	Туре	Author	History Citation	Literature Cutoff Date		
	Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019		
$Q(\beta^-)=251.8 \ 9; \ S(n)=8151.3 \ 4; S(2n)=14593.5 \ 4; \ S(2p)=15748$ Additional information 1.	S(p)=6651.9 <i>12</i> ; Q0 <i>12</i> 2017Wa10	(α)=-857 <i>5</i>	2017Wa10			
			¹⁵⁵ Eu Levels			

A number of theoretical papers dealing with octupole correlations in nuclei in this mass region have appeared. Some of these relevant to ¹⁵⁵Eu include 1990Af03, 1990Sh46, 1993No01 and 1995Af01. 1990Af03 interpret the low-energy level scheme in terms of parity doublets and deduce a value for β_3 . 1990Sh46 interpret the lowest $5/2\pm$, $1/2\pm$ and $7/2\pm$ bands as parity doublets. 1993No01 conclude that the lowest $5/2\pm$ bands are not a parity doublet but allow the possibility that the lowest two sets of $1/2\pm$ bands may be such. 1995Af01 conclude that the features of the low-lying levels in ¹⁵⁵Eu can be accounted for without the need for assuming static reflection asymmetry. From ($^7\text{Li},\alpha 2n\gamma$), 1998Ha27 examine the magnetic properties of the intraband transitions in the $5/2\pm$ bands and conclude that they do not constitute a parity doublet.

Cross Reference (XREF) Flags

			A B C D	¹⁵⁵ Sm β ⁻ decay ¹⁵⁴ Sm(⁷ Li, α 2n γ) ¹⁵³ Eu(2n, γ) ¹⁵⁴ Sm(α ,t)	E F G H	156 Gd(t, α), 156 Gd(pol t, α) 154 Sm(³ He,d) 154 Sm(³ He,pn γ) 153 Eu(t,p)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments
0.0‡	5/2+	4.753 y 14	ABCDEFGH	$\label{eq:2.1} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	2.5 3 s $:om T1s, seeg measJn01)l 1698d) wasstatisb0.06 dww, 200,p). J5 (LAcompd, (resolation\Delta py. F;V repGa72)c0.612tive vartly dc0.650rgg ra$	$^{-1/2}$ =5.1221 fm 69 (2013An02). $^{-1/2}$ =1736 d 5, from the evaluation by Ch-Eg (2002) (for a the comment in the 155 Eu β ⁻ Decay data set). Value based surements: 1739 d 8 (1998Si12); 1735 d 22 (1993Th04); ; 1737 d 23 (1983Wa26); 1708 d <i>18</i> (1974Da24); 1653 d 51 8 d 74 (1970Mo23). The uncertainty in the value of s increased to the point where it contributes no more than tical weight. The value 1812 d 4 (1972Em01) was not ased on statistical considerations. The recent value of 45, is effectively the same as that of 1992Un01. In a 04Wo02 propose T _{1/2} =1736 d 6. π (¹⁵³ Eu g.s.)=5/2 ⁺ . SER-induced resonance fluorescence in an atomic beam) and ilation. Other: +1.519 <i>10</i> (1999Ga36, same method as onance cell lased spectroscopy, atomic beam) adopted in (¹⁵⁵ Eu- ¹⁵¹ Eu)=+0.677 fm ² 33 from collinear LASER-ion rom LASER-induced resonance fluorescence in an atomic ort $\Delta < r^2 > (^{153}Eu, ^{155}Eu)= 0.106 \text{ fm}^2 7$ (see, also, . In their review paper, 1987Au06 give 2 fm ² 35 (where the nuclear parameter $\lambda \approx \Delta < r^2 >$) and point alues of λ inferred for some of the Eu isotopes from the work isagree with other published data. 1990Al34 report 0 fm ² 7. Others: 1986Al33, 1985Al06. In an evaluation of dii, 2004An14 report $< r^2 > ^{1/2} = 5.1221$ fm 69.

¹⁵⁵Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments					
78.638 [‡] 1	7/2+		ABCDEFGH	J ^{π} : M1+E2 transition to g.s. indicates $J^{\pi}=3/2^+, 5/2^+, 7/2^+$. The strong population of this level in (t, α) is characteristic of L=4 or 5, but not L=2, ruling out $J^{\pi}=3/2^+$ and $5/2^+$.					
104.334 [#] 1	5/2-	0.104 ns <i>10</i>	ABCDEFG	$ μ = +9.6 \ 10 $ $ T_{1/2}: from βce(t) (1968Ma15). $ $ J^{π}: E1 transitions to 5/2+ and 7/2+ states indicate J^{π} = 5/2^{-} or 7/2-. log ft=5.5 of β^{-} transition from 155Sm (J^{π} = 3/2^{-}) rules out 7/2.μ: From 2014StZZ. $					
169.009 [#] 1	7/2-		ABCDEFG	J^{π} : E1 transitions to 5/2 ⁺ and 7/2 ⁺ states require $J^{\pi}=5/2^{-}$ or 7/2 ⁻ . Level-energy spacing and M1+E2 (intraband) transition support assignment as 7/2 ⁻ member of the indicated rotational band.					
179.157 [‡] 1	9/2+		BCDE GH	J^{π} : E2 transition to 5/2 ⁺ and M1+E2 transition to 7/2 ⁺ consistent with $J^{\pi}=9/2^+$. Assignment as 9/2 ⁺ member of g.s. band is supported by level-energy considerations and by population via L=2 transition in 153 Eu(t,p).					
245.777 [@] 1	3/2+	1.35 ns 5	ABCDEfG	XREF: f(251). $T_{1/2}$: from $\beta\gamma$ (t). Weighted average of: 1.35 ns <i>10</i> (1967Ko17); 1.38 ns <i>6</i> (1965Ma24); and 1.20 ns <i>15</i> (1961Ve04). J ^{π} : M1 component in transition to 5/2 ⁺ , E2 transition to 7/2 ⁺ state, and E1 transition to 5/2 ⁻ state reveal that π =+ and J=3/2, 5/2 or 7/2. log <i>ft</i> =6.7 of β^{-} transition from ¹⁵⁵ Sm (J^{π} =3/2 ⁻) eliminates 7/2. $\gamma\gamma(\theta)$ results of 1985Be64 and 1971Be23 for the 141 γ -104 γ cascade are quite consistent with a 3/2(D,Q)5/2(D)5/2 sequence and are not consistent with 5/2, unless δ <-0.6 for the 141.4 γ . This is not possible according to RUL (see the comments on the 141.4428 γ).					
254.665 [#] 1	9/2-		BCDEfG	XREF: f(251). J^{π} : multipolarities of deexciting γ 's indicate π =- and J=5/2, 7/2 or 9/2. γ to $9/2^+$ level rules out J=5/2, and E2 to $5/2^-$ level supports J=9/2. Level ener consistent with assignment as $9/2^-$ member of the indicated band.					
300.688 [‡] 1	11/2+		BC GH	J^{π} : M1+E2 and E2 transitions, respectively, to the 9/2 and 7/2 members of the g.s. band, together with the observed energy spacing, indicate that this is the 11/2 ⁺ member of the g.s. band. Its population in (t,p) is consistent with such an assignment.					
307.383 [@] 1	5/2+		ABCDEFG	J^{π} : excitation via L=2 transition in (³ He,d) indicates $J^{\pi}=3/2^+$ or $5/2^+$. M1+E2 transition to $7/2^+$ state rules out $3/2^+$.					
357.169 [#] 1	11/2-		BCDEFG	J^{π} : L=5 in (³ He,d) indicates $J^{\pi}=9/2^{-}$ or $11/2^{-}$. Analyzing power in (pol t, α) selects $11/2^{-}$. Energy agrees well with that expected for $11/2^{-}$ member of the indicated band.					
391.484 [@] 1	7/2+		ABCDEFG	J^{π} : E1 transitions to $5/2^{-}$ and $9/2^{-}$ states.					
443.026 [‡] 8	13/2+		BC G	J^{π} : E1 transition to $11/2^{-}$ and E2 transition to $9/2^{+}$. Level energy consistent with assignment as the $13/2^{+}$ member of the g.s. band.					
487.088 [#] 1	13/2-		BCDE G	J^{π} : E2 transition and M1 transition to the 9/2 ⁻ and 11/2 ⁻ members, respectively, of the K^{π} =5/2 ⁻ band, together with the level energy, indicate that this is the 13/2 ⁻ member of the indicated band.					
501.006 [@] 1	9/2+		BCDEFG	J ^{π} : L=4 transition in (³ He,d) indicates J ^{π} =7/2 ⁺ or 9/2 ⁺ . γ to 11/2 ⁻ state rules out 7/2 ⁺ .					
604.22 [‡] 10	$15/2^{+}$		B G	G J^{π} : E2 γ to $11/2^+$ and expected band structure.					
624.22 [#] 10	$15/2^{-}$		BEG	J^{π} : E2 γ to $11/2^{-}$ and expected band structure.					
627.298 [@] 1	11/2+		BC G	J^{π} : E1 to 9/2 ⁻ and M1 to 9/2 ⁺ indicate π =+ and J=7/2, 9/2 or 11/2. γ to 13/2 ⁻ rules out J=7/2 and 9/2.					
768.428 ^{&} 3	3/2-		A C	J^{π} : E1 transitions to $3/2^+$ and $5/2^+$ states allow $3/2^-, 5/2^-$. Population of this and certain other higher-lying levels via primary transitions in neutron					

_

Adopted Levels, Gammas (continued)

