_		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

Additional information 1.

The level scheme is based primarily on the study by 1994V102. This study is meant to supersede that of 1984RiZX, which represents some preliminary results from the present study. Where appropriate, information from other studies is included. In particular, data on a superdeformed band is shown.

Recent theoretical studies related to properties of SD bands are given in: 1995Ch67 (including possible hyperdeformed shapes); 1998Af02 (cranked relativistic mean-field theory); and 1999Sa55 (particle-rotor calculations). Compilations of data on SD bands are given in 1999Ha56 and 2002Si26.

1994V102: ¹²⁴Sn(³⁶S,5n γ), E(³⁶S)=155 MeV. Self-supporting target, consisting of four stacked foils 350 μ g/cm² thick, enriched to 97.9% in ¹²⁴Sn. γ radiation detected in the TESSA2 array of a 62-detector BGO crystal ball and 6 escape-suppressed Ge detectors. $\gamma\gamma(\theta)$ and DCO ratios were measured for the same reaction using the EUROGAM detector array. $\gamma(\theta)$ also measured using the ¹⁵⁶Gd(³He,4n γ) reaction, E(³He)=39 MeV.

1996Fi08: 124 Sn(36 S,5n γ) E(36 S)=175 MeV. Measured E γ , $\gamma\gamma\gamma$ coin with GAMMASPHERE array (67 Ge detectors). Report E γ and I γ for an SD band.

1984RiZX: ¹²⁴Sn(³⁶S,5n), E(³⁶S)=155 MeV. Measured E γ , $\gamma\gamma$. This work represents an early stage of that reported in 1994Vl02. 1973Kr12: ¹⁴⁶Nd(¹²C,3n), E(¹²C)=57-109 MeV. Measured E γ , I γ , $\gamma(\theta)$ at E(¹²C)=67 and 87 MeV, $\gamma\gamma$, $\gamma\gamma(t)$ at E(¹²C)=70

MeV. 1973Kr12 assign $J^{\pi}=13/2^+$ to a level at 131 keV, upon which they based a strongly mixed positive-parity band consisting of states having $\Delta J=2$ up through the 33/2⁺ member. However, the 13/2⁺ state is now known to lie at 154.6 keV and the 131 level has $J^{\pi}=9/2^+$. This means that the energies of the members of this band, as reported by 1973Kr12, are not correct. These authors also report a rotational band, up through the 21/2⁻ state, based on the 11/2[505] Nilsson orbital.

1975Be34: ¹⁵⁶Gd(α ,5n), E(α)=76 MeV. Measured E γ , I γ , $\gamma(\theta)$, $\gamma\gamma$, $\gamma\gamma(t)$. These authors report the observation of the strongly mixed positive-parity band (signature=+1/2 portion only) from the J^{π} =13/2⁺ member up through the 45/2⁺ member.

- 1989Em01: ¹²⁴Sn(³⁶S,5n), E(³⁶S)=155 MeV. Using an array of 14 BGO scintillators, together with 8 Compton-suppressed Ge detectors, these authors employ the Doppler-shift attenuation method to measure lifetimes for a number of the higher-spin yrast states of both positive and negative parity.
- 1982Ka36: ¹⁵⁵Gd(³He,3n), E(³He)=27 MeV. Measured the time distribution of the 45.4 γ , relative to the ³He-beam pulses, using a small (2 cm² by 0.7 cm) planar intrinsic Ge detector.
- 1984Ha39: ²⁴Mg(¹³⁶Xe,5n), E(¹³⁶Xe)=610 MeV. From spin-precession measurements of γ radiation emitted from Dy nuclei rapidly recoiling through transient fields in ferromagnetic Gd, these authors report an average g-factor of 0.23 6 for the 17/2⁺ through the 29/2⁺ states in the strongly mixed positive-parity band (this value assumes an intrinsic quadrupole moment of 4.5 b for the members of this band).
- 1986Xi01 give a discussion of the terminating and nonterminating band structure of ¹⁵⁵Dy at very high spins in terms of an extended Nilsson-Strutinsky cranking formalism.

Band-label (quasiparticle) conventions for neutrons: A $1/2[660], \alpha=+1/2, \pi=+$ B $1/2[660], \alpha=-1/2, \pi=+$ C $3/2[651], \alpha=+1/2, \pi=+$ D $3/2[651], \alpha=-1/2, \pi=+$

```
Е
                     3/2[521], \alpha = +1/2
                                             , π=-
           F
                     3/2[521], \alpha = -1/2
                                             , π=-
           G
                   3/2[532], \alpha = +1/2 , \pi = -
           Η
                     3/2[532], \alpha = -1/2 , \pi = -
           Х
                   11/2[505], \alpha=+1/2 , \pi=-
           Y
                   11/2[505], \alpha = -1/2 , \pi = -
Band-label (quasiparticle) conventions for protons:
           Ap
                         7/2[523], \alpha = +1/2, \pi = -
                         7/2[523], \alpha=-1/2
           Bp
                                                  , π=-
          \mathsf{C}_{\mathsf{p}}
                         5/2[532], \alpha = +1/2 , \pi = -
```

```
D_p 5/2[532], \alpha = -1/2 , \pi = -
```

1994V102 report α =-1/2 and α =+1/2, respectively, for states E and F. The evaluator has assumed that this is incorrect, in that the proposed configurations for bands Bands 5 and 7, respectively (in the notation of 1994V102)

are not consistent with such a choice.

