¹⁵⁵Tm ε decay (45 s) **1991To08**

		History			
Type Author		Citation	Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019		

Parent: ¹⁵⁵Tm: E=41 6; $J^{\pi}=1/2^+$; $T_{1/2}=45$ s 3; $Q(\varepsilon)=5583$ 12; $\%\varepsilon+\%\beta^+$ decay>98.0 Additional information 1.

1991To08: sources with mass 155 were produced in the 95 Mo+ 64 Zn reaction, followed by mass separation and transport to detection systems. Si particle Δ E-E telescope, plastic scintillator, HPGe and Ge detectors. Measured E α , E γ , I γ , $\gamma\gamma$, γX , $\alpha\gamma$, γ (t).

¹⁵⁵Er Levels

 $\begin{array}{c|c} \underline{\mathrm{E}(\mathrm{level})^{\dagger}} & J^{\pi \ddagger} \\ \hline 0.0 & 7/2^{-} \\ 88.08 & 5/2^{-}, 7/2^{-}, 9/2^{-} \\ 151.63 & - \\ 323.17 & 15 & 5/2^{-}, 7/2^{-}, 9/2^{-} \\ 398.63 & 22 \\ 467.00 & 16 & - \\ 584.47 & 18 \\ 595.1 & 4 \end{array}$

[†] From a least-squares fit to γ -ray energies.

[‡] From adopted values.

 $\gamma(^{155}{\rm Er})$

The ce-related data are from 1977Ag01 (whose study included gammas from the decay of both ¹⁵⁵Tm activities). For a discussion of this information, see the ¹⁵⁵Tm ε decay (21.6 s) data set.

$E_{\gamma}^{\#}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	${f J}_f^\pi$	Mult. ^{†‡}	$\delta^{\dagger \&}$	α [@]	Comments
63.5 1	1.5 5	151.63	_	88.08	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻	M1(+E2)	<0.13	10.59 17	$ \begin{array}{c} \alpha(\text{K}) = 8.75 \ 14; \ \alpha(\text{L}) = 1.43 \\ 10; \ \alpha(\text{M}) = 0.320 \ 23 \\ \alpha(\text{N}) = 0.074 \ 6; \ \alpha(\text{O}) = 0.0106 \\ 6; \ \alpha(\text{P}) = 0.000546 \ 9 \\ \delta: \ \text{computed by the} \\ \text{evaluator from} \\ \alpha(\text{M}) \text{exp} = 0.24 \ 11 \\ (1977 \text{Ag01}). \end{array} $
88.1 <i>1</i>	10.0 7	88.08	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻	0.0	7/2-	M1(+E2)	<0.4	4.14 8	α (K)=3.29 <i>15</i> ; α (L)=0.66 <i>15</i> ; α (M)=0.15 <i>4</i> α (N)=0.035 <i>8</i> ; α (O)=0.0047 <i>9</i> ; α (P)=0.000202 <i>11</i> δ : computed by the evaluator from α (L)exp=0.5 <i>3</i> (1977Ag01).
151.6 <i>1</i>	2.2 5	151.63	-	0.0	7/2-	E2		0.649	α (K)=0.360 5; α (L)=0.222 4; α (M)=0.0534 8 α (N)=0.01212 18; α (O)=0.001461 21; α (P)=1.587×10 ⁻⁵ 23 Mult.: the reported α (K)exp

			1	⁵⁵ Tm ε d	ecay (45 s) 19	991To08 (con	tinued)		
γ ⁽¹⁵⁵ Er) (continued)									
${\rm E_{\gamma}}^{\#}$	I_{γ}	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. ^{†‡}	δ^{\dagger} &	α [@]	Comments
							_		value (0.15 5, 1977Ag01) is smaller than that for either an E2 (α (K)=0.360) or an M1 (α (K)=0.731) transition, suggesting that it might be E1 (for which α (K)=0.090). The placement in the level scheme, however, indicates that there should be no parity change between the two levels involved.
171.5 2	1.6 6	323.17	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻	151.63	_	E2(+M1)	>4	0.429 9	α (K)=0.261 9; α (L)=0.1292 25; α (M)=0.0309 7 α (N)=0.00703 14; α (O)=0.000859 16; α (P)=1.21×10 ⁻⁵ 7 δ : computed by the evaluator from α (K)exp=0.18 9 (1977Ag01).
247.0 2	2.8 5	398.63		151.63	-	E2(+M1)		0.1265	$\alpha(K)=0.0879 \ 13; \\ \alpha(L)=0.0297 \ 5; \\ \alpha(M)=0.00702 \ 10 \\ \alpha(N)=0.001602 \ 23; \\ \alpha(O)=0.000202 \ 3; \\ \alpha(P)=4.35\times10^{-6} \ 7 \\ \alpha: \text{ value for a pure E2} \\ \text{transition}$
315.2 2	1.0 5	467.00	-	151.63	_	E2(+M1)		0.0595	$\alpha(K)=0.0440 7; \alpha(L)=0.01194 17; \alpha(M)=0.00279 4 \alpha(N)=0.000638 9; \alpha(O)=8.25\times10^{-5} 12; \alpha(P)=2.29\times10^{-6} 4 \alpha: value for a pure E2 transition$
323.2 2	6.5 7	323.17	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻	0.0	7/2-	M1+E2		0.082 27	$\alpha(K)=0.067\ 26; \alpha(L)=0.0122\ 13; \alpha(M)=0.00277\ 23 \alpha(N)=0.00064\ 6; \alpha(O)=8.8\times10^{-5}\ 13; \alpha(P)=3.9\times10^{-6}\ 18 \alpha: value calculated for \delta=1.$
379.1 2	≈1	467.00	-	88.08	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻	M1(+E2)		0.0716	$\begin{array}{l} \alpha(\text{K}) = 0.0604 \ 9; \\ \alpha(\text{L}) = 0.00881 \ 13; \\ \alpha(\text{M}) = 0.00195 \ 3 \\ \alpha(\text{N}) = 0.000454 \ 7; \\ \alpha(\text{O}) = 6.59 \times 10^{-5} \ 10; \\ \alpha(\text{P}) = 3.67 \times 10^{-6} \ 6 \\ \alpha: \text{ value for a pure M1} \\ \text{transition.} \end{array}$
432.7 2 496.7 <i>3</i> 507.0 <i>4</i>	$1.0\ 2 \\ 0.8\ 5 \\ \approx 4$	584.47 584.47 595.1		151.63 88.08 88.08	- 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻				

Continued on next page (footnotes at end of table)

¹⁵⁵Tm ε decay (45 s) 1991To08 (continued)

$\gamma(^{155}\text{Er})$ (continued)

[†] Same as in Adopted Levels, Gammas dataset.

- [‡] The listed assignments are derived from a comparison of the $\alpha(K)$ exp data of 1977Ag01 with the theoretical values, normalized to $\alpha(K)(202\gamma$ from the ¹⁵⁵Ho ε decay)=0.28. [#] A number of gammas from the ¹⁵⁵Tm decay are reported by 1977Ag01 that are not placed in their ¹⁵⁵Er level scheme (see the
- ¹⁵⁵Tm ε decay (21.6 2) data set for a listing). Since the sources used by these authors contained both activities, some of these gammas may in fact be associated with this (the 45-s) ¹⁵⁵Tm activity.
 [@] Additional information 2.
 [&] Additional information 3.

¹⁵⁵Tm ε decay (45 s) 1991To08

Decay Scheme

¹⁵⁵₆₈Er₈₇