¹⁵⁵Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments						
			capture, the similarity of their γ -decay patterns, and their implied level spacings indicate that they form a K=3/2 band. From its position, this level would be the bandhead.						
781.993 [@] 4	13/2+	BC G	J^{π} : M1 transition to $11/2^+$, E2 transition to $9/2^+$ and γ to $11/2^-$. Level-energy spacing suggests that this is the $13/2^+$ member of the indicated $3/2^+$ band.						
785.22 [‡] 14	$17/2^{+}$	B G	J^{π} : E1 γ to 15/2 ⁻ , E2 to 13/2 ⁺ , and expected band structure.						
801.17 [#] 12	$(17/2^{-})$	В	J^{π} : γ 's to $13/2^{-}$, $15/2^{-}$ and $15/2^{+}$. Expected band structure.						
817.669 ^{&} 2	5/2-	A C	J^{π} : E1 transitions to $3/2^+$ and $7/2^+$ states.						
876.831 ^{<i>a</i>} 4	$(1/2)^+$	A C eF	EF: e(878). E1 from $3/2^-$ level indicates π =+. 1986Pr03, from association of various ¹⁵⁵ Eu states with the expected energy spacings within a 1/2[411] band, assign this state as the 1/2[411] bandhead.						
881.689 ^{&} 5	7/2-	Се	XREF: e(878). J^{π} : E1 transitions to $5/2^+$ and $9/2^+$ states.						
911.213 ^{<i>a</i>} 4	3/2+	A CDEF	J^{π} : population via L=2 transitions in (³ He,d) indicates $J^{\pi}=3/2^+$ or $5/2^+$. The $3/2^+$ assignment is preferred because of the (³ He,d) cross section and the negative analyzing power in (pol t, α).						
923.148 ^b 5	1/2+	ACE	J^{π} : E1 transition from 3/2 ⁻ state indicates π =+. Assigned as the 1/2 ⁺ member of the 1/2[420] band largely because its (pol t, α) angular distribution is practically identical to those observed for such states in the near-lying nuclides ¹⁵³ Pm, ¹⁵⁷ Eu and ¹⁵⁹ Eu.						
944.37 [@] 17	$(15/2^+)$	В	J^{π} : γ 's to $11/2^+$, $13/2^+$ and $13/2^-$. Expected band structure.						
956.350 ^b 18	5/2+	CDEF	J^{π} : M1 transitions to $J^{\pi}=3/2^+$ and $7/2^+$ states. The hole-state nature of this level indicates that it is a member of the $1/2[420]$, rather than the $1/2[411]$, band.						
967.16 [#] 15	19/2-	В	J^{π} : E2 γ to 15/2 ⁻ , γ 's to 17/2 ⁺ and (17/2 ⁻). Expected band structure.						
973.992 ^{&} 5	9/2-	Cf	XREF: f(978).						
977.198 ^{<i>c</i>} 15	7/2+	CDEf	 J^π: E1 transition to 7/2⁺ and M1 to 11/2⁻. XREF: f(978). J^π: M1 transition to g.s. indicates π=+. Strong population via L=4,5 transition in (³He,d), together with the observed negative analyzing power in (pol t,α), identifies this as the 7/2[404] state. 						
979.474 ^d 12	5/2+	СН	J^{π} : E0 component in the transition to the g.s. Populated via L=0 transfer in ¹⁵³ Eu(t,p).						
982.58 [‡] 19	$19/2^{+}$	В	J^{π} : E2 γ to 15/2 ⁺ and expected band structure.						
1007.309 ^b 6	3/2+	CE	XREF: E(1004). J^{π} : M1 transition to 5/2 ⁺ level requires π =+. (pol t, α) cross section indicates L=2, with negative analyzing power indicating J=L-1/2, so the preferred assignment is π^{π} -2/2 ⁺						
1007.988 10	5/2-,7/2-	С	$J^{-5/2}$. J ^{π} : M1 transitions to 5/2 ⁻ and 7/2 ⁻ states. Possible bandhead of 7/2[523] band (1986Pr03).						
1022 3		DEF							
1053.631 ^{<i>u</i>} 7	7/2+	Cd	XREF: $d(1051)$. J ^{π} : M1 transitions to 5/2 ⁺ and 9/2 ⁺ states.						
1054.838 ^d 19	7/2+	Cd	XREF: d(1051). J^{π} : E0 component in the transition to the 7/2 ⁺ member of the g.s. band.						
1064.663 ^e 16	(3/2)+	Cf	XREF: f(1067). J^{π} : M1 transition to g.s. indicates π =+. If there is an E0 component in the 818.8 transition (doubly placed) to the 3/2 ⁺ level, this would establish J^{π} =3/2 ⁺ and that this state is, at least in part, the β vibration built on 3/2[411].						
1068.891 ^{<i>a</i>} 6	5/2+	CD f H	XREF: f(1067). J ^{π} : populated via L=0 transfer in ¹⁵³ Eu(t,p).						
1078.064? ^{&} 14	(11/2 ⁻)	С	J^{π} : γ' s to $9/2^+$ and $13/2^-$ states. Energy spacings suggest that this might be the $11/2^-$ member of the indicated $K^{\pi}=3/2^-$ hand.						
1096.18 6	(3/2+,5/2+)	A C	J^{π} : γ 's to $(1/2)^+$ and $7/2^+$ states.						

Adopted Levels, Gammas (continued)

¹⁵⁵Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
1101.670 ^{<i>f</i>} 4	3/2-	A C	J^{π} : E1 transition to $1/2^+$ state and M1,E2 transition to $7/2^-$ state.
1106.799 <i>f</i> 5	3/2-,5/2-	A CdeF	XREF: d(1112)e(1109)F(1109).
1110.2			J^{π} : E1 transition to $3/2^+$ state and M1 transition to $5/2^-$ level indicate that $J^{\pi}=3/2^-$ or $5/2^-$. 1986Pr03, on the basis of the total γ intensity out of the 1101 and 1106 levels and considerations of expected band structure, assign these levels as $3/2^-$ and $1/2^-$, respectively. This latter assignment would imply that the multipolarity, M1, reported by 1986Pr03 for the 1002.38 γ is incorrect.
1118 3 1126 262 <mark>6</mark> 3	$(5/2^+)$	der	XKEF: $d(1112)e(1109)$. I^{π_1} if there is an EQ component in the doubly placed \$18.8 transition to the $5/2^+$ level
1120.20? 5	(3/2)	C	this would establish $J^{\pi}=5/2^+$ and that this state is, at least in part, a member of the β vibration built on $3/2[411]$.
1132.029 ^b 4	$(7/2)^+$	CE	J^{π} : π =+ from M1 transition to 7/2 ⁺ state. Negative analyzing power in (pol t, α), energy spacings within proposed band structure, and similarity to corresponding states in ¹⁵⁷ Eu and ¹⁵⁹ Eu suggest that this is the 7/2 ⁺ member of the 1/2[420] band
1138.389 12	7/2+	С	J^{π} : E1 transition to 7/2 ⁻ and M1 transition to 9/2 ⁺ give $J^{\pi}=7/2^+,9/2^+$. γ to 5/2 ⁻ rules out 9/2 ⁺ .
1140.3 [@] 3	$(17/2^+)$	В	J^{π} : γ 's to $13/2^+$, $15/2^-$ and $(15/2^+)$ levels. Expected band structure.
1151.41 ^d 4	9/2+	C	J^{π} : γ' s to the 7/2 ⁺ , 9/2 ⁺ and 11/2 ⁺ members of the g.s. band, together with a possible E0 component in the transition to that 9/2 ⁺ state and the energy-level spacing, establish this as the 9/2 ⁺ member of the indicated " β -vibrational" band.
1190.55 [#] 17	(21/2 ⁻)	В	J^{π} : γ 's to 19/2 ⁺ , 19/2 ⁻ , and (17/2 ⁻). Expected band structure.
1193.79 <i>3</i>	7/2+	CDE	XREF: E(1187). J^{π} : strength of primary capture γ ray to this level suggests $\pi = +$. γ 's to $5/2^{-}$ and $9/2^{-}$ states then indicate J=7/2.
1198.09 [‡] 21	$21/2^+$	В	J^{π} : E2 γ to $17/2^+$ and expected band structure.
1203 3	5/2-,7/2-	DEF	J^{π} : L=3 in (³ He,d).
1230.776 ^g 25	5/2+	CDEF H	J^{π} : excited by L=0 transfer in ¹⁵³ Eu(t,p). The strength with which this level is populated via L=2 transitions in stripping reactions indicates that it contains an appreciable fraction of the 5/2[402] state.
1264.045? ^f 9	3/2-,5/2-	ACF	J^{π} : E1 transition to $3/2^+$, M1 transition to $5/2^-$. 1986Pr03 assign $J^{\pi}=5/2^-$ to this state
1301.59 5	$5/2,7/2^+$	A C	J^{π} : transitions to $3/2^+$, $7/2^+$ and $7/2^-$ states.
1315.94 ^g 6	$(7/2^+)$	С	J^{π} : 5/2 ⁻ ,7/2,9/2 ⁻ from γ 's to 5/2 ⁻ and 9/2 ⁻ states. 1986Pr03 assign this as the 7/2 ⁺ member of the 5/2[402] band.
1318	1/2-,3/2-	F	J^{π} : populated via L=1 transfer in (³ He,d).
1333.3 [™] 4 ≈1342	(19/2+)	B E	J^{n} : γ 's to (15/2 ⁺) and (17/2 ⁻) and expected band structure.
≈1352 1377_3	$1/2^{-}.3/2^{-}$		XREF: D(1377?)
10110	1/2 ,0/2		J^{π} : populated via L=1 transfer in (³ He,d).
1380.14 [#] 22	$23/2^{-}$	В	J^{π} : E2 γ to 19/2 ⁻ and expected band structure.
≈1400		DF	XREF: F(1402).
1421 4	11/2-	E	J^{π} : from angular distribution of cross section and analyzing power in (pol t, α).
1427.2+ 3	23/2+	В	J^{π} : E2 γ to 19/2 ⁺ and expected band structure.
1478 3	5/2*	D H	J^{n} : populated via L=0 transfer in ¹⁵⁵ Eu(t,p). The strength with which this level is populated via L=2 transitions in stripping reactions indicates that it contains an appreciable component of 5/2[402]. (Much of the remaining strength resides in the 1230.7 level.).
1483.04 ^{<i>h</i>} 8	3/2+	C EF	XREF: E(1481). Population via L=2 transfer in (³ He,d) indicates π =+. Negative analyzing power in (pol t a) vial de L=3/2
≈1515		DE	$J_{J}(z)$ yields $J=J/Z$.
≈1526		D	

¹⁵⁵Eu Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
1548.58 ^h 18	$(5/2^+)$	СE	J^{π} : energy spacing suggests this is the 5/2 ⁺ member of the 3/2[422] band.
1567.7 [@] 6	$(21/2^+)$	В	J^{π} : γ to $(17/2^+)$ and expected band structure.
1632.56 ^h 17	7/2+	CE	J ^{π} : from angular distribution of cross section and analyzing power in (pol t, α). Large 7/2 ⁺ (pol t, α) strength suggests this level is the 7/2 ⁺ member of the 3/2[422] band (1979Bu03).
1648.4? [#] 6	$(25/2^{-})$	В	J^{π} : γ to $(21/2^{-})$ and expected band structure.
1672.5 [‡] 4	$25/2^+$	В	J^{π} : E2 γ to 21/2 ⁺ and expected band structure.
1736 4		E	
1785.9? [@] 6	$(23/2^+)$	В	J^{π} : γ to $(19/2^+)$ and expected band structure.
1820 4		E	
≈1845		E	
1929.2 [‡] 6	$(27/2^+)$	В	J^{π} : γ to 23/2 ⁺ and expected band structure.
2198.7 [‡] 6	$(29/2^+)$	В	J^{π} : γ to $25/2^+$ and expected band structure.