¹⁵⁵Dy Levels

Configuration assignments for the levels populated in these reactions are those proposed by 1994V102 based on comparison of experimental routhians and alignments with theoretically calculated ones.

E(level) [†]	J π ‡	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #
0.0 ^e	3/2-		3241.5 ∫	33/2-	
39.4	$5/2^{-}$		3256.4 <i>j</i>	$35/2^{+}$	
86.8 ^e	$7/2^{-}$		3304.5 ¹	35/2-	
132.2 ⁱ	9/2 ⁺	51 ^a ns 3	3472.6 <mark>8</mark>	35/2-	
154.5 ⁱ	$13/2^{+}$		3481.8 ^m	$37/2^+$	
225.4 ∫	9/2-		3556.5 ^k	37/2-	
234.3 <mark>8</mark>	$\frac{11}{2^{-}}$	6 <mark>b</mark> µs 1	3711.2 ⁱ	$41/2^{+}$	0.27 ps +76-24
381.9 ⁱ	$17/2^{+}$,	3735.0 <mark>h</mark>	37/2-	
436.5 ^h	$13/2^{-}$		3832.2 ^f	37/2-	
577.8 <mark>/</mark>	13/2-		3912.6 ¹	39/2-	
645.2 ^j	$15/2^{+}$		3951.3 <i>j</i>	$39/2^{+}$	
657.7 <mark>8</mark>	$15/2^{-}$		4013.8 <mark>8</mark>	39/2-	
744.9 ⁱ	$21/2^{+}$		4180.4 ^k	$41/2^{-}$	
892.7 <mark>m</mark>	$17/2^{+}$		4228.5 ^m	$41/2^{+}$	
896.4 <mark>/</mark>	$17/2^{-}$		4314.4 ^h	$41/2^{-}$	
1004.9 ^j	$19/2^{+}$		4454.0 ⁱ	$45/2^{+}$	0.13 ps 4
1031.9 ^ƒ	$17/2^{-}$		4471.7 ^ƒ	$41/2^{-}$	
1150.8 <mark>8</mark>	19/2-		4574.4 ¹	43/2-	
1209.2 ⁱ	$25/2^+$		4634.0 <mark>8</mark>	43/2-	
1225.3 ^m	$21/2^+$		4686.0 ^j	$43/2^{+}$	
1419.1 <mark>h</mark>	$21/2^{-}$		4866.0 ^k	$45/2^{-}$	0.21 ps 11
1462.1 <i>j</i>	$23/2^{+}$		4973.8 ^h	$45/2^{-}$	
1533.7 <mark>/</mark>	$21/2^{-}$		5011.4 ^m	$45/2^{+}$	
1650.2 ^m	$25/2^+$		5158 <i>f</i>	45/2-	
1688	23/2		5238.5 ⁱ	49/2+	0.05 ps +3-2
1699.8 <mark>8</mark>	$23/2^{-}$		5290.2 [@]	47/2-	
1719	$23/2^+$		5331.1 <mark>8</mark>	47/2-	
1753.0 ⁱ	$29/2^+$		5459.5 <i>j</i>	$47/2^{+}$	
1991.2 ^h	$25/2^{-}$		5610.4 ^k	49/2-	0.17 ps +3-6
1999.2 <i>j</i>	$27/2^+$		5706.5 ^h	49/2-	
2012.5 ^k	$25/2^{-}$		5897 &f	49/2-	
2082.8 ^f	$25/2^{-}$		6062.3 ^{@1}	$51/2^{-}$	
2169.7 ^m	$29/2^+$		6067.8 ⁱ	$53/2^{+}$	0.13 ps 5
2292.0 <mark>8</mark>	27/2-		6097.8 <mark>8</mark>	51/2-	
2358.1 ¹	$33/2^{+}$		6272.5 ^J	$51/2^{+}$	
2475.8 ^K	$29/2^{-}$		6405.4 ^k	53/2-	0.18 ps 4
2599.6 ⁿ	29/2-		6505.4 ^h	53/2-	
2602.1 ^J	$31/2^{+}$		6685 ^{& f}	53/2-	
2688.5 ^{<i>f</i>}	29/2-		6892.6 ^{@1}	55/2-	
2784.8 ^m	33/2+		6927.8 <mark>8</mark>	55/2-	
2911.0 ^g	31/2-		6943.2 ¹	57/2+	0.15 ps 4
2990.5 ^K	33/2-		7241.6 ^K	57/2-	≤0.07 ps
3012.4 ¹	37/2+		7364.2 ⁿ	57/2-	
3210.7 ⁿ	33/2-		7505 ^{&} J	57/2-	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #
7778.4 ^{@l}	59/2-		12477? ^h	$77/2^{-}$	
7815.3 <mark>8</mark>	59/2-		12985 ^k	81/2-	0.44 ^c ps +24-17
7870.2 ⁱ	$61/2^{+}$	0.12 ps +76-7	13067? <mark>8</mark>	79/2-	
8109.9 ^k	$61/2^{-}$	0.16 ps 8	13344? [@]	83/2-	
8278.4 ^h	61/2-	_	14042 ^{<i>k</i>}	85/2-	
8696.8 [@]	$63/2^{-}$		14469 [@]	87/2-	
8756.2 <mark>8</mark>	$63/2^{-}$		15161 ^k	89/2-	
8849.4 ⁱ	$65/2^+$	0.06 ps +28-3	15637? [@]	91/2-	
9008.2 ^k	65/2-	0.12 ps +7-10	16347? ^k	93/2-	
9248.8 ^h	$65/2^{-}$		x ⁿ	Jd	
9625 [@]	$67/2^{-}$		909.6+x ⁿ 9	J+2	
9751.1 <mark>8</mark>	$67/2^{-}$		1862.1+x ⁿ 10	J+4	
9882 ¹	$69/2^+$	≤0.8 ^C ps	2860.2+x ⁿ 10	J+6	
9965.5 ^k	69/2-	≤0.15 ps	3905.2+x ⁿ 11	J+8	
10272 ^h	69/2-		4996.1+x ⁿ 11	J+10	
10521 [@]	$71/2^{-}$	≥1.0 ps	6133.4+x ⁿ 11	J+12	
10802 ^g	$71/2^{-}$		7317.0+x ⁿ 11	J+14	
10969 ¹	$73/2^{+}$		8546.7+x ⁿ 11	J+16	
10973 ^k	$73/2^{-}$	0.4 ps +14-1	9823.0+x ⁿ 12	J+18	
11113? ⁱ	$77/2^{+}$		11145.8+x ⁿ 12	J+20	
11349 ^h	73/2-		12514.4+x ⁿ 12	J+22	
11451 [@]	$75/2^{-}$	≥1.0 ps	13929.4+x ⁿ 12	J+24	
11905 <mark>8</mark>	$75/2^{-}$	_	15390.5+x ⁿ 12	J+26	
11973 ^k	$77/2^{-}$	≤0.14 ps	16897.8+x ⁿ 13	J+28	
12401 [@]	$79/2^{-}$		18449.6+x ⁿ 14	J+30	

