154 Sm(7 Li, α 2n γ) 1998Ha27

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

¹⁵⁵Eu Levels

Additional information 1.

Based on the XUNDL data set compiled by J. Chenkin and B. Singh, May, 1999.

¹⁵⁴Sm(⁷Li, α 2n γ), E(⁷Li)=35 MeV. Enriched (>95%) target, \approx 5 mg/cm² thick, which stopped the recoiling nuclei. γ 's detected using an array of eight escape-suppressed Ge detectors, four at 90° and four at 145°. Measured E γ , I γ , $\gamma\gamma$, DCO ratios and B(M1)/B(E2) ratios.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	
0.0#	5/2+	357.3 ^a 2	11/2-	785.2 [#] 2	17/2+	1380.1 ^{<i>a</i>} 3	23/2-	
78.6 [@] 1	7/2+	391.2 ^C 2	$7/2^{+}$	801.2 ^{&} 2	$(17/2^{-})$	1427.2 [@] 3	$23/2^{+}$	
104.1 <mark>&</mark> 6	5/2-	443.0 [#] 2	$13/2^{+}$	944.1 [°] 2	$(15/2^+)$	1567.6 ^b 6	$(21/2^+)$	
168.9 <mark>a</mark> 2	7/2-	487.1 <mark>&</mark> 2	$13/2^{-}$	967.2 ^a 2	19/2-	1648.4? ^{&} 6	$(25/2^{-})$	
179.2 [#] 1	9/2+	500.6 ^b 2	9/2+	982.6 [@] 2	19/2+	1672.5 [#] 4	$25/2^+$	
245.7 [°] 2	$3/2^{+}$	604.3 [@] 2	$15/2^{+}$	1140.2 ^b 4	$(17/2^+)$	1785.9? ^C 6	$(23/2^+)$	
254.7 <mark>&</mark> 1	9/2-	624.2 ^{<i>a</i>} 2	$15/2^{-}$	1190.6 ^{&} 2	$(21/2^{-})$	1929.2 [@] 6	$(27/2^+)$	
300.7 [@] 1	$11/2^{+}$	626.9 [°] 2	$11/2^+$	1198.1 [#] 3	$21/2^+$	2198.7 [#] 6	$(29/2^+)$	
307.3 ^b 2	5/2+	781.9 <mark>6</mark> 2	$13/2^{+}$	1333.3 [°] 4	$(19/2^+)$			

[†] From a least-squares fit to the γ energies. Because of the lack of specific knowledge of the uncertainties of the E γ values, the resulting level energies are quoted to only the nearest 0.1 keV.

[‡] From adopted values.

[#] Band(A): π 5/2[413], (π =+, α =+1/2).

[@] Band(B): π 5/2[413], (π =+, α =-1/2).

& Band(C): π 5/2[532], (π =-, α =+1/2).

^{*a*} Band(D): π 5/2[532], (π =-, α =-1/2).

^b Band(E): π 3/2[411], (π =+, α =+1/2).

^{*c*} Band(F): π 3/2[411], (π =+, α =-1/2).

$\gamma(^{155}\text{Eu})$

E_{γ}^{\dagger}	Iγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]
61.6 <i>1</i>		307.3	$5/2^{+}$	245.7	$3/2^{+}$	
78.6 <i>1</i>		78.6	$7/2^{+}$	0.0	$5/2^{+}$	
84.1 5		391.2	$7/2^{+}$	307.3	$5/2^{+}$	
85.8 2	10.3 8	254.7	9/2-	168.9	$7/2^{-}$	@
85.8 2	8.96	443.0	$13/2^{+}$	357.3	$11/2^{-}$	D
100.6 2	52 <i>3</i>	179.2	9/2+	78.6	7/2+	@
102.7 2	12.9 7	357.3	$11/2^{-}$	254.7	9/2-	@
109.4 2	8.1 7	500.6	9/2+	391.2	$7/2^{+}$	@
117.5 2	5.1 4	604.3	$15/2^{+}$	487.1	$13/2^{-}$	&
121.6 2	17 <i>1</i>	300.7	$11/2^{+}$	179.2	9/2+	@
126.2 5	4.5 4	626.9	$11/2^{+}$	500.6	$9/2^{+}$	@
129.9 2	19 <i>1</i>	487.1	13/2-	357.3	$11/2^{-}$	@
137.1 2	19 <i>1</i>	624.2	$15/2^{-}$	487.1	13/2-	@

Comments
E_{γ} : from Adopted Gammas. γ not reported in 1998Ha27.
E_{γ} : from Adopted Gammas. γ not reported in 1998Ha27.
E_{γ} : from Adopted Gammas. γ not reported in 1998Ha27.