[†] In those instances where a level has been observed in the ${}^{153}\text{Eu}(2n,\gamma)$ reaction, the level energy from this reaction has been adopted.

[‡] Band(A): $K^{\pi} = 5/2^{+}$ band. Conf=5/2(413). A=11.29 keV, B=-4.7 eV and A₅=-22 milliev (from the 5/2⁺ through the 11/2⁺ levels). For the grouping of these levels according to the two signatures, see the ¹⁵⁴Sm(⁷Li, α 2n γ) data set.

[#] Band(B): $K^{\pi}=5/2^{-}$ band. Conf=5/2(532). A=9.18 keV, B=+8.3 eV and A₅=-0.30 eV (from the 5/2⁻ through the 11/2⁻ levels). This band is strongly Coriolis coupled with other bands based on states originating from the h11/2 proton spherical shell-model state and, hence, these band parameters are not expected to provide good values for the energies of the higher-lying band members. For the grouping of these levels according to the two signatures, see the ¹⁵⁴Sm(⁷Li, α 2n γ) data set.

^(a) Band(C): $K^{\pi}=3/2^+$ band. Conf=3/2(411). A=12.34 keV, B=-10.4 eV and A₃=+10. eV (from the 3/2⁺ through the 9/2⁺ levels). For the grouping of these levels according to the two signatures, see the ${}^{154}Sm({}^{7}Li,\alpha 2n\gamma)$ data set.

- [&] Band(D): $K^{\pi}=3/2^{-}$ band. $K^{\pi}=0^{-}$ octupole vibration built on 3/2[411]. A=9.65 keV, B=-3.5 eV and A₃=+36 eV (from the $3/2^{-}$ through the $9/2^{-}$ levels). Proposed as 3/2[541] by 1986Pr03 in ¹⁵³Eu(2n, γ). The evaluator has not adopted this, because: (1) the good agreement of the γ branching of the E1 transitions to the 3/2[411] band with the Alaga-rule predictions, which is expected for a $K^{\pi}=0^{-}$ octupole vibration, but not for a "single-particle" state; and (2) the relatively well-behaved energy spacings within the band, which should not occur for 3/2[541], because of the strong Coriolis mixing of this band with the other bands originating from the h_{11/2} spherical shell-model state.
- ^{*a*} Band(E): $K^{\pi}=1/2^+$ band? configuration=1/2(411). The band structure given here is that proposed by 1986Pr03. The band parameters inferred for this band are highly anomalous and suggest that one or more of the levels is not correctly assigned. Further, the theoretical calculations presented in 1986Pr03 do not provide a good representation of the energies of the members of this band as assigned here.
- ^b Band(F): $K^{\pi}=1/2^+$ band. Conf=1/2(420). A=10.09 keV, B=-147 eV and a=+1.84. The large value of B indicates that the band is strongly distorted and that the listed band parameters are not likely to be able to provide a good estimate of the energies of the higher-lying band members.
- ^c Band(G): $K^{\pi} = 7/2^+$ band. Conf=7/2(404).
- ^{*d*} Band(H): $K^{\pi}=5/2^{+}$ band. β^{-} vibration built on 5/2[413]. A=10.30 keV, B=+15.3 eV.
- ^{*e*} Band(I): $K^{\pi}=3/2^+$ band? β^- vibration built on 3/2[411]? A=12.30 keV.
- ^{*f*} Band(J): $K^{\pi} = 1/2^{-}$ band? Conf=1/2(550)? A=15.38 keV, a=-1.11.
- ^{*g*} Band(K): $K^{\pi}=5/2^+$ band. Dominant conf=5/2(402). A=12.17 keV. A significant fraction of the 5/2[402] strength is located elsewhere in the ¹⁵⁵Eu level scheme, suggesting that configurations other than simply 5/2[402] contribute to the makeup of this band.
- ^{*h*} Band(L): $K^{\pi}=3/2^+$ band. Conf=3/2(422)? A=12.74 keV, A₃=+61.9 eV. Alternatively, one computes A=13.86 keV and B=-93.9 eV (this latter value seems unrealistically large).

						Adopte	ed Levels, Gammas	(continue	<u>d)</u>
							γ (¹⁵⁵ Eu)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
78.638	7/2+	78.6379 10	100	0.0	5/2+	M1+E2	0.641 +29-28	4.34 8	$\alpha(\text{K})=2.83\ 5;\ \alpha(\text{L})=1.17\ 5;\ \alpha(\text{M})=0.269\ 12$ $\alpha(\text{N})=0.060\ 3;\ \alpha(\text{O})=0.0085\ 4;\ \alpha(\text{P})=0.000290\ 6$ $\delta_{1}\ \text{from}\ ^{153}\text{Fw}(2n\ 2);\ \text{other:}\ 0.60\ 8\ \text{from}\ ^{155}\text{Sm}\ \theta^{-}\ \text{decay}$
104.334	5/2-	25.64 6	0.6 1	78.638	7/2+	E1		2.07 4	B(E1)(W.u.)=0.00063 13 $\alpha(L)=1.63$; $\alpha(M)=0.355$ 6 $\alpha(D)=0.0776$ 12; $\alpha(O)=0.01032$ 16; $\alpha(P)=0.000524$ 8
		104.3346 8	100 5	0.0	5/2+	E1		0.253	$\begin{aligned} &a(N)=0.07672, a(G)=0.0103270, a(f)=0.0003248\\ &B(E1)(W.u.)=0.0015679\\ &\alpha(K)=0.2133; \alpha(L)=0.03155; \alpha(M)=0.0067970\\ &\alpha(N)=0.00152922; \alpha(O)=0.0002304; \alpha(P)=1.79\times10^{-5}3\\ &\delta: \text{ from } \gamma\gamma(\theta) \text{ in } ^{155}\text{Sm } \beta^{-} \text{ decay, } 1971\text{Be}23 \text{ report}\\ &\%\text{E1}=98.4 \text{ and } \%\text{M2}=6.0 \text{ for this transition. Although these}\\ &\text{ two values cannot both be correct, it seems clear that } \%\text{M2}\\ &\text{ is too large in any event. RUL<1 implies that } \delta<0.0012 \text{ for this transition.} \end{aligned}$
169.009	7/2-	64.6761 <i>6</i>	15.2 16	104.334	5/2-	M1+E2	0.11 +5-9	6.56 13	$\alpha(K) = 5.45 \ 9; \ \alpha(L) = 0.87 \ 9; \ \alpha(M) = 0.190 \ 21 \ \alpha(N) = 0.043 \ 5; \ \alpha(O) = 0.0067 \ 6; \ \alpha(P) = 0.000605 \ 10$
		90.3725 17	25.8 10	78.638	7/2+	E1		0.373	$\alpha(\mathbf{K}) = 0.313 \ 5; \ \alpha(\mathbf{L}) = 0.0472 \ 7; \ \alpha(\mathbf{M}) = 0.01018 \ 15 \ \alpha(\mathbf{K}) = 0.00232 \ 4; \ \alpha(\mathbf{M}) = 0.002342 \ 5; \ \alpha(\mathbf{M}) = 2.57 \times 10^{-5} \ 4$
		169.0067 9	100 6	0.0	5/2+	E1		0.0687	$\alpha(\text{K})=0.052294, \alpha(\text{C})=0.0005425, \alpha(\text{F})=2.57\times10^{-4}4$ $\alpha(\text{K})=0.05829; \alpha(\text{L})=0.0082512; \alpha(\text{M})=0.00177325$
179.157	9/2+	100.5181 11	54.2 14	78.638	7/2+	M1+E2	0.513 25	1.94	$\alpha(N)=0.0004016; \alpha(O)=6.15\times10^{-9}; \alpha(P)=5.21\times10^{-8}8$ $\alpha(K)=1.45922; \alpha(L)=0.37113; \alpha(M)=0.0843$ $\alpha(N)=0.01887; \alpha(O)=0.02275; \alpha_{-1}(M)=0.0021523$
		179.1570 6	100 6	0.0	5/2+	E2		0.312	$\alpha(N)=0.0188 \ \ ; \ \alpha(O)=0.00275 \ \ ; \ \alpha(P)=0.000153 \ \ 3 \ \alpha(K)=0.213 \ \ ; \ \alpha(L)=0.0764 \ \ 11; \ \alpha(M)=0.01754 \ \ 25 \ \ 15 \ \ \ 15 \ \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ 15 \ \ \ 15 \ \ \ 15 \ \ \ 15 \ \ \ 15 \ \ \ 15 \ \ \ \$
245.777	3/2+	141.4428 6	57 3	104.334	5/2-	E1		0.1110	$\alpha(N)=0.00392\ 6;\ \alpha(O)=0.000552\ 8;\ \alpha(P)=1.780\times10^{-5}\ 25$ B(E1)(W.u.)=1.93×10 ⁻⁵ 16 $\alpha(K)=0.0939\ 14;\ \alpha(L)=0.01348\ 19;\ \alpha(M)=0.00290\ 4$ $\alpha(N)=0.000655\ 10;\ \alpha(O)=9.98\times10^{-5}\ 14;\ \alpha(P)=8.21\times10^{-6}\ 12$ δ : from $\gamma\gamma(\theta)$, 1971Be23 report δ =0.18. This yields B(M2)=67 4, much larger than allowed by RUL. RUL<1 implies δ <0.015
		167.1482 <i>11</i>	2.04 15	78.638	7/2+	E2		0.395	B(E2)(W.u.)=0.73. a(K)=0.264 4; a(L)=0.1020 15; a(M)=0.0235 4 a(K)=0.00524 4; a(L)=0.000725 14; a(M)=0.0235 4
		245.771 4	100 7	0.0	5/2+	M1+E2	+0.281 22	0.1471	$\alpha(N)=0.00324$ 8; $\alpha(O)=0.000735$ 11; $\alpha(P)=2.10\times10^{-5}$ 5 $\alpha(K)=0.1239$ 18; $\alpha(L)=0.0182$ 3; $\alpha(M)=0.00394$ 6 $\alpha(N)=0.000901$ 13; $\alpha(O)=0.0001419$ 20; $\alpha(P)=1.349\times10^{-5}$ 21 B(M1)(W.u.)=0.00056 6; B(E2)(W.u.)=0.38 7 δ : from ¹⁵⁵ Sm β^- decay (2004Ge20); other: 0.31 3 (¹⁵³ Eu(2n α) 1086Pr03)
254.665	9/2-	75.5091 5	5.5 5	179.157	$9/2^+$	M1 - E2	0.160	2.02.5	(21, 2), (20, 4), (10, 10, 20), (10, 10), (1
		85.6568 4	28.2 17	169.009	1/2=	M1+E2	0.162 +30-36	2.92.5	$\alpha(\mathbf{K}) = 2.42 \ 4; \ \alpha(\mathbf{L}) = 0.591 \ 1/; \ \alpha(\mathbf{M}) = 0.085 \ 4$ $\alpha(\mathbf{N}) = 0.0195 \ 9; \ \alpha(\mathbf{O}) = 0.00302 \ 12; \ \alpha(\mathbf{P}) = 0.000266 \ 4$
		150.3292 12	3.2 3	104.334	5/2-	E2		0.569	$\alpha(K)=0.3645; \alpha(L)=0.159723; \alpha(M)=0.03696$
		176.0262 5	100 6	78.638	7/2+	E1		0.0616	$\alpha(K) = 0.00322 \ 12, \ \alpha(O) = 0.001145 \ 10; \ \alpha(F) = 2.91 \times 10^{-4} \ \alpha(K) = 0.0522 \ 8; \ \alpha(L) = 0.00738 \ 11; \ \alpha(M) = 0.001586 \ 23 \ \alpha(N) = 0.000359 \ 5; \ \alpha(O) = 5.51 \times 10^{-5} \ 8; \ \alpha(P) = 4.70 \times 10^{-6} \ 7$