¹⁵⁵Dy Levels (continued)

[†] From 1994V102, unless noted otherwise. Values for levels below 225 keV are from other studies and have been rounded to the nearest 0.1 keV.

[‡] From adopted values. For those levels seen only in the heavy-ion reactions, these values are based on the DCO ratios, $\gamma(\theta)$, and the systematics of similar bands in this mass region. Stretched quadrupole transitions are taken to be E2.

[#] From Doppler-shift attenuation (1989Em01), unless noted otherwise.

[@] Energies of the members of this band for $J^{\pi} > 43/2^{-}$ are 10 keV larger than those shown by 1994V102.

& Energies of the members of this band for $J^{\pi}>45/2^{-}$ are 10 keV larger than those shown by 1994V102.

- ^{*a*} From 1982Ka36, γ (t).
- ^b From IT decay (1970Bo02).
- ^c Value is not corrected for the feeding time.
- ^d From Cranked Relativistic Mean-Field Theory calculations, 1998Af02 suggest J=75/2⁻.
- ^{*e*} Band(a): Ground-state band, signature=-1/2 portion. Conf=3/2(521).
- ^{*f*} Band(A): Ground-state band. Signature=+1/2 portion. Conf=3/2(521). Band is crossed by AB, becomes EAB and at higher energies is crossed by A_pB_p.
- ^g Band(B): Band built on the 11/2[505] orbital, signature=-1/2.
- ^h Band(C): Band built on the 11/2[505] orbital, signature=+1/2 band is crossed by AB and, at higher energies, by A_pB_p.
- ^{*i*} Band(D): Strongly mixed $i_{13/2}$ -related band, signature=+1/2. Dominant component at low energies is 1/2[660]. Band crossings with BC and A_pB_p are proposed to occur in the same energy region. 1984Ha39 report an average g-factor of 0.23 6 for the 17/2⁺ through the 29/2⁺ states in this band, assuming an intrinsic quadrupole moment of 4.5 eb for the band.
- ^j Band(E): Strongly mixed $i_{13/2}$ -related band, signature=-1/2. Dominant component at low energies is 1/2[660]. Band crossings

¹⁵⁵Dy Levels (continued)

with AD and A_pB_p are proposed to occur in the same energy region.