R(DCO)=0.7 1.

154 Sm(7 Li, α 2n γ) 1998Ha27 (continued)

γ ⁽¹⁵⁵Eu) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	Comments
142.4 2	8.1 4	443.0	$13/2^{+}$	300.7 11/2+	@	
145.4 5	1.0 2	391.2	7/2+	245.7 3/2+	E2	R(DCO)=1.0 2.
154.9 2	5.2 4	781.9	$13/2^{+}$	626.9 11/2+	@	
160.8 2	6.3 4	785.2	$17/2^{+}$	624.2 15/2-	D [#]	R(DCO)=0.60 8.
161.1 2	5.7 4	604.3	$15/2^{+}$	443.0 13/2+	@	
161.9 5	2.6 3	944.1	$(15/2^+)$	781.9 13/2+		
165.9 2	9.0 5	967.2	19/2-	801.2 (17/2 ⁻)	0	
169.0 2	≈15	168.9	$7/2^{-}$	0.0 5/2+	& "	
176.0 2	97 6	254.7	9/2-	78.6 7/2+	D [#]	R(DCO)=0.76 7.
177.1 2	16.4 8	801.2	$(1^{7}/2^{-})$	624.2 15/2-	#	
178.1 2	43 2	357.3	$11/2^{-}$	179.2 9/2+	D#	R(DCO)=0.82 7.
179.2 2	100	179.2	9/2+	$0.0 \ 5/2^+$	[E2]#	R(DCO)=0.77 4.
181.0 5	2.6 2	785.2	$17/2^{+}$	604.3 15/2+	<i>w</i>	
181.3 2	18 <i>I</i>	624.2	$15/2^{-}$	443.0 13/2+	D [#]	R(DCO)=0.62 6.
181.6 5	2.9 3	967.2	19/2-	785.2 17/2+	&	
181.7 5	2.3 1	982.6	$19/2^{+}$	801.2 (17/2-)	&	
182.1 5	<1	1380.1	$23/2^{-}$	1198.1 21/2+	&	
186.5 2	28 1	487.1	$13/2^{-}$	300.7 11/2+	#	R(DCO)=0.65 6.
188.4 5	3.2 2	357.3	$11/2^{-}$	168.9 7/2-	[E2]	
189.4 5	2.3 3	1380.1	23/2-	1190.6 (21/2 ⁻)		
193.1 5	2.8 4	500.6	$9/2^+$	$307.3 \ 5/2^+$	[E2]	
195.9.5	5.1 Z 9 1 5	801.2	$(17/2^{-1})$	$944.1 (15/2^{+})$ $604.3 15/2^{+}$		
107.0.5	251	082.6	(17/2)	$785.2 17/2^+$	@	
208.2.5	2.5 T 2.1 2	1190.6	$(21/2^{-})$	982.6 19/2+		
222.0 2	84 5	300.7	$\frac{(-1)^{-}}{11/2^{+}}$	78.6 7/2+	E2	R(DCO)=1.02 6.
223.2 2	7.4 4	1190.6	$(21/2^{-})$	967.2 19/2-		
230.8 5	1.8 <i>1</i>	1198.1	$21/2^+$	967.2 19/2-	&	
232.4 2	9.8 5	487.1	13/2-	254.7 9/2-	[E2]	
235.7 5	4.2 4	626.9	$\frac{11}{2^+}$	$391.2 7/2^+$	[E2]	
245.72	≈ 10	245.7 443.0	$\frac{3}{2}$	$0.0 \ 5/2^{+}$ 170 2 $0/2^{+}$	F2	P(DCO) = 1.03.4
266.9.2	17.8.9	624.2	$15/2^{-1}$	$357.3 \ 11/2^{-1}$	E2	R(DCO) = 1.034.
281.3 2	5.5 4	781.9	$13/2^+$	$500.6 \ 9/2^+$	[E2]	
287.1 5	3.6 4	391.2	$7/2^{+}$	104.1 5/2-	&	
303.6 2	53 <i>3</i>	604.3	$15/2^{+}$	300.7 11/2+	E2	R(DCO)=1.01 6.
314.1 2	14.0 7	801.2	$(17/2^{-})$	487.1 13/2		
317.1 2	5.4 5	944.1	$(15/2^+)$	626.9 11/2+	0_	
331.6 5	2.7 2	500.6	9/2+	168.9 7/2-	æ	
342.3 2	29 1	785.2	$17/2^{+}$	443.0 13/2+	E2 E2	R(DCO) = 1.04 %
342.9 2	15.8 8	967.2	$(17/2^+)$	024.2 15/2 781.9 13/2 ⁺	E2	$R(DCO)=1.02 \ \delta.$
372 1 2	805	626.0	$(1/2^{+})$	$254.7 0/2^{-1}$	&	
378.3.2	27.1	982.6	$19/2^+$	$604.3 15/2^+$	E2	R(DCO) = 1.02.5
388.6 5	3.5 3	1333.3	$(19/2^+)$	944.1 (15/2+)		
389.5 2	9.0 6	1190.6	$(21/2^{-})$	801.2 (17/2-)		
412.9 2	13.1 7	1198.1	$21/2^+$	785.2 17/2+	E2	R(DCO)=0.95 6.
413.0 2	6.3 4	1380.1	23/2-	967.2 19/2-	E2	R(DCO)=0.97 8.
424.6 2	8.0 5	781.9	$\frac{13}{2^+}$	$357.3 \ 11/2^{-1140.2}$	æ	
421.4 3	2.2.2	1307.0	$(21/2^{+})$ $23/2^{+}$	1140.2 (1/2') 082.6 10/2 ⁺	E2	P(DCO) = 1.04.8
-+++ .0 2	0.04	142/.2	23/2	702.0 19/2	ĽZ	N(DCO) = 1.040.

