¹⁵⁵Tm ε decay (21.6 s) 1991To08,1977Ag01 | | | History | | | | |-----------------|---------|-------------------|------------------------|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | Full Evaluation | N. Nica | NDS 160, 1 (2019) | 21-Oct-2019 | | | Parent: 155 Tm: E=0.0; $J^{\pi}=11/2^{-}$; $T_{1/2}=21.6$ s 2; $Q(\varepsilon)=5583$ 12; $\%\varepsilon+\%\beta^{+}$ decay=99.17 16 Additional information 1. 1991To08: sources with mass 155 were produced in the 95 Mo+ 64 Zn reaction, followed by mass separation and transport to detection systems. Si particle Δ E-E telescope, plastic scintillator, HPGE and Ge detectors. Measured E α , E γ , I γ , $\gamma\gamma$, γX , $\alpha\gamma$, $\gamma(t)$. 1977Ag01: source produced by the (p,xn) reaction in natural Er, followed by on-line mass separation. Measured γ and ce spectra and γ - γ coincidences. The level scheme is probably incomplete and thus no deduced $\varepsilon+\beta^+$ intensities are listed, as they may be larger than the true ones. However, a I γ normalization value is given, based on the summed γ +ce feeding of the g.s.; and this has been used to compute a $\%\alpha$ value for the 21.6 s activity in 155 Tm. To the extent that some of the unplaced γ 's feed the g.s., this $\%\alpha$ value may be larger that the true one (see the comment on this value in the 155 Tm Adopted Levels, Gammas Data Set). #### ¹⁵⁵Er Levels | E(level) [†] | $J^{\pi \ddagger}$ | Comments | | | | | | |---|--|--|--|--|--|--|--| | 0.0
88.16 <i>11</i>
151.98 [@] 9 | 7/2 ⁻
5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ | | | | | | | | 226.79 17 | 9/2- | J^{π} : probable Gamow-Teller transition from $11/2^-$ in 155 Tm establishes configuration= $(\nu h_{9/2})$ for this state. | | | | | | | 399.58 [@] 22 | | | | | | | | | 467.22 [@] 23 | _ | | | | | | | | 531.82 24 | 11/2- | | | | | | | | 563.3 <i>3</i> 606.77 <i>16</i> | 13/2+ | | | | | | | | 760.1 [#] 6 | | | | | | | | | 959.7 [#] 4 | | | | | | | | | 1057.0 [#] 8 | | | | | | | | | 1431.0 [#] 11 | | | | | | | | [†] From a least-squares fit to γ -ray energies. [‡] From Adopted Values. [#] From 1991To08. [®] Population of this level in the decay of 21.6-s 155 Tm was inferred by the evaluator from the observation of an excess of γ intensity, in the composite (21.6-s + 45-s activities) spectrum of 1977Ag01 compared with the pure 45-s spectrum of 1991To08, in one or more of the γ transitions known to deexcite this level. Iy normalization: Computed assuming that the sum of the reported γ +ce feeding of the g.s. is 99.11%. With a Q(ε) value of 5583 keV and no levels reported above \approx 1.4 MeV, the level scheme is clearly incomplete. This Iy normalization value thus represents an upper limit. In addition to the γ 's listed here, 1977Ag01 report γ 's with energies of 171.6, 323.5, 433.4, 497.0 and, presumably, 507 that are not shown here. Comparison of the I γ data of 1991To08 (which involve the 45-s ¹⁵⁵Tm activity only) with those of 1977Ag01 indicates that these γ 's are not associated with the decay of the activity under consideration here (the 21.6-s activity). The ce intensities were normalized to those of the γ rays using the value of $\alpha(K)$ exp for the 202.4 γ in ¹⁵⁵Dy (from the ¹⁵⁵Ho ε decay). This procedure introduces an additional error of 20% in the values of the conversion coefficients (1977Ag01). 1 | $E_{\gamma}^{\dagger \ddagger}$ | $I_{\gamma}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f | J_f^π | Mult.#& | $\delta^{\#d}$ | α^{c} | Comments | |--------------------------------------|--|--------------|----------------------|----------------|----------------|----------|----------------|-----------------|--| | 31.5 1 | 5.3 7 | 563.3 | 13/2+ | 531.82 | 11/2 | E1 | | 1.381 23 | $\alpha(L)$ =1.078 18; $\alpha(M)$ =0.242 4
$\alpha(N)$ =0.0540 9; $\alpha(O)$ =0.00641 11; $\alpha(P)$ =0.000188 3
Mult.: from in-beam spectroscopic studies in
(HI,xn γ) (1987Be21). | | 63.8 1 | 1.4 ^b 5 | 151.98 | - | 88.16 | 5/2-,7/2-,9/2- | M1(+E2) | <0.13 | 10.44 <i>17</i> | $\alpha(K)=8.64$ 14; $\alpha(L)=1.41$ 9; $\alpha(M)=0.315$ 23
$\alpha(N)=0.073$ 5; $\alpha(O)=0.0104$ 6; $\alpha(P)=0.000538$ 9
I_{γ} : from the $I_{\gamma}(63.5\gamma)/I_{\gamma}(151.6\gamma)$ value of
1991To08 and $I_{\gamma}(152\gamma)$, one computes
$I_{\gamma}(63.8\gamma)=2.7$ 12.