- ^k Band(F): Three-neutron-quasiparticle negative-parity band, signature=+1/2. Proposed configuration is EAB. Band is crossed by A_pB_p at higher energies and is seen to approach termination at the highest spins.
- ^{*l*} Band(G): Three-neutron-quasiparticle negative-parity band, signature=-1/2. Proposed configuration is FAB. Band is crossed by A_pB_p at higher energies and is seen to approach termination at the highest spins.
- ^{*m*} Band(H): Positive-parity band, signature=+1/2. Proposed " β vibration" based on ν i_{13/2} (1994Vl02).
- ^{*n*} Band(I): SD band. Proposed configuration is $\pi 6^4 \nu 7^3$, with four $i_{13/2}$ proton and three $j_{15/2}$ intruder neutron orbitals involved (1996Fi08). Q(intrinsic)=17.9 +39-26 (1996Fi08) from DSA data for 14 transitions in the cascade. Level lifetimes are estimated to be much less than 3 ps and population is $\leq 0.5\%$ of the total ¹⁵⁵Dy feeding (1996Fi08).

$\gamma(^{155}\text{Dy})$

Unless otherwise noted, the γ 's shown as unplaced are those reported by 1973Kr12. In some cases, these were placed by 1973Kr12 but, because of changes in the level scheme, the evaluator has considered them to be unplaced.

E_{γ}^{\dagger}	Ι _γ &	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	Comments
9.1#		234.3	$11/2^{-}$	225.4	9/2-		
22.2#		154.5	$13/2^+$	132.2	$9/2^+$		
45 A [#]		132.2	0/2+	86.8	7/2-		
x73.7 4		132.2	9/2	00.0	1/2		
79.7 [#]		234.3	$11/2^{-}$	154.5	13/2+		
$86.2^{\textcircled{0}}4$		86.8	$7/2^{-}$	0.0	$3/2^{-}$		
$103^{@}$ 1		234.3	$11/2^{-}$	132.2	$9/2^{+}$		
^x 109.8 3		20110	11/2	102.2	712		
138.6 5	21 2	225.4	9/2-	86.8	$7/2^{-}$		
$147.2^{\textcircled{0}{2}}2$		234.3	$\frac{1}{1}/2^{-}$	86.8	$7/2^{-}$		
^x 162 <i>1</i>			/-		.,_		γ may be depopulating the 202.4 level in the ¹⁵⁵ Ho decay scheme (1973Kr12).
^x 186.0 2							γ may be depopulating the 224.4 level in the ¹⁵⁵ Ho decay scheme (1973Kr12).
186.1 <i>5</i> ^x 191 <i>1</i>	10 <i>1</i>	225.4	9/2-	39.4	5/2-		
202.2 1	100 10	436.5	$13/2^{-}$	234.3	$11/2^{-}$		DCO=1.1 2.
221.2 <i>I</i>	100 10	657.7	$15/2^{-}$	436.5	13/2-		
227.3 1	820 20	381.9	$17/2^{+}$	154.5	$13/2^{+}$	E2 ^C	DCO=1.0 1.
238.7 1	65 5	896.4	$17/2^{-}$	657.7	$15/2^{-}$		DCO=1.2 4.
252.9 5	16 <i>3</i>	1462.1	$23/2^{+}$	1209.2	$25/2^+$		
254.4 1	54 <i>3</i>	1150.8	19/2-	896.4	$17/2^{-}$		
260.4 5	18 <i>3</i>	1004.9	$19/2^{+}$	744.9	$21/2^{+}$		DCO=0.4 4.
261.8 5		3472.6	35/2-	3210.7	33/2-		
262.5 5		3735.0	$37/2^{-}$	3472.6	$35/2^{-}$		
263.4 5	92	645.2	$15/2^{+}$	381.9	$17/2^{+}$		
268.3 5	48 5	1419.1	$21/2^{-}$	1150.8	$19/2^{-}$		
278.7 5	11 2	4013.8	39/2-	3735.0	$37/2^{-}$		
280.6 5	35 <i>3</i>	1699.8	$23/2^{-}$	1419.1	$21/2^{-}$		
291.5 5	32 <i>3</i>	1991.2	$25/2^{-}$	1699.8	$23/2^{-}$		
293 1		2012.5	$25/2^{-}$	1719	$23/2^{+}$		
300 1		3210.7	$33/2^{-}$	2911.0	$31/2^{-}$		
301 1		2292.0	$27/2^{-}$	1991.2	$25/2^{-}$		
301 1		4314.4	$41/2^{-}$	4013.8	39/2-		
307.7 5	23 2	2599.6	$29/2^{-}$	2292.0	$27/2^{-}$		
311.3 5	19 2	2911.0	31/2-	2599.6	29/2-		

