{I}\gamma=0.0057 \ 16.$
677.2 <i>3</i> 713.4 8	0.21 <i>3</i> 0.15 <i>3</i>	923.18 817.56	1/2+ 5/2-	245.734 104.320	3/2+ 5/2 ⁻	M1		0.00961	% I_{Y}^{\prime} =0.0080 12. $\alpha(K)$ =0.00819 12; $\alpha(L)$ =0.001113 16; $\alpha(M)$ =0.000239 4 $\alpha(N)$ =5.48×10 ⁻⁵ 8; $\alpha(O)$ =8.73×10 ⁻⁶ 13; $\alpha(P)$ =8.84×10 ⁻⁷ 13 %I _Y =0.0057 12
x758.0 ^{cb} 15	0.09 ^e 5								$\%$ I γ =0.0034 19.
768.4 4	0.22 7	768.23	$3/2^{-}$	0.0	$5/2^{+}$				$\%$ I γ =0.008 3.
818.1 ^{<i>ib</i>}	0.025 5	817.56	$5/2^{-}$	0.0	$5/2^{+}$				$%I\gamma = 0.00095 \ 20.$
830 ^{<i>fb</i>} 20	0.025 5	911.14	$3/2^{+}$	78.61	7/2+				%Iγ=0.00095 20.
^x 861.1 ^{<i>ib</i>}	0.13 3								 %Iγ=0.0050 12. Shown deexciting the 1106.8 level by 1969Un01. 1986Pr03 report an 861.26 γ, albeit with a much smaller Iγ value (relative to those of the other deexciting γ's) than that

6

From ENSDF

$155 \text{Sm} \beta^- \text{decay}$ 1969Un01,2005Ra33 (continued)												
$\gamma(^{155}\text{Eu})$ (continued)												
$\mathrm{E}_{\gamma}^{\dagger a}$	$I_{\gamma}^{\ddagger o}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{#@}	_δ #&lm	α^n	Comments			
									given here, but show it as unplaced. Later 2005Ra33 did not observe this transition. The evaluator has chosen not to associate this transition with the decay of the 1106.8 level.			
880 ^{fb} 10	0.075 15	876.90	$(1/2)^+$	0.0	$5/2^{+}$				%Iγ=0.0029 <i>6</i> .			
911 ^{ib}	0.025 5	911.14	3/2+	0.0	$5/2^{+}$				%Iγ=0.00095 20.			
923 ⁱ	0.026 2	923.18	$1/2^{+}$	0.0	$5/2^{+}$				%Iγ=0.00099 8.			
932.9 4	0.27 2	1101.78	3/2-	168.99	7/2-	(E2)		0.00303	$\alpha(K)=0.00256\ 4;\ \alpha(L)=0.000371\ 6;\ \alpha(M)=8.02\times10^{-5}\ 12$ $\alpha(N)=1.83\times10^{-5}\ 3;\ \alpha(O)=2.86\times10^{-6}\ 4;\ \alpha(P)=2.63\times10^{-7}\ 4$ %I γ =0.0103 8.			
997.9 <i>4</i>	0.37 4	1101.78	3/2-	104.320	5/2-	(E2)		0.00263	$\begin{array}{l} \alpha(\textbf{K}) = 0.00222 \ 4; \ \alpha(\textbf{L}) = 0.000318 \ 5; \ \alpha(\textbf{M}) = 6.86 \times 10^{-5} \ 10 \\ \alpha(\textbf{N}) = 1.566 \times 10^{-5} \ 22; \ \alpha(\textbf{O}) = 2.46 \times 10^{-6} \ 4; \ \alpha(\textbf{P}) = 2.29 \times 10^{-7} \\ 4 \end{array}$			
									%Iγ=0.0141 <i>16</i> .			
1002.7 3	0.43 2	1107.00	3/2-,5/2-	104.320	5/2-	M1+E2	-0.35 ^k 6	0.00404 8	α (K)=0.00345 7; α (L)=0.000465 9; α (M)=9.99×10 ⁻⁵ 19 α (N)=2.29×10 ⁻⁵ 5; α (O)=3.64×10 ⁻⁶ 7; α (P)=3.69×10 ⁻⁷ 8 %I γ =0.0164 8.			
1018 ^{ib}	0.025 5	1263.60	3/2-,5/2-	245.734	$3/2^{+}$				%Iy=0.00095 20.			
1055 ⁱ	0.033 10	1301.41	5/2,7/2+	245.734	$3/2^{+}$				%Iγ=0.0013 <i>4</i> .			
1096 ^{ib}	0.025 5	1096.7	$(3/2^+, 5/2^+)$	0.0	$5/2^{+}$				$\%$ I γ =0.00095 20.			
1132 ⁱ	0.05 1	1301.41	5/2,7/2+	168.99	7/2-				$\%$ I γ =0.0019 4.			
1159.7 3	0.37 3	1263.60	3/2-,5/2-	104.320	5/2-	M1		0.00299	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00255 \ 4; \ \alpha(\mathbf{L}) = 0.000341 \ 5; \ \alpha(\mathbf{M}) = 7.32 \times 10^{-5} \ 11 \\ &\alpha(\mathbf{N}) = 1.678 \times 10^{-5} \ 24; \ \alpha(\mathbf{O}) = 2.68 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 2.73 \times 10^{-7} \\ &4; \ \alpha(\mathbf{IPF}) = 2.42 \times 10^{-6} \ 4 \\ &\% \mathbf{I}\gamma = 0.0141 \ 12. \end{aligned}$			
									I_{γ} : 1969Un01 report I_{γ} =0.091 23 for this transition. This			
^x 1172.1 3	0.05 1								was not used in computing the listed 1γ value. % $I\gamma$ =0.0019 4.			
1197.7 4	0.15 2	1301.41	5/2,7/2+	104.320	5/2-				E_{γ} : from 2005Ra33. %I γ =0.0057 8. I $_{\gamma}$: 1969Un01 report I γ =0.08 2 for this transition. This was			
^x 1206.8 2	0.06 2								not used in computing the listed I γ value. %I γ =0.0023 8. E : from 2005Ra33			
1223.0 <i>3</i>	0.64 4	1301.41	5/2,7/2+	78.61	$7/2^{+}$				$\%$ I γ =0.0244 16.			
1262.4 5	0.06 2	1263.60	3/2-,5/2-	0.0	5/2+				$\%$ I γ =0.0023 8. I $_{\gamma}$: 1966Ful1 report I γ =0.14 5. This value was not used in			
1301.2 2	2.3 2	1301.41	5/2,7/2+	0.0	5/2+				computing the listed 1γ value. % $I\gamma=0.088$ 8.			

 \neg

 $^{155}_{63}\mathrm{Eu}_{92}$ -8

6

¹⁵⁵Sm β⁻ decay 1969Un01,2005Ra33