$\gamma(^{155}\text{Eu})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
300.688	$11/2^{+}$	121.5304 8	19.3 <i>19</i>	179.157	9/2+	M1+E2	0.56 6	1.092 17	$\alpha(K)=0.844 \ 15; \ \alpha(L)=0.193 \ 11; \ \alpha(M)=0.043 \ 3$
		222.046 4	100 16	78.638	7/2+	E2		0.1522	$\alpha(N)=0.0098 \ 6; \ \alpha(O)=0.00145 \ 8; \ \alpha(P)=8.78\times10^{-3} \ 22 \ \alpha(K)=0.1108 \ 16; \ \alpha(L)=0.0322 \ 5; \ \alpha(M)=0.00733 \ 11 \ \alpha(N)=0.001641 \ 23; \ \alpha(O)=0.000235 \ 4; \ \alpha(P)=9.70\times10^{-6} \ 14$
307.383	5/2+	61.6069 <i>3</i>	100 5	245.777	3/2+	M1(+E2)	0.050 26	7.49	$\begin{array}{l} \alpha(N) = 0.001041\ 25,\ \alpha(O) = 0.000255\ 4,\ \alpha(I) = 9.70\times10^{-11}\ 14\\ \alpha(K) = 6.30\ 9;\ \alpha(L) = 0.93\ 3;\ \alpha(M) = 0.202\ 7\\ \alpha(N) = 0.0462\ 16;\ \alpha(O) = 0.00729\ 22;\ \alpha(P) = 0.000701\ 10 \end{array}$
		138.3746 5	39.0 12	169.009	7/2-	E1		0.1178	δ: other: 0.29 +6-4, from ¹⁵⁵ Sm β ⁻ decay. α (K)=0.0996 14; α (L)=0.01433 20; α (M)=0.00308 5 α (N)=0.000696 10; α (O)=0.0001060 15; α (P)=8.69×10 ⁻⁶ 13
		203.048 3	21 2	104.334	5/2-	E1		0.0421	$\alpha(K) = 0.0357 5; \alpha(L) = 0.00500 7; \alpha(M) = 0.001075 15$ $\alpha(K) = 0.002244 4; \alpha(Q) = 3.76 \times 10^{-5} 6; \alpha(R) = 3.27 \times 10^{-6} 5$
		228.7346 18	23.5 17	78.638	7/2+	M1+E2	1.0 +4-3	0.160 8	$\alpha(\mathbf{K}) = 0.002444, \ \alpha(\mathbf{O}) = 5.70 \times 10^{-5}, \ \alpha(\mathbf{I}) = 3.27 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.128 \ 10; \ \alpha(\mathbf{L}) = 0.0252 \ 13; \ \alpha(\mathbf{M}) = 0.0056 \ 4$ $\alpha(\mathbf{N}) = 0.00127 \ 7; \ \alpha(\mathbf{O}) = 0.000190 \ 8; \ \alpha(\mathbf{P}) = 1.30 \times 10^{-5} \ 14$
357.169	11/2-	307.384 <i>9</i> 102.5070 <i>7</i>	≤5 56.2 20	0.0 254.665	5/2+ 9/2-	M1(+E2)	0.00 14	1.72 3	$\alpha(K)=1.454\ 22;\ \alpha(L)=0.208\ 13;\ \alpha(M)=0.045\ 3$ $\alpha(N)=0\ 0103\ 7;\ \alpha(Q)=0\ 00163\ 9;\ \alpha(P)=0\ 000161\ 3$
		178.0092 8	100 6	179.157	9/2+	E1		0.0598	$\alpha(\mathbf{K}) = 0.0507 7; \ \alpha(\mathbf{L}) = 0.00715 10; \ \alpha(\mathbf{M}) = 0.001538 22$ $\alpha(\mathbf{K}) = 0.00078 5; \ \alpha(\mathbf{L}) = 0.00715 10; \ \alpha(\mathbf{M}) = 0.001538 22$
		188.1601 22	15.2 22	169.009	7/2-	E2		0.264	$\alpha(\text{N})=0.000348.5; \ \alpha(\text{O})=5.53\times10^{-4}.8; \ \alpha(\text{F})=4.50\times10^{-7}.7$ $\alpha(\text{K})=0.184.3; \ \alpha(\text{L})=0.0625.9; \ \alpha(\text{M})=0.01432.20$
391.484	7/2+	84.1017 10	100 4	307.383	5/2+	M1+E2	0.113 +25-31	3.06	$\alpha(N)=0.00320\ 5;\ \alpha(O)=0.000453\ 7;\ \alpha(P)=1.550\times10^{-3}\ 22$ $\alpha(K)=2.56\ 4;\ \alpha(L)=0.391\ 13;\ \alpha(M)=0.085\ 3$ $\alpha(N)=0.0194\ 7;\ \alpha(O)=0.00304\ 9;\ \alpha(P)=0.000282\ 4$
		136.8172 11	20 1	254.665	9/2-	E1		0.1215	$\alpha(K) = 0.1027 \ I5; \ \alpha(L) = 0.01479 \ 2I; \ \alpha(M) = 0.00318 \ 5$ $\alpha(K) = 0.000718 \ I0; \ \alpha(D) = 0.0001002 \ I6; \ \alpha(D) = 8.04 \times 10^{-6} \ I2$
		145.7083 21	15.2 6	245.777	3/2+	E2		0.635	$\alpha(N)=0.00071870; \alpha(O)=0.000109570; \alpha(P)=8.94\times10^{-15}$ $\alpha(K)=0.3996; \alpha(L)=0.1833; \alpha(M)=0.04226$ $\alpha(N)=0.0094014; \alpha(O)=0.00130619; \alpha(P)=3.17\times10^{-5}5$
		212.284 ^b 3 222.4732 24	25 2 15 2	179.157 169.009	9/2+ 7/2 ⁻	E1		0.0331	Mult.: see the comment in the ${}^{153}\text{Eu}(2n,\gamma)$ data set. $\alpha(\text{K})=0.0281 4; \alpha(\text{L})=0.00391 6; \alpha(\text{M})=0.000841 12$ $\alpha(\text{M})=0.000841 12$
		287.146 4	25 2	104.334	5/2-	E1		0.01711	$\begin{aligned} \alpha(N) &= 0.0001915; \ \alpha(O) &= 2.93 \times 10^{-5} 5; \ \alpha(P) &= 2.39 \times 10^{-5} 4 \\ \alpha(K) &= 0.01456 \ 21; \ \alpha(L) &= 0.00200 \ 3; \ \alpha(M) &= 0.000430 \ 6 \\ \alpha(N) &= 9.76 \times 10^{-5} \ 14; \ \alpha(O) &= 1.518 \times 10^{-5} \ 22; \end{aligned}$
		312.929 8 391.34 <i>3</i>	2.3 <i>10</i> 3.6 7	78.638 0.0	7/2+ 5/2+				$\alpha(P)=1.377\times10^{-6}\ 20$
443.026	13/2+	85.8 2	14 <i>I</i>	357.169	11/2-	E1		0.429 7	$\alpha(K)=0.359$ 6; $\alpha(L)=0.0547$ 9; $\alpha(M)=0.01178$ 19 $\alpha(K)=0.00265$ 4; $\alpha(Q)=0.000394$ 6; $\alpha(P)=2.93\times10^{-5}$ 5
		142.4 2	12.9 6	300.688	$11/2^{+}$	#	#		$a_{(1)} = 0.00205 +, a_{(0)} = 0.000574 + 0, a_{(1)} = 2.75 \times 10^{-5} \text{ J}$
		263.869 8	100 5	179.157	9/2 ⁺	E2		0.0871	α (K)=0.0658 <i>10</i> ; α (L)=0.01660 <i>24</i> ; α (M)=0.00375 <i>6</i> α (N)=0.000842 <i>12</i> ; α (O)=0.0001224 <i>18</i> ; α (P)=5.97×10 ⁻⁶ <i>9</i>