Continued on next page (footnotes at end of table)

¹⁵⁴Sm(⁷Li, α 2n γ) **1998Ha27** (continued)

$\gamma(^{155}\text{Eu})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
452.5 ^{<i>a</i>} 5 457.1 5 457.9 ^{<i>a</i>} 5 474.4 2 502.0 5 516.0 5 526.2 5 532.7 5	1.9 4 3.0 3 2.0 2 5.4 3 2.1 1 3.5 3 <1	1785.9? 944.1 1648.4? 1672.5 1929.2 1140.2 2198.7 1333.3	$\begin{array}{c} 1\\ \hline (23/2^+)\\ (15/2^+)\\ (25/2^-)\\ 25/2^+\\ (27/2^+)\\ (17/2^+)\\ (29/2^+)\\ (19/2^+)\\ (19/2^+) \end{array}$	1333.3 487.1 1190.6 1198.1 1427.2 624.2 1672.5 801.2	$\frac{f}{(19/2^+)}$ $\frac{13/2^-}{(21/2^-)}$ $\frac{21/2^+}{23/2^+}$ $\frac{15/2^-}{25/2^+}$ $\frac{(17/2^-)}{(17/2^-)}$	E2	R(DCO)=1.0 <i>I</i> .

[†] Uncertainty assigned by the evaluator as 0.2 keV for $I\gamma$ >5 and 0.5 keV for $I\gamma$ <5, based on a general statement by the authors.

^{\ddagger} From DCO ratio data. Authors state that R(DCO) \approx 1.0 for stretched $\Delta J=2$ (assumed E2) transitions and that $\Delta J=1$ transitions

have R(DCO)≈0.5, if they have a small mixing ratio. Quadrupole transitions are assumed to be E2, rather than M2.

[#] DCO ratio is affected by that from another γ of different multipolarity.

^(a) 1998Ha27 choose mult=M1+E2, based on the placement in the level scheme. For transitions within the 3/2[411] and 5/2[532] bands, these authors deduce $\delta \le 0.2$, while for transitions within the 5/2[413] band, $\delta \approx 0.6$ is obtained. These calculations assume that the intraband E2 transition probabilities are accurately given by the expression for collective intraband E2 transitions. The deduced B(M1)/B(E2) ratios are consistent.

[&] No DCO ratio data given. Authors choose mult=E1, based on the need for a parity change as required by the placement in the level scheme. The deduced B(E1)/B(E2) ratios are consistent.

^a Placement of transition in the level scheme is uncertain.

¹⁵⁵₆₃Eu₉₂

¹⁵⁵₆₃Eu₉₂

¹⁵⁵₆₃Eu₉₂