δ : computed by the evaluator from $\alpha(M)\exp=0.24$ 11
(1977Ag01). | | 88.1 2 | 0.13 3 | 88.16 | 5/2-,7/2-,9/2- | 0.0 | 7/2- | M1(+E2) | <0.4 | 4.14 8 | $\alpha(K)=3.29\ 15;\ \alpha(L)=0.66\ 15;\ \alpha(M)=0.15\ 4$
$\alpha(N)=0.035\ 8;\ \alpha(O)=0.0047\ 9;\ \alpha(P)=0.000202\ 11$
δ : computed by the evaluator from $\alpha(L)\exp=0.5\ 3$
(1977Ag01). | | x94.5 2 | 0.13 3 | | | | | | | | | | 152.0 <i>1</i> x196.7 ^a 2 | 3.9 ^b 7 | 151.98 | - | 0.0 | 7/2- | E2 | | 0.643 | $\alpha(K)$ =0.357 5; $\alpha(L)$ =0.219 4; $\alpha(M)$ =0.0528 8 $\alpha(N)$ =0.01198 18; $\alpha(O)$ =0.001445 21; $\alpha(P)$ =1.576×10 ⁻⁵ 23 | | 226.8 2 | 100 23 | 226.79 | 9/2- | 0.0 | 7/2- | M1+E2 | | 0.225 60 | $\alpha(K)$ =0.176 64; $\alpha(L)$ =0.038 4; $\alpha(M)$ =0.0088 10 $\alpha(N)$ =0.00204 21; $\alpha(O)$ =0.000273 9; $\alpha(P)$ =1.01×10 ⁻⁵ 46 α : value calculated for δ =1. | | ^x 241.6 2 | 0.9 3 | 200.50 | | 151.00 | _ | E2(-141) | | 0.1055 | (II) 0.0070 13 (I) 0.0004 5 (AD 0.0005 10 | | 247.6 2 | 2.7 ^b 11 | 399.58 | | 151.98 | | E2(+M1) | | 0.1255 | $\alpha(K)=0.0873 \ 13; \ \alpha(L)=0.0294 \ 5; \ \alpha(M)=0.00695 \ 10$
$\alpha(N)=0.001587 \ 23; \ \alpha(O)=0.000200 \ 3;$
$\alpha(P)=4.32\times10^{-6} \ 7$
α : value for a pure E2 transition. | # $\gamma(^{155}\text{Er})$ (continued) | E_{γ} †‡ | $I_{\gamma}^{\ddagger e}$ | $E_i(level)$ | J_i^{π} | E_f | ${\rm J}_f^\pi$ | Mult.#& | α^{c} | Comments | |--|--|-----------------|----------------------|---------------|--------------------------------------|---------|--------------|---| | ^x 273.9 2 | 1.1 2 | | | | | | | I _γ : the authors' value, 1.1 22, has been assumed by the evaluator to be a misprint. | | 305.0 <i>2</i> x311.6 <i>3</i> | 1.5 <i>4</i> 0.60 <i>17</i> | 531.82 | 11/2- | 226.79 | 9/2- | | | | | 315.3 3 | 1.1 ^b 9 | 467.22 | - | 151.98 | - | E2(+M1) | 0.0594 | $\alpha(K)$ =0.0440 7; $\alpha(L)$ =0.01193 18; $\alpha(M)$ =0.00278 4 $\alpha(N)$ =0.000638 10; $\alpha(O)$ =8.24×10 ⁻⁵ 12; $\alpha(P)$ =2.29×10 ⁻⁶ 4 α : value for a pure E2 transition. | | x317.2 3
x327.9 4
x328.6 4
x331.4 4 | 0.9 <i>3</i>
0.28 <i>13</i>
0.20 <i>10</i>