 \neg

$\gamma(^{155}\text{Eu})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
487.088	13/2-	129.9192 8	100 6	357.169	11/2-	M1		0.876	$\alpha(K)=0.741 \ 11; \ \alpha(L)=0.1057 \ 15; \ \alpha(M)=0.0228 \ 4$
		186.3955 25	99 9	300.688	$11/2^{+}$	E1		0.0529	$\alpha(N) = 0.00525 \ \text{s}; \ \alpha(O) = 0.000829 \ 12; \ \alpha(P) = 8.19 \times 10^{-5} \ 12 \ \alpha(K) = 0.0448 \ 7; \ \alpha(L) = 0.00631 \ 9; \ \alpha(M) = 0.001356 \ 19 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12$
		232.466 13	70 11	254.665	9/2-	E2		0.1310	$\alpha(N)=0.0003075; \alpha(O)=4.72\times10^{-5}7; \alpha(P)=4.06\times10^{-6}6$ $\alpha(K)=0.0964$ 14; $\alpha(L)=0.0269$ 4; $\alpha(M)=0.00612$ 9
501.006	9/2+	109.5219 <i>3</i>	100 5	391.484	7/2+	M1(+E2)	0.08 6	1.425 21	α (N)=0.001371 20; α (O)=0.000197 3; α (P)=8.52×10 ⁻⁶ 12 α (K)=1.202 18; α (L)=0.175 7; α (M)=0.0379 16
		1/2 92/0 19	12.0.8	257 160	11/2-				$\alpha(N)=0.00874; \alpha(O)=0.001375; \alpha(P)=0.000132821$
		143.8349 18	15.0 o 37 4	307 383	$\frac{11/2}{5/2^+}$	E2		0.240	$\alpha(K) = 0.1683.24; \alpha(L) = 0.0556.8; \alpha(M) = 0.01273.18$
		175.0255 10	51 1	507.505	5/2	112		0.210	$\alpha(N)=0.00285 4; \alpha(O)=0.000404 6; \alpha(P)=1.429\times10^{-5} 20$
		332.017 4	38 <i>3</i>	169.009	7/2-	E1		0.01189	$\alpha(K) = 0.01013 \ 15; \ \alpha(L) = 0.001382 \ 20; \ \alpha(M) = 0.000297 \ 5$
		122 078 12	9612	70 620	7/2+	M1		0.0260	$\alpha(N)=6.75\times10^{-5} \ 10; \ \alpha(O)=1.052\times10^{-5} \ 15; \ \alpha(P)=9.69\times10^{-7} \ 14$
		422.078 13	0.0 15	70.030	1/2	1111		0.0300	$\alpha(\mathbf{N}) = 0.0000913, \alpha(\mathbf{L}) = 0.00423, 0, \alpha(\mathbf{M}) = 0.000912, 13$ $\alpha(\mathbf{N}) = 0.000209, 3; \alpha(\mathbf{C}) = 3.32 \times 10^{-5}, 5; \alpha(\mathbf{P}) = 3.33 \times 10^{-6}, 5$
604 22	$15/2^{+}$	11752	968	487 088	13/2-	#	#		
001.22	15/2	161 1 2	1078	107.000	$13/2^+$	#	#		
		303.6 2	10.7 8	300.688	$\frac{13/2}{11/2^+}$	E2		0.0561	$\alpha(K)=0.0434$ 7; $\alpha(L)=0.00992$ 14; $\alpha(M)=0.00223$ 4
					,-				$\alpha(N)=0.000501 \ 8; \ \alpha(O)=7.36\times10^{-5} \ 11; \ \alpha(P)=4.04\times10^{-6} \ 6$
624.22	$15/2^{-}$	137.1 2	100.5	487.088	$13/2^{-}$	#	#		
		181.3 2	95 5	443.026	$13/2^+$	E1		0.0569	$\alpha(K)=0.0483$ 7; $\alpha(L)=0.00681$ 10; $\alpha(M)=0.001463$ 21
									$\alpha(N)=0.000331$ 5; $\alpha(O)=5.09\times10^{-5}$ 8; $\alpha(P)=4.36\times10^{-6}$ 7
		266.9 2	94 5	357.169	$11/2^{-}$	E2		0.0840	$\alpha(K)=0.0635 9; \alpha(L)=0.01591 23; \alpha(M)=0.00359 6$
									α (N)=0.000807 12; α (O)=0.0001173 17; α (P)=5.78×10 ⁻⁶ 9
627.298	$11/2^{+}$	126.2917 10	40 7	501.006	9/2+	M1		0.949	$\alpha(K)=0.803 \ 12; \ \alpha(L)=0.1145 \ 16; \ \alpha(M)=0.0247 \ 4$
		140 204 0	2012	407 000	12/2-				$\alpha(N)=0.00567 \ 8; \ \alpha(O)=0.000899 \ 13; \ \alpha(P)=8.88\times10^{-5} \ 13$
		140.204 9	52.8 52.8	487.088	$\frac{13}{2}$	[F2]		0 1252 20	$\alpha(K) = 0.0024.15; \alpha(L) = 0.0255.5; \alpha(M) = 0.00579.10$
		233.1 3	52.0	591.404	1/2			0.1252 20	$\alpha(N) = 0.01299 22; \alpha(\Omega) = 0.00187 3; \alpha(P) = 8.20 \times 10^{-6} 13$
									E_{x} L: from (⁷ Li $\alpha^{2}n\gamma$) The main part of this γ in ¹⁵³ Eu(2n γ)
									is placed in 154 Eu. Iv value computed by the evaluator from
									$I_{\gamma}(235.7\nu)/I_{\gamma}(372.1\nu)$ in $(^{7}Li_{\alpha}\alpha_{2}n\nu)$ and $I_{\gamma}(372.667\nu)$.
		372.667 7	100 10	254.665	9/2-	E1		0.00896	$\alpha(K)=0.00765 \ 11; \ \alpha(L)=0.001037 \ 15; \ \alpha(M)=0.000222 \ 4$
									$\alpha(N)=5.06\times10^{-5}$ 7; $\alpha(O)=7.91\times10^{-6}$ 11; $\alpha(P)=7.37\times10^{-7}$ 11
		448.3 ^b 2	52	179.157	9/2+				
768.428	$3/2^{-}$	461.046 11	53 6	307.383	5/2+	E1		0.00543	α (K)=0.00463 7; α (L)=0.000622 9; α (M)=0.0001333 19
									$\alpha(N)=3.04\times10^{-5} 5; \alpha(O)=4.77\times10^{-6} 7; \alpha(P)=4.52\times10^{-7} 7$
		522.670 4	100 6	245.777	3/2+	E1		0.00408	$\alpha(K)=0.003495; \alpha(L)=0.0004667; \alpha(M)=9.98\times10^{-5}14$
		((4.100.7	20.4	104 22 4	5/0-	M1 . D2	0.001.01	0.0112	$\alpha(\mathbf{N})=2.2/\times10^{-5} 4; \ \alpha(\mathbf{O})=3.58\times10^{-6} 5; \ \alpha(\mathbf{P})=3.43\times10^{-7} 5$
		004.122 /	30 4	104.334	5/2	M1+E2	$-0.231\ 21$	0.0112	o: from 22 Sm β decay (2004Ge20).