γ ⁽¹⁵⁵Dy) (continued)</sup>

E_{γ}^{\dagger}	Iγ ^{&}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. ^b		Comments	
319.5 5	12 2	4634.0	$43/2^{-}$	4314.4	$41/2^{-}$				
324 1		2012.5	$25/2^{-}$	1688	23/2				
332.9 <i>1</i>	53 10	1225.3	$21/2^{+}$	892.7	$17/2^{+}$		DCO=1.1 4.		
340.0 5	92	4973.8	$45/2^{-}$	4634.0	43/2-				
^x 344.7 2									
352.5 1	78 8	577.8	$13/2^{-}$	225.4	9/2-		DCO=1.1 3.		
357.3 5	10 2	5331.1	47/2-	4973.8	45/2-				
359.3 5	1000	1004.9	19/2+	645.2	15/2+	Tal			
363.0 1	1000	744.9	21/2+	381.9	17/2+	E2 ^c	DCO=1.0 <i>1</i> .		
3/5.5 5	71	5706.5	49/2-	5331.1	47/2-				
~380.0 4	0.1	6007.9	51/0-	5706 5	10/2-				
391.1 J 407.8 5	91	6505.4	52/2-	5/00.5	49/2 51/2-				
407.8 J	51	0303.4	35/2	0097.8	31/2				
⁴ 18 ⁴	45.5		15/0-	224.2	11/2-				
423.5 5	45 5	657.7	15/2	234.3	11/2		DCO 102		
424.9 1	11/20	1650.2	25/21	1225.5	21/2		DCO=1.0 2.		
430.0 3	18 2	3912.0	39/2 25/2+	3481.8	$\frac{51}{2}$				
440.4 5	27 4	1030.2	17/2-	1209.2 577.8	$\frac{23}{2}^{-1}$		DCO = 1.0.5		
454.11	66 7	1462 1	$\frac{17/2}{23/2+}$	100/ 0	10/2+		DCO=1.0 J.		
457.11	50 3	896 /	$\frac{23}{2}$ $17/2^{-}$	1004.9	$\frac{19}{2}$ $\frac{13}{2^{-}}$		DCO=1.34.		
46375	50 5	2475.8	$\frac{17/2}{29/2^{-}}$	2012 5	$\frac{15}{2}$		DC0=1.9 4.		
464 3 1	910 <i>40</i>	1209.2	$\frac{25}{2}$	744.9	23/2 $21/2^+$	F2 ^C	DCO=1.1		
476.2.5	32.6	2475.8	$\frac{29}{2^{-2}}$	1999.2	$27/2^+$	112	DC0-1.1 1.		
479.0.5	31.3	2012.5	$\frac{2}{25/2}$	1533.7	$21/2^{-}$		DCO=0.9.3.		
480.5 5	24 3	1225.3	$\frac{20}{21}$	744.9	$\frac{21}{2^+}$		200 000		
490.6 5		645.2	$15/2^{+}$	154.5	$13/2^{+}$				
493.1 <i>1</i>	50 <i>3</i>	1150.8	$19/2^{-}$	657.7	$15/2^{-}$		DCO=1.8 3.		
501.8 <i>1</i>	78 8	1533.7	$21/2^{-}$	1031.9	$17/2^{-}$		DCO=1.0 1.		
510.6 5	27 4	892.7	$17/2^{+}$	381.9	$17/2^{+}$		DCO=0.6 3.		
514.6 <i>1</i>	172 8	2990.5	33/2-	2475.8	29/2-		DCO=1.1 1.		
519.5 5		2169.7	$29/2^{+}$	1650.2	$25/2^+$				
520 <i>1</i>	57 <i>5</i>	3304.5	35/2-	2784.8	33/2+				
522.6 1	78 8	1419.1	$21/2^{-}$	896.4	$17/2^{-}$				
524.3 5		3735.0	37/2-	3210.7	33/2-				
537.0 1	66 7	1999.2	27/2*	1462.1	23/2+		DCO=1.0 2.		
541.2 <i>I</i>	51 4	4013.8	39/2-	3472.6	35/2-	Tal			
543.7 1	740 20	1753.0	29/2	1209.2	25/2	E2°	DCO=1.1 I.		
544 1	50 5	3330.3	31/2	3012.4	37/2				
549.0 I 540.1 I	58 J 60 5	1099.8	25/2	1150.8	$\frac{19/2}{21/2}$		DCO=2.2.3.		
550 7 5	00 J 35 6	2062.6	25/2	1355.7	21/2		DC0=1.5 5.		
552.0.5	35.6	2012.5	23/2	2688 5	20/2-				
56175	35.6	3472.6	35/2-	2000.5	$\frac{29}{2}$ 31/2 ⁻				
566 1 1	201.8	3556.5	$37/2^{-}$	2990.5	$33/2^{-}$		DCO = 1.1.2		
572.1.1	67.5	1991 2	$25/2^{-}$	1419 1	$21/2^{-}$		DCO=2.4.5		
579.4 5	44 3	4314.4	$\frac{20}{2}}{41/2}^{-}$	3735.0	$37/2^{-}$		200 200		
590.7 5	26 3	3832.2	$37/2^{-}$	3241.5	33/2-				
592.1 <i>1</i>	65 5	2292.0	27/2-	1699.8	23/2-		DCO=2.4 5.		
602.9 1	66 8	2602.1	$31/2^{+}$	1999.2	27/2+				
605.0 1	$7.0 \times 10^2 4$	2358.1	$33/2^{+}$	1753.0	29/2+	E2 ^C	DCO=1.1 <i>1</i> .		
605.7 5	33 4	2688.5	29/2-	2082.8	25/2-				
607 1		3912.6	39/2-	3304.5	35/2-				
608.3 1	51 4	2599.6	$29/2^{-}$	1991.2	$25/2^{-}$				
611.2 5	49 <i>4</i>	3210.7	33/2-	2602.1	31/2+				