0.40 <i>12</i> | | | | | | | | | 379.0 3 | 2.4^{b} 7 | 467.22 | - | 88.16 | 5/2-,7/2-,9/2- | M1(+E2) | 0.0717 | $\alpha(K)$ =0.0604 9; $\alpha(L)$ =0.00881 13; $\alpha(M)$ =0.00195 3 $\alpha(N)$ =0.000455 7; $\alpha(O)$ =6.59×10 ⁻⁵ 10; $\alpha(P)$ =3.67×10 ⁻⁶ 6 α : value for a pure M1 transition. | | 380.1 3
*385.7 ^a 5
*395.7 4
*396.8 4
*466.8 4
*498.7 4
*501.1 5 | 1.3 3
0.5 2
0.60 17
0.44 10
0.33 10
0.7 3
1.3 4 | 606.77 | | 226.79 | 9/2- | | | | | 518.7 4
x521.0 ^a 6
x527.5 4 | 3.3 <i>7</i>
0.50 <i>20</i>
1.07 <i>20</i> | 606.77 | | 88.16 | 5/2-,7/2-,9/2- | | | | | 532.0 5
533.3 5
*549.3 4
*558.0 4
*575.7 3
*583.8 4
*585.5 4 | 20 5
5.2 13
1.1 3
0.50 10
2.0 3
0.50 20
0.9 3 | 531.82
760.1 | 11/2- | 0.0
226.79 | 7/2 ⁻
9/2 ⁻ | | | | | 606.7 2
*619.7 3 | 11.3 <i>23</i> 1.6 <i>3</i> | 606.77 | | 0.0 | 7/2- | | | | | 732.9 [@] 3 | 7 [@] 1 | 959.7 | | 226.79 | 9/2- | | | | | 830.0@ | 2.2 [@] 6 | 1057.0 | | 226.79 | 9/2- | | | | | 1057.2 [@] | 13 [@] 3 | 1057.0 | | 0.0 | 7/2- | | | | | 1204.2 [@] | 4 [@] 1 | 1431.0 | | 226.79 | 9/2- | | | | ω [†] The γ 's listed as unplaced are those reported by 1977Ag01. Since the sources used in this study contained both ¹⁵⁵Tm activities, some of these γ 's may in fact be associated with the other (the 45-s) ¹⁵⁵Tm activity. ### γ (155Er) (continued) - [‡] Unless otherwise indicated, the values given here are from 1977Ag01. - * Same as in Adopted Levels, Gammas dataset. - [@] From 1991To08. - & The listed assignments are derived from a comparison of $\alpha(K)$ exp with theoretical values. - ^a Assignment of this transition to the ¹⁵⁵Tm ε decay is uncertain. - ^b Value derived from the difference of the I γ values of 1977Ag01 (composite source) and 1991To08 (45-s activity only). The two intensity scales were normalized to the I γ (323.5 γ) value of 1977Ag01 before carrying out the subtraction. - ^c Additional information 2. - ^d Additional information 3. - ^e For absolute intensity per 100 decays, multiply by 0.38 6. - x γ ray not placed in level scheme. ## 155 Tm ε decay (21.6 s) 1991To08,1977Ag01 #### Decay Scheme Intensities: Relative I_{γ} Legend