 ∞

γ (¹⁵⁵Eu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.‡	δ^{\ddagger}	α &	Comments
768.428	3/2-	768.27 7	3.7 13	0.0	5/2+				
781.993	$13/2^{+}$	154.698 ^a 4	92 ^a 22	627.298	$11/2^{+}$	M1		0.536	$\alpha(K)=0.454$ 7; $\alpha(L)=0.0645$ 9; $\alpha(M)=0.01394$ 20
		200.040.12	100.20	501.000	0.00			0.0714	α (N)=0.00319 5; α (O)=0.000506 7; α (P)=5.01×10 ⁻⁵ 7
		280.940 13	100 38	501.006	9/21	(E2)		0.0714	$\alpha(\mathbf{K})=0.0545 \ 8; \ \alpha(\mathbf{L})=0.01315 \ 19; \ \alpha(\mathbf{M})=0.00296 \ 5$
		121 011 10	04.10	255 1 60	11/2-	#	#		$\alpha(N)=0.000606 \ 10; \ \alpha(O)=9.72\times10^{\circ} \ 14; \ \alpha(P)=5.01\times10^{\circ} \ 7$
795 00	17/0+	424.844 18	84 18	357.169	11/2	" E1	"	0.0705	(W) = 0.0665 + 10.0 (I) = 0.00046 + 14.0 (IV) = 0.00202 + 2
185.22	17/2	100.8 2	22 1	024.22	15/2	EI		0.0785	$\alpha(\mathbf{K}) = 0.0005 \ I0; \ \alpha(\mathbf{L}) = 0.00940 \ I4; \ \alpha(\mathbf{M}) = 0.00205 \ S$
		101.0.5	007	(04.00	15/0+	#	#		$\alpha(N) = 0.000400 \ 7; \ \alpha(O) = 7.04 \times 10^{-5} \ 11; \ \alpha(P) = 5.92 \times 10^{-5} \ 9$
		181.0 5	9.0 /	604.22	15/2 '		"	0.0200	· (K) 0.0207 5. · (I) 0.00(50 10. · (M) 0.001452 21
		342.3 2	100 3	443.020	13/2	E2		0.0390	$\alpha(\mathbf{K}) = 0.0007 5; \alpha(\mathbf{L}) = 0.00050 10; \alpha(\mathbf{M}) = 0.001452 21$ $\alpha(\mathbf{M}) = 0.000227 5; \alpha(\mathbf{C}) = 4.85 \times 10^{-5} 7; \alpha(\mathbf{D}) = 2.01 \times 10^{-6} 5$
801.17	$(17/2^{-})$	177 1 2	100.5	624.22	15/2-				$a(\mathbf{N})=0.000527.5; a(\mathbf{O})=4.85\times10^{-2.91}\times10^{-2.91}\times10^{-2.91}$
801.17	(11/2)	196.8.2	55 3	604 22	$15/2^+$				
		314.1.2	85 4	487 088	$13/2^{-1}$				
817.669	$5/2^{-}$	426.177.3	78.6	391.484	$7/2^+$	E1		0.00651	$\alpha(K)=0.00556 \ 8; \ \alpha(L)=0.000749 \ 11; \ \alpha(M)=0.0001606 \ 23$
	-/-				.,_				$\alpha(N)=3.66\times10^{-5}$ 6; $\alpha(O)=5.73\times10^{-6}$ 8; $\alpha(P)=5.41\times10^{-7}$ 8
		510.296 <i>3</i>	100 8	307.383	$5/2^{+}$	E1		0.00431	$\alpha(K)=0.00368 6; \alpha(L)=0.000492 7; \alpha(M)=0.0001054 15$
					,				$\alpha(N)=2.40\times10^{-5}$ 4; $\alpha(O)=3.77\times10^{-6}$ 6; $\alpha(P)=3.61\times10^{-7}$ 5
		571.885 4	80 4	245.777	$3/2^{+}$	E1		0.00335	$\alpha(K)=0.00286\ 4;\ \alpha(L)=0.000381\ 6;\ \alpha(M)=8.15\times10^{-5}\ 12$
					,				$\alpha(N)=1.86\times10^{-5}$ 3; $\alpha(O)=2.93\times10^{-6}$ 4; $\alpha(P)=2.82\times10^{-7}$ 4
		648.56 6	31 6	169.009	$7/2^{-}$	M1		0.01216	$\alpha(K)=0.01036\ 15;\ \alpha(L)=0.001412\ 20;\ \alpha(M)=0.000304\ 5$
									$\alpha(N)=6.95\times10^{-5}$ 10; $\alpha(O)=1.107\times10^{-5}$ 16; $\alpha(P)=1.119\times10^{-6}$ 16
		713.31 5	31 3	104.334	5/2-	M1		0.00961	$\alpha(K)=0.00820$ 12; $\alpha(L)=0.001113$ 16; $\alpha(M)=0.000239$ 4
									$\alpha(N)=5.48\times10^{-5} 8$; $\alpha(O)=8.73\times10^{-6} 13$; $\alpha(P)=8.84\times10^{-7} 13$
		817.61 4	9.8 10	0.0	5/2+				
876.831	$(1/2)^+$	631.023 ^{<i>a</i>} 4	100 ^{<i>a</i>} 9	245.777	3/2+				
	- 12	880 10	16 3	0.0	5/2+	-			
881.689	$1/2^{-}$	380.670 8	51.5	501.006	9/2*	EI		0.00852	$\alpha(\mathbf{K})=0.00/27/11; \ \alpha(\mathbf{L})=0.000984/14; \ \alpha(\mathbf{M})=0.000211/3$
		400 207 15	21.2	201 404	7/0+	E1		0.00471	$\alpha(N) = 4.81 \times 10^{-5}$ /; $\alpha(O) = 7.52 \times 10^{-5}$ /1; $\alpha(P) = 7.01 \times 10^{-5}$ /2
		490.327 13	21.5	391.484	1/2.	EI		0.00471	$\alpha(\mathbf{K}) = 0.00405 \ 0; \ \alpha(\mathbf{L}) = 0.000559 \ 8; \ \alpha(\mathbf{M}) = 0.0001155 \ 1/$
		574 277 0	100 10	207 202	5/0+	E1		0.00222	$\alpha(N) = 2.03 \times 10^{-6} 4; \ \alpha(O) = 4.13 \times 10^{-6} 0; \ \alpha(P) = 5.94 \times 10^{-6} 0$
		574.2779	100 10	307.383	5/2	EI		0.00332	$\alpha(\mathbf{K}) = 0.002844; \alpha(\mathbf{L}) = 0.0003770; \alpha(\mathbf{M}) = 8.07\times10^{-5} 12$
		627 021 10	20.2	251 665	$0/2^{-}$	M1		0.01222	$\alpha(\mathbf{N}) = 1.84 \times 10^{-5}$ 5; $\alpha(\mathbf{O}) = 2.90 \times 10^{-5}$ 4; $\alpha(\mathbf{P}) = 2.80 \times 10^{-7}$ 4 $\alpha(\mathbf{K}) = 0.01127$ 16; $\alpha(\mathbf{L}) = 0.001527$ 22; $\alpha(\mathbf{M}) = 0.000220$ 5
		027.021 10	30.2	254.005	9/2	1111		0.01322	$\alpha(\mathbf{K}) = 0.01127 \ 10, \ \alpha(\mathbf{L}) = 0.001357 \ 22, \ \alpha(\mathbf{M}) = 0.000350 \ 3$
		71272	16.3	169 009	7/2-				$u(1) = 1.51 \times 10^{-11}, u(0) = 1.205 \times 10^{-17}, u(\Gamma) = 1.210 \times 10^{-17}$
911 213	$3/2^{+}$	142.814 4	7.7.9	768.428	3/2-				
/11.215	572	603.806.9	100.7	307,383	5/2+	M1		0.01452	$\alpha(K)=0.01237$ 18: $\alpha(L)=0.001690$ 24: $\alpha(M)=0.000363$ 5
		302.000 /	100 /	507.505		1711		0.01102	$\alpha(N) = 8.33 \times 10^{-5} \ 12: \ \alpha(O) = 1.325 \times 10^{-5} \ 19: \ \alpha(P) = 1.339 \times 10^{-6} \ 19$
		665.423 5	60 5	245.777	$3/2^{+}$	M1		0.01141	$\alpha(K) = 0.00972 \ 14; \ \alpha(L) = 0.001324 \ 19; \ \alpha(M) = 0.000285 \ 4$
					,				$\alpha(N)=6.52\times10^{-5}$ 10; $\alpha(O)=1.038\times10^{-5}$ 15; $\alpha(P)=1.050\times10^{-6}$ 15

γ (¹⁵⁵Eu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	$\alpha^{\&}$ Comments	
911.213	3/2+	830 <i>20</i> 911	8.3 <i>17</i> 8.3 <i>17</i>	78.638 0.0	7/2 ⁺ 5/2 ⁺			
923.148	1/2+	154.698 ^{ab} 4 677.406 ^a 6	7.6 ^a 18 100 ^a 8	768.428 245.777	3/2 ⁻ 3/2 ⁺			
944.37	(15/2+)	923.08 ^b 3 161.9 5	21 <i>3</i> 48 <i>6</i>	0.0 781.993	5/2 ⁺ 13/2 ⁺			
956.350	5/2+	317.1 2 457.1 5 564.831 22	100 9 56 6 95 7	627.298 487.088 391.484	11/2 ⁺ 13/2 ⁻ 7/2 ⁺	M1	0.01716	$\alpha(K)=0.01461\ 21;\ \alpha(L)=0.00200\ 3;\ \alpha(M)=0.000430\ 6$
	-1-	(40.00.7	100 12	207 292	5/0+	N/1	0.01214	$\alpha(N) = 9.86 \times 10^{-5} \ 14; \ \alpha(O) = 1.569 \times 10^{-5} \ 22; \ \alpha(P) = 1.583 \times 10^{-6} \ 23$
		048.88 /	100 12	307.385	5/2	MI	0.01214	$\alpha(\mathbf{K})=0.01055\ 15;\ \alpha(\mathbf{L})=0.001410\ 20;\ \alpha(\mathbf{M})=0.000505\ 5$ $\alpha(\mathbf{N})=6.95\times10^{-5}\ 10;\ \alpha(\mathbf{O})=1.106\times10^{-5}\ 16;\ \alpha(\mathbf{P})=1.118\times10^{-6}\ 16$
		710.65 3	37 4	245.777	3/2+	M1,E2	0.0076 21	α (K)=0.0065 <i>19</i> ; α (L)=0.00092 <i>21</i> ; α (M)=0.00020 <i>5</i> α (N)=4.6×10 ⁻⁵ <i>10</i> ; α (O)=7.2×10 ⁻⁶ <i>17</i> ; α (P)=6.8×10 ⁻⁷ <i>21</i>
967.16	19/2-	165.9 2	57 <i>3</i>	801.17	$(17/2^{-})$			
		181.6 5 342.9 2	18 2 100 5	785.22 624.22	17/2 ⁺ 15/2 ⁻	# E2	0.0388	α(K)=0.0305 5; α(L)=0.00646 10; α(M)=0.001443 21
973.992	9/2-	346.705.6	20.7 14	627.298	$11/2^{+}$			α (N)=0.000325 5; α (O)=4.82×10 ⁻⁵ 7; α (P)=2.90×10 ⁻⁶ 4
, <u>-</u>		472.841 17	41 6	501.006	$9/2^+$	E1	0.00512	α (K)=0.00437 7; α (L)=0.000586 9; α (M)=0.0001257 18 α (N)=2.86×10 ⁻⁵ 4; α (O)=4.50×10 ⁻⁶ 7; α (P)=4.28×10 ⁻⁷ 6
		582.519 9	100 9	391.484	7/2+	E1	0.00322	$\alpha(\mathbf{K})=0.00275 \ 4; \ \alpha(\mathbf{L})=0.000365 \ 6; \ \alpha(\mathbf{M})=7.82\times10^{-5} \ 11 \ \alpha(\mathbf{N})=1.784\times10^{-5} \ 25; \ \alpha(\mathbf{O})=2.81\times10^{-6} \ 4; \ \alpha(\mathbf{P})=2.72\times10^{-7} \ 4$
		616.825 <i>21</i>	20.4 20	357.169	11/2-	M1	0.01377	$\alpha(K) = 0.01173 \ 17; \ \alpha(L) = 0.001601 \ 23; \ \alpha(M) = 0.000344 \ 5$ $\alpha(K) = 7.89 \times 10^{-5} \ 11; \ \alpha(O) = 1.256 \times 10^{-5} \ 18; \ \alpha(P) = 1.269 \times 10^{-6} \ 18$
		719.34 10	8.7 20	254.665	9/2-			
977.198	7/2+	898.455 20	43 <i>3</i>	78.638	7/2+	M1,E2	0.0044 11	α (K)=0.00373 96; α (L)=0.00052 12; α (M)=0.000112 24 α (N)=2.6×10 ⁻⁵ 6; α (O)=4.0×10 ⁻⁶ 10; α (P)=3.9×10 ⁻⁷ 11
		977.331 23	100 5	0.0	5/2+	M1	0.00448	α (K)=0.00383 6; α (L)=0.000514 8; α (M)=0.0001104 16 α (N)=2.53×10 ⁻⁵ 4; α (O)=4.03×10 ⁻⁶ 6; α (P)=4.11×10 ⁻⁷ 6
979.474	5/2+	672.09 <i>5</i> 800.21 <i>6</i>	7.4 <i>15</i> 26 <i>3</i>	307.383 179.157	5/2 ⁺ 9/2 ⁺			
		900.847 16	79 9	78.638	7/2+	M1	0.00545	α (K)=0.00465 7; α (L)=0.000627 9; α (M)=0.0001346 19 α (N)=3.08×10 ⁻⁵ 5; α (O)=4.91×10 ⁻⁶ 7; α (P)=5.00×10 ⁻⁷ 7
		979.463 17	100 4	0.0	5/2+	E0+(M1)+E2	0.0036 [@] 9	α (K)=0.0031 8; α (L)=0.00042 9; α (M)=9.1×10 ⁻⁵ 20 α (N)=2.1×10 ⁻⁵ 5; α (O)=3.3×10 ⁻⁶ 8; α (P)=3.23×10 ⁻⁷ 86
982.58	$19/2^{+}$	181.7 5	8.5 4	801.17	$(17/2^{-})$	#		
	,	197.0.5	9.3 4	785.22	17/2+	#		
		378.3 2	100 4	604.22	$15/2^+$	E2	0.0290	α (K)=0.0231 4; α (L)=0.00463 7; α (M)=0.001030 15 α (N)=0.000232 4; α (O)=3.47×10 ⁻⁵ 5; α (P)=2.23×10 ⁻⁶ 4