γ ⁽¹⁵⁵Dy) (continued)</sup>

E_{γ}^{\dagger}	Iγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^b	Comments
615.1 <i>1</i>	82 12	2784.8	33/2+	2169.7 29/2+		DCO=1.2 2.
619.0 <i>1</i>	65 7	2911.0	31/2-	2292.0 27/2-		DCO=2.3 5.
620.2 5		4634.0	$43/2^{-}$	4013.8 39/2-		
623 1	224.0	1004.9	19/2	381.9 17/2		$DCO_{-1} 2 2$
632 5 5	224 9	2000 5	41/2	$3330.3 \ 57/2$ $2358 \ 1 \ 33/2^+$		DC0=1.5 2.
639.5.5	20 2	4471.7	$\frac{33/2}{41/2^{-}}$	$3832.2 \ 37/2^{-1}$		
654.3 1	480 20	3012.4	$37/2^+$	$2358.1 \ 33/2^+$	E2 ^C	DCO=1.2 <i>1</i> .
654.5 5	45 5	3256.4	$35/2^{+}$	2602.1 31/2+		
659.2 <i>1</i>	53 4	4973.8	45/2-	4314.4 41/2-		
661.8 <i>1</i>	90 6	4574.4	$43/2^{-}$	3912.6 39/2-		DCO=1.1 2.
685.6 <i>1</i>	194 8	4866.0	$45/2^{-}$	4180.4 41/2-	E2	DCO=0.9 2.
(0)(1		51.50	4.5.00-			Mult.: from DCO, γ has mult=Q. RUL eliminates M2.
686 1	41 5	5158	$45/2^{-}$	$44^{\prime}/1.7$ $41/2^{-}$		
695.0 5	41.5	3951.3	39/2	$3250.4 \ 35/2^{+}$		
697.0 I 697.0 5	35 U 42 3	5401.0 5331.1	57/2 47/2-	$2/84.8 \ 33/2$ $4634.0 \ 43/2^{-1}$		
698.8.1	440 20	3711.2	$\frac{41}{2^+}$	$3012.4 \ 37/2^+$		
715.8 1	81 5	5290.2	$47/2^{-}$	4574.4 43/2-		
717.5 5	30.8	1462.1	$23/2^{+}$	744.9 21/2+		
722.9 1	80 25	2475.8	$29/2^{-}$	1753.0 29/2+		DCO=0.7 2.
732.7 5	39 2	5706.5	$49/2^{-}$	4973.8 45/2-		
734.7 5	36 6	4686.0	$43/2^{+}$	3951.3 39/2+		
737.8 5	28 5	892.7	$17/2^{+}$	154.5 13/2+		
739.2.5	18 2	5897	49/2	5158 45/2		
742.8 1	3.5×10^2 5	4454.0	45/2+	3/11.2 41/2*	E2	DCO=1.0 <i>I</i> .
744.4 1	187 8	5610.4	49/2-	4866.0 45/2-	E2	Mult.: from DCO, γ has mult=Q. RUL eliminates M2. DCO=1.0 2. Mult.: from DCO, γ has mult=Q. RUL eliminates M2.
746.7 5	41 5	4228.5	$41/2^{+}$	3481.8 37/2+		
766.8 5	37 <i>3</i>	6097.8	$51/2^{-}$	5331.1 47/2-		
772.1 1	75 5	6062.3	51/2-	5290.2 47/2-		
773.5 5 ^x 780 [‡]	19.5	5459.5	47/2+	4686.0 43/2+		
782.9 5	13 3	5011.4	$45/2^+$	4228.5 41/2+		
784.5 1	190 20	5238.5	49/2+	4454.0 45/2+		DCO=1.0 / E2.
78775	17.2	6685	53/2-	5807 40/2-		Mult.: from DCO, γ has mult=Q. ROL eliminates M2.
795.0.1	157.8	6405 4	53/2-	$5610 4 49/2^{-1}$	F2	DCO = 1.2.2
195.01	157 0	0105.1	55/2	5010.1 19/2	112	Mult.: from DCO. γ has mult=O. RUL eliminates M2.
799.0 5	40 5	6505.4	$53/2^{-}$	5706.5 49/2-		
803.2 5	45 8	2012.5	$25/2^{-}$	1209.2 25/2+		
^x 807 [‡]						
813.0 5		6272.5	$51/2^{+}$	5459.5 47/2+		
820 1	14 <i>1</i>	7505	$57/2^{-}$	6685 53/2-		
829.3 <i>1</i>	140 10	6067.8	$53/2^{+}$	5238.5 49/2+		
829.9 5	35 3	6927.8	55/2-	6097.8 51/2-		
830.3 1	63 /	6892.6	SS /2 ⁻	0062.3 51/2-		
^x 836 [‡]		50.45 S				
836.2 1	142 8	7241.6	57/2-	6405.4 53/2-	E2	DCO=1.12
ro (o [‡]						Mult.: from DCO, γ has mult=Q. RUL eliminates M2.
^840 *	20 6	1005.0	21/2+	201.0 17/2+		
843.4 J	39 O 25 2	1223.3	21/21	381.9 17/2 ⁺ 6505 4 52/2 ⁻		
020.92	<u> </u>	1304.2	51/2	0303.4 33/2		