					1	Adopted Levels	, Gamm	as (continued)	
						γ (¹⁵⁵ Eu	a) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
1007.309	3/2+	699.939 7	100 7	307.383	5/2+	M1		0.01007	$\alpha(K)=0.00859 \ 12; \ \alpha(L)=0.001167 \ 17; \ \alpha(M)=0.000251$
		7(1.504) 10	750 7	245 777	2/2+				⁴ $\alpha(N)=5.75\times10^{-5} 8; \alpha(O)=9.15\times10^{-6} 13;$ $\alpha(P)=9.26\times10^{-7} 13$
1007.988	5/2-,7/2-	761.504** 10 838.88 4	42 3	245.777 169.009	3/2* 7/2 ⁻	M1,E2		0.0051 14	α (K)=0.0044 <i>12</i> ; α (L)=0.00061 <i>14</i> ; α (M)=0.00013 <i>3</i> α (N)=3.0×10 ⁻⁵ <i>7</i> ; α (O)=4.8×10 ⁻⁶ <i>11</i> ; α (P)=4.6×10 ⁻⁷ <i>14</i>
		903.654 10	100 9	104.334	5/2-	M1		0.00541	$\alpha(K) = 0.00462 \ 7; \ \alpha(L) = 0.000622 \ 9; \ \alpha(M) = 0.0001336$
									$\alpha(N)=3.06\times10^{-5} 5; \ \alpha(O)=4.88\times10^{-6} 7; \ \alpha(P)=4.96\times10^{-7} 7$
		929.24 8	25 12	78.638	$7/2^{+}$				
		1008.03 <i>3</i>	63 4	0.0	5/2+	E1		1.07×10 ⁻³	$\alpha(K)=0.000916 \ I3; \ \alpha(L)=0.0001186 \ I7; \alpha(M)=2.53\times10^{-5} \ 4 \alpha(N)=5.79\times10^{-6} \ 9; \ \alpha(O)=9.17\times10^{-7} \ I3; \alpha(P)=9.16\times10^{-8} \ I3$
1053.631	7/2+	171.940 ^b 5 552.625 10	5.7 <i>9</i> 88 <i>6</i>	881.689 501.006	7/2 ⁻ 9/2 ⁺	M1,E2		0.0142 40	Mult.: see the comment in the ${}^{153}\text{Eu}(2n,\gamma)$ data set. $\alpha(\text{K})=0.0120\ 35;\ \alpha(\text{L})=0.0018\ 4;\ \alpha(\text{M})=0.00038\ 8$ $\alpha(\text{N})=8.8\times10^{-5}\ 17;\ \alpha(\text{O})=1.4\times10^{-5}\ 3;$ $\alpha(\text{N})=1\ 26\times10^{-6}\ 41$
		662.149 8	100 6	391.484	7/2+	M1		0.01155	$\alpha(\mathbf{K}) = 0.00984 \ 14; \ \alpha(\mathbf{L}) = 0.001340 \ 19; \ \alpha(\mathbf{M}) = 0.000288 \ 4 \ \alpha(\mathbf{K}) = 0.001340 \ 19; \ \alpha(\mathbf{M}) = 0.000288 \ 4 \ \alpha(\mathbf{K}) = 0.000288 \ 10^{-5} \ 10^$
									$\alpha(N)=6.60\times10^{-5} I0; \alpha(O)=1.051\times10^{-5} I5; \alpha(P)=1.063\times10^{-6} I5$
		746.18 3	48 4	307.383	5/2+	M1		0.00861	$\alpha(\mathbf{K}) = 0.00734 \ 11; \ \alpha(\mathbf{L}) = 0.000995 \ 14; \ \alpha(\mathbf{M}) = 0.000214$
									α (N)=4.90×10 ⁻⁵ 7; α (O)=7.81×10 ⁻⁶ 11; α (P)=7.91×10 ⁻⁷ 11
1054.838	7/2+	747.40 3	40 4	307.383	5/2+				
		885.89 4	26 3	169.009	7/2-				5
		976.20 4	37 7	78.638	7/2+	E0+(M1)+E2		0.0036 9	$\alpha(K)=0.0031 \ 8; \ \alpha(L)=0.00042 \ 10; \ \alpha(M)=9.1\times10^{-5} \ 20 \\ \alpha(N)=2.1\times10^{-5} \ 5; \ \alpha(O)=3.3\times10^{-6} \ 8; \ \alpha(P)=3.26\times10^{-7} \\ 87 $
		1054.86 4	100 7	0.0	5/2+	M1		0.00374	$\alpha(K)=0.00319$ 5; $\alpha(L)=0.000428$ 6; $\alpha(M)=9.19\times10^{-5}$ 13
									α (N)=2.10×10 ⁻⁵ 3; α (O)=3.36×10 ⁻⁶ 5; α (P)=3.42×10 ⁻⁷ 5
1064.663	$(3/2)^+$	673.07 7	92	391.484	$7/2^+$				
		757.300 20 818 84 ^a 3	50 4 23 <mark>4</mark> 3	307.383	$5/2^+$ $3/2^+$				E_{γ} : given as 757.3000 20 by 1986Pr03.
		1064.71 5	100 13	0.0	$5/2^+$	M1		0.00366	$\alpha(K)=0.00312$ 5; $\alpha(L)=0.000419$ 6; $\alpha(M)=8.98\times10^{-5}$

				Adop	ted Levels,	Gammas (continued)	
					γ(¹⁵⁵ Eu) (continued	<u>l)</u>	
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α &	Comments
								$\frac{13}{\alpha(N)=2.06\times10^{-5} 3; \alpha(O)=3.28\times10^{-6} 5; \alpha(P)=3.35\times10^{-7} 5}$
1068.891	5/2+	187.241 ^b 6 677.406 ^a 6 761.504 ^a 10	$<3 \\ 100^{a} 8 \\ 42^{a} 4$	881.689 7/2 ⁻ 391.484 7/2 ⁺ 307.383 5/2 ⁺				
1078.064?	(11/2 ⁻)	577.107 <i>18</i> 590.905 <i>21</i>	100 <i>10</i> 81 <i>16</i>	501.006 9/2 ⁺ 487.088 13/2 ⁻				
1096.18	(3/2+,5/2+)	220.1 <i>6</i> 1017.54 <i>11</i> 1096.17 <i>6</i>	100 25 23.9 7 45 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				I_{γ} : 53.2% 16 relative to 1096 γ .
1101.670	3/2-	178.572 7	17 4	923.148 1/2+	E1		0.0593	α (K)=0.0502 7; α (L)=0.00709 10; α (M)=0.001525 22 α (N)=0.000345 5; α (O)=5.30×10 ⁻⁵ 8; α (P)=4.53×10 ⁻⁶ 7
		224.8323 25	27 3	876.831 (1/2) ⁺	E1		0.0322	$\alpha(K)=0.0273 \ 4; \ \alpha(L)=0.00381 \ 6; \ \alpha(M)=0.000818 \ 12 \ \alpha(N)=0.000185 \ 3; \ \alpha(O)=2.87\times10^{-5} \ 4; \ \alpha(P)=2.53\times10^{-6} \ 4$
		932.624 16	68 5	169.009 7/2-	(E2)		0.00303	α (K)=0.00256 4; α (L)=0.000371 6; α (M)=8.03×10 ⁻⁵ 12 α (N)=1.83×10 ⁻⁵ 3; α (O)=2.87×10 ⁻⁶ 4; α (P)=2.63×10 ⁻⁷ 4
		997.355 25	100 5	104.334 5/2-	(E2)		0.00263	α (K)=0.00223 4; α (L)=0.000318 5; α (M)=6.87×10 ⁻⁵ 10 α (N)=1.568×10 ⁻⁵ 22; α (O)=2.46×10 ⁻⁶ 4; α (P)=2.29×10 ⁻⁷ 4
1106.799	3/2-,5/2-	183.4 <i>5</i> 195.624.6	22 5 100 0 16	923.148 1/2 ⁺ 911.213 3/2 ⁺	F1		0.0465	$\alpha(\mathbf{K}) = 0.0394.6$; $\alpha(\mathbf{I}) = 0.00553.8$; $\alpha(\mathbf{M}) = 0.001189.17$
		220.042.5	22 (076 001 (1/0)+	LI		0.0105	$\alpha(N)=0.000270 \ 4; \ \alpha(O)=4.15\times10^{-5} \ 6; \ \alpha(P)=3.59\times10^{-6} \ 5$
		229.943 5 1002.38 5	23 <i>4</i> 47 <i>5</i>	876.831 (1/2) ⁺ 104.334 5/2 ⁻	M1+E2	-0.35 6	0.00404 8	 α(K)=0.00345 7; α(L)=0.000465 9; α(M)=0.0001000 19 α(N)=2.29×10⁻⁵ 5; α(O)=3.64×10⁻⁶ 7; α(P)=3.69×10⁻⁷ 8 I_γ: from 1986Pr03, (2n,γ). On this intensity scale (namely Iγ(195.6γ)=100), the value of Iγ(1002γ) as measured in the ¹⁵⁵Sm β⁻ decay would be 196 47. Mult.: as reported by 1986Pr03. Placement in level scheme requires E2 if J^π 1/2⁻ for the 1106.7 level, as proposed by these authors.
1126.26?	(5/2 ⁺)	818.84 ^{<i>a</i>} 3 880.34 ^{<i>b</i>} 5 1021.81 ^{<i>b</i>} 11	24 ^{<i>a</i>} 3 28 5 73 9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
1132.029	(7/2)+	631.023 ^{<i>a</i>} 4 740.532 14	$100^{a} 14$ $100^{a} 9$ 17.4 17	0.0 5/2 ⁺ 501.006 9/2 ⁺ 391.484 7/2 ⁺	M1		0.00877	α (K)=0.00748 <i>11</i> ; α (L)=0.001014 <i>15</i> ; α (M)=0.000218 <i>3</i> α (N)=4.99×10 ⁻⁵ 7; α (O)=7.95×10 ⁻⁶ <i>12</i> ; α (P)=8.06×10 ⁻⁷ <i>12</i>