			(H)	[,xn γ) 199	4V102,1	996Fi08 (continued)		
γ ⁽¹³³ Dy) (continued)									
E_{γ}^{\dagger}	Iγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. ^b	Comments		
868.3 1	110 8	8109.9	61/2-	7241.6	57/2-	E2	DCO=1.3 2.		
							Mult.: from DCO, γ has mult=Q. RUL eliminates M2.		
875.4 1	102 10	6943.2	57/2+	6067.8	53/2+	E2	DCO=1.0 2. Mult.: from DCO, γ has mult=Q. RUL eliminates M2.		
885.8 5	47 6	7778.4	59/2-	6892.6	$55/2^{-}$				
887.5 5	28 2	7815.3	59/2-	6927.8	55/2-		Γ , much many state a doublet structure (1004)/(02)		
890.2 5	23 4	10521	71/2-	9625	67/2-		E_{γ} : peak represents a doublet structure (1994 v102).		
898.3 1	97 6	9008.2	$65/2^{-}$	8109.9	61/2-				
900.3 5	15 2	3912.6	39/2-	3012.4	37/2+				
905.3 5	19 4	1650.2	$25/2^+$	744.9	$21/2^+$				
909.6 9	0.284 14	909.6+x	J +2	Х	J				
×912+	24.2	9779 4	(1/2-	7264.2	57/0-				
914.2.5	24 Z 36 5	8278.4	$\frac{61}{2}$	7364.2	51/2 50/2-				
927 1	50 5	7870.2	$61/2^+$	6943.2	$57/2^+$				
928 1		9625	$67/2^{-}$	8696.8	$63/2^{-}$				
^x 930 [‡]			,		,				
930 <i>I</i>		11451	75/2-	10521	$71/2^{-}$				
940.9 5	21 2	8756.2	63/2-	7815.3	59/2-				
942.9 ^d 5	15 5	13344?	83/2-	12401	79/2-		E_{γ} : ordering of this transition within this band is uncertain. If the present placement is incorrect, the associated level energy will have to be changed accordingly.		
943 1	20.2	1688	23/2	744.9	$21/2^+$				
946.4 5	30 3	3304.5	35/2	2358.1	33/21				
950 ^a 1	22 4	12401	79/2-	11451	75/2-		DCO=0.6 2. E_{γ} : ordering of this transition within this band is uncertain. If the present placement is incorrect, the associated level energy will have to be changed accordingly.		
952.5 4	0.52 ^{<i>a</i>} 12	1862.1+x	J+4	909.6+x	J+2				
957.3 1	79 4	9965.5	69/2-	9008.2	65/2-				
970.4 5	26 4	9248.8	$\frac{65}{2^{-}}$	8278.4	$61/2^{-}$				
974 1	33.7	8849 4	$\frac{23}{2}$	7870.2	$\frac{21}{2}$ 61/2 ⁺	E2	DCO=10 /		
	557	001711	00/2	1010.2	01/2	112	Mult.: from DCO, γ has mult=Q. RUL eliminates M2.		
^x 982 [‡]					(a /a –				
994.9 5	21 2	9751.1	67/2 ⁻	8756.2	63/2 ⁻				
998.1 2	0.984 12	2860.2+x	J+6 77/2-	1862.1+x	J+4 72/2-				
1007 1	43 5	10973	73/2-	9965 5	$69/2^{-1}$				
1011 1	37 7	12985	81/2-	11973	77/2-				
1023 <i>I</i>	17 2	10272	69/2-	9248.8	$65/2^{-}$				
1033 <i>I</i>	26 5	9882	$69/2^+$	8849.4	$65/2^+$				
1045.0 2	0.92 ^{<i>a</i>} 10	3905.2+x	J+8	2860.2+x	J+6				
1051 1	12 2	10802	71/2-	9751.1	$67/2^{-}$				
1057 1	31.5	14042	85/2-	12985	81/2-				
~1064*		11240	72/2-	10272	60/2-				
1077 1	9 <i>3</i>	10969	$73/2^+$	9882	$69/2^+$				