 $^{155}_{63}\mathrm{Eu}_{92}$ -12

From ENSDF

 $^{155}_{63}\mathrm{Eu}_{92}$ -12

					Adop	ted Levels, (Gammas (contin	nued)	
					$\gamma(^{155}\text{Eu})$ (continued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α ^{&}	Comments	
1138.389	7/2+	883.725 13	56 4	254.665	9/2-	(E1)	1.37×10 ⁻³	$\alpha(K)=0.001176 \ 17; \ \alpha(L)=0.0001530 \ 22; \ \alpha(M)=3.27\times10^{-5} \ 5 \\ \alpha(N)=7.47\times10^{-6} \ 11; \ \alpha(O)=1.182\times10^{-6} \ 17; \\ \alpha(D)=1.172\times10^{-7} \ 17; \ \alpha(D)=1.182\times10^{-6} \ 17; \ \alpha(D)=1.18\times10^{-6} $	
		959.05 8	28 6	179.157	9/2+	M1	0.00469	$\alpha(P)=1.1/3 \times 10^{-7} I/\alpha(R)=0.0001156 I/\alpha(R)=0.0001156 I/\alpha(R)=0.0001156 I/\alpha(R)=2.65 \times 10^{-5} 4. \alpha(Q)=4.22 \times 10^{-6} 6. \alpha(P)=4.30 \times 10^{-7} 6$	
		969.33 <i>3</i>	100 6	169.009	7/2-	E1	1.15×10^{-3}	$\alpha(\mathbf{N}) = 2.53 \times 10^{-4}, \ \alpha(\mathbf{O}) = 4.22 \times 10^{-6}, \ \alpha(\mathbf{I}) = 4.50 \times 10^{-6}, \ \alpha(\mathbf{M}) = 2.73 \times 10^{-5}, \ \alpha(\mathbf{M}) = 6.24 \times 10^{-6}, \ \alpha(\mathbf{O}) = 9.88 \times 10^{-7}, \ 14; \ \alpha(\mathbf{P}) = 9.86 \times 10^{-8}, \ 14$	
		1034.15 4	41 3	104.334	$5/2^{-}$				
		1138.31 12	31 <i>3</i>	0.0	5/2+				
1140.3	$(17/2^+)$	195.9 5	65 4	944.37	$(15/2^+)$				
		358.4 5	100 6	781.993	$13/2^{+}$				
	0.12+	516.0 5	73 6	624.22	$15/2^{-1}$				
1151.41	9/2+	850.78 10	39 7	300.688	11/2+		0		
		972.32 6	100 13	179.157	9/2+	M1 + (E0)	0.0093 ^w 31		
	(0.1.(0))	1072.67 6	77 13	78.638	7/2+				
1190.55	(21/2)	208.2 5	23.2	982.58	19/2				
		223.2 2	82.4	967.16	19/2				
1102 70	7/2+	389.3 Z	62 5	801.17	(1/2)				
1195.79	1/2	959.14 5	100 12	234.003	9/2 7/2-				
		1024.70 5	94.9	104.334	5/2-				
1198.09	$21/2^{+}$	230.8.5	13.7.8	967.16	$\frac{3}{2}$ 19/2 ⁻				
11,010,		412.9 2	100 5	785.22	17/2+	E2	0.0226	α (K)=0.0182 3; α (L)=0.00347 5; α (M)=0.000770 11 α (N)=0.0001741 25; α (O)=2.61×10 ⁻⁵ 4; α (P)=1.771×10 ⁻⁶ 25	
1230.776	5/2+	984.97 7	72	245.777	$3/2^{+}$				
		1126.38 ^a 6	100 ^a 14	104.334	5/2-				
		1230.79 <i>3</i>	11 5	0.0	5/2+			I_{γ} : after subtraction of contribution from a ¹⁵⁶ Gd line.	
1264.045?	3/2-,5/2-	256.737 7	24 3	1007.309	3/2+	E1	0.0228	α (K)=0.0194 3; α (L)=0.00268 4; α (M)=0.000575 8 α (N)=0.0001306 19; α (O)=2.03×10 ⁻⁵ 3; α (P)=1.81×10 ⁻⁶ 3	
		1018	71	245.777	$3/2^{+}$			-	
		1159.52 10	100 6	104.334	5/2-	M1	0.00299	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00256 \ 4; \ \alpha(\mathbf{L}) = 0.000341 \ 5; \ \alpha(\mathbf{M}) = 7.33 \times 10^{-5} \ 11 \\ &\alpha(\mathbf{N}) = 1.678 \times 10^{-5} \ 24; \ \alpha(\mathbf{O}) = 2.68 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 2.73 \times 10^{-7} \\ &4; \ \alpha(\mathbf{IPF}) = 2.41 \times 10^{-6} \ 4 \end{aligned}$	
		1262.4 5	17 5	0.0	5/2+				
1301.59	5/2,7/2+	1055	1.4 4	245.777	3/2+				
		1132	2.2 4	169.009	7/2-				
		1197.7 4	6.5 9	104.334	5/2-				
		1223.02 9	49 6	78.638	7/2 ⁺				
		1301.56 5	100 10	0.0	5/2*				
1215 04	(7/2+)	1061 44 7	00 10	0E 4 CCC	$\alpha/2 =$				

13

 $^{155}_{63}\mathrm{Eu}_{92}$ -13

Т

From ENSDF

 $^{155}_{63}\mathrm{Eu}_{92}$ -13

γ (¹⁵⁵Eu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	α &	Comments
1315.94	(7/2 ⁺)	1146.56 <i>12</i> 1211.49 <i>14</i>	100 9 90 12	169.009 104.334	7/2 ⁻ 5/2 ⁻			
1333.3	(19/2+)	388.6 5 532.7 5	100 9 89 9	944.37 801.17	$(15/2^+)$ $(17/2^-)$			
1380.14	23/2-	182.1 <i>5</i> 189.4 <i>5</i>	<16 37 5	1198.09 1190.55	21/2 ⁺ (21/2 ⁻)			
		413.0 2	100 6	967.16	19/2-	E2	0.0226	α (K)=0.0181 <i>3</i> ; α (L)=0.00347 <i>5</i> ; α (M)=0.000769 <i>11</i> α (N)=0.0001739 <i>25</i> ; α (O)=2.61×10 ⁻⁵ <i>4</i> ; α (P)=1.770×10 ⁻⁶ <i>25</i>
1427.2	23/2+	444.6 2	100	982.58	19/2+	E2	0.0184	α (K)=0.01487 21; α (L)=0.00274 4; α (M)=0.000607 9 α (N)=0.0001373 20; α (O)=2.07×10 ⁻⁵ 3; α (P)=1.464×10 ⁻⁶ 21
1483.04 1548.58	$3/2^+$ (5/2 ⁺)	1483.02 8 1469.94 18	100 100	0.0 78.638	$5/2^+$ $7/2^+$			
1567.7 1632.56	$(21/2^+)$ $7/2^+$	427.4 <i>5</i> 1453.40 <i>17</i>	100 100	1140.3 179.157	$(17/2^+)$ $9/2^+$			
1648.4? 1672 5	$(25/2^{-})$ $25/2^{+}$	457.9 ^b 5	100	1190.55	$(21/2^{-})$ $21/2^{+}$	F2	0.01540	$\alpha(\mathbf{K}) = 0.01253$ 18: $\alpha(\mathbf{I}) = 0.00224$ 4: $\alpha(\mathbf{M}) = 0.000495$ 7
1072.5	23/2	4/4.4 2	100	1198.09	21/2	Ľ2	0.01540	$\alpha(N)=0.00122576; \alpha(D)=0.002244; \alpha(M)=0.0004957$ $\alpha(N)=0.000112276; \alpha(O)=1.700\times10^{-5}24; \alpha(P)=1.242\times10^{-6}18$
1785.9? 1929.2	$(23/2^+)$ $(27/2^+)$ $(20/2^+)$	452.5 ^b 5 502.0 5	100 100	1333.3 1427.2	$(19/2^+)$ $23/2^+$ $25/2^+$			
2198.7	(29/2 ')	326.2 3	100	10/2.5	23/21			

14

[†] Values associated with γ 's whose energies are given to three significant figures or more are from ¹⁵³Eu(2n, γ). Those given only to the nearest 0.1 keV are generally from (⁷Li, α 2n γ). The others are generally from β^- decay.

[‡] Values associated with γ 's whose energies are given to only the nearest 0.1 keV are from (⁷Li, α 2n γ). The others are from ¹⁵³Eu(2n, γ), unless noted otherwise.

[#] For comments regarding the multipolarity and mixing ratio for this transition, see the $({}^{7}\text{Li},\alpha 2n\gamma)$ data set.

[@] Computed by the evaluator from the $\alpha(K)$ exp value reported by 1986Pr03, assuming $\alpha(exp) = \alpha(K)exp + 1.33\alpha(L)$ and $\alpha(K)/\alpha(L) = 7.2$, this latter ratio representing a reasonable average between those of E0 and M1 and E2 transitions in this energy region.

& Additional information 2.

^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Legend

¹⁵⁵₆₃Eu₉₂

Level Scheme (continued)

 $^{155}_{63}\mathrm{Eu}_{92}$ -20

From ENSDF

 $^{155}_{63}\mathrm{Eu}_{92}\text{--}20$

 $^{155}_{63}\mathrm{Eu}_{92}$

¹⁵⁵₆₃Eu₉₂

Band(K): $K^{\pi}=5/2^+$ band

(7/2⁺) 1315.94

Band(J): K^π=1/2⁻ band? Conf=1/2(550)? A=15.38 keV, a=-1.11

3/2-,5/2- ____1264.045_

<u>5/2+</u> 1230.776

	Band(H): K^{π} =5/2 ⁺ band	
Band(F): $K^{\pi}=1/2^+$ band	$\frac{9/2^{+} \qquad 1151.41}{9/2^{+}} \qquad \begin{array}{c} \text{Band(I): } \mathbf{K}^{\pi} = 3/2^{+} \\ \text{band? } \beta^{-} \text{vibration} \\ \text{built on } 3/2[411]? \\ \mathbf{A} = 12.30 \text{ keV} \end{array}$	
<u>(7/2)⁺ 1132.029</u>	$(5/2^+)$ <u>1126.26</u>	

3/2-,5/2-	1106.799
3/2-	1101.670

(3/2)⁺ 1064.663

7/2+ 1054.838

 $\frac{3/2^{+}}{1007.309}$ Band(G): $K^{\pi} = 7/2^{+}$ band $\frac{7/2^{+}}{977.198} = \frac{5/2^{+}}{979.474}$ $\frac{5/2^{+}}{956.350}$ $\frac{1/2^{+}}{923.148}$

¹⁵⁵₆₃Eu₉₂

Band(L): $K^{\pi}=3/2^+$ band

7/2+ 1632.56

(5/2+) 1548.58

<u>3/2+</u> 1483.04

¹⁵⁵₆₃Eu₉₂