γ ⁽¹⁵⁵Dy) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Comments
1090.9 2	1.04 ^{<i>a</i>} 15	4996.1+x	J+10	3905.2+x	J+8	
1103 <i>I</i>		11905	$75/2^{-}$	10802	$71/2^{-}$	
1119 <i>1</i>	24 5	15161	89/2-	14042	85/2-	
1125 ^d 1	15 5	14469	87/2-	13344?	83/2-	E_{γ} : ordering of this transition within this band is uncertain.
1128 ^d 1		12477?	$77/2^{-}$	11349	$73/2^{-}$	
1137.3 2	0.96 ^a 11	6133.4+x	J+12	4996.1+x	J+10	
1144 ^d 1		11113?	$77/2^{+}$	9965.5	69/2-	
1162 ^d 1		13067?	79/2-	11905	75/2-	
1168 ^d 1	<10	15637?	$91/2^{-}$	14469	$87/2^{-}$	
1183.6 2	1.07 ^a 11	7317.0+x	J+14	6133.4+x	J+12	
1186 ^d 1		16347?	93/2-	15161	89/2-	
1229.7 2	0.98 ^a 11	8546.7+x	J+16	7317.0+x	J+14	
1276.3 2	0.97 ^a 10	9823.0+x	J+18	8546.7+x	J+16	
^x 1320 [‡]						
1322.8 2	0.92 ^{<i>a</i>} 8	11145.8+x	J+20	9823.0+x	J+18	
1368.6 2	1.00 ^a 11	12514.4+x	J+22	11145.8+x	J+20	
1415.0 2	0.81 ^{<i>a</i>} 10	13929.4+x	J+24	12514.4+x	J+22	
1461.1 2	0.56 ^a 10	15390.5+x	J+26	13929.4+x	J+24	
1507.3 <i>3</i>	0.45 ^a 9	16897.8+x	J+28	15390.5+x	J+26	
1551.8 6	0.16 ^a 10	18449.6+x	J+30	16897.8+x	J+28	

[†] From 1994V102, unless noted otherwise. The uncertainties are those proposed by the evaluator, based on a general comment from 1994V102 which states that the γ energies are accurate to 0.1 keV for most transitions and that, for weak or contaminated transitions, they are accurate to 0.5 or 1 keV. The evaluator has assigned uncertainties of 0.5 keV to those γ 's having I γ <50 and 1 keV to those whose E γ values are given only to the nearest 1 keV. Because of this problem, no least-squares fit to the listed γ -ray energies was made. Note that 1994V102 report no data for γ 's below E γ =138.

[‡] γ reported by 1994V102 to be in coincidence with various members of the $\alpha = +1/2$ component of the strongly mixed $i_{13/2}$ -related band (band 6, in the notation of 1994V102) but not otherwise placed by them.

[#] From adopted values, rounded to the nearest 0.1 keV. From the ¹⁵⁵Dy IT decay (6 μ s), this transition is known to deexcite this level. The various studies reported here provide no information on it.

[@] From 1973Kr12. 1994Vl02 do not report this γ .

& Unless noted otherwise, values are those of 1994V102, from $\gamma\gamma$ -coincidence and the total-projection spectrum. 1973Kr12 report I γ values for their γ 's, which are shown unplaced here, but they are not listed here.

^{*a*} From 2002Si26, who read the values from a figure (fig. 4) shown in 1996Fi08. These values are not directly comparable to those given for γ 's within the states of "normal" deformation.

^b 1994Vl02 report DCO ratios and angular-distribution coefficients. These authors state that DCO ratios are close to unity for stretched quadrupole transitions and close to 0.5 for stretched dipole transitions, but do not show their inferred mults. Except where level lifetimes are known, these mults are not listed here.

^{*c*} From $\gamma(\theta)$ (1975Be34, 1973Kr12). From band-structure considerations, stretched quadrupole transitions are taken to be E2 rather than M2.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Level Scheme	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
Lever Seneme		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
		γ Decay (Uncertain)

Legend

¹⁵⁵₆₆Dy₈₉

Level Scheme (continued)	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
intensities. Type not specified	•	$\gamma \text{ Decay (Uncertain)}$

Legend

¹⁵⁵₆₆Dy₈₉

¹⁵⁵₆₆Dy₈₉

¹⁵⁵₆₆Dy₈₉

	Legend
Level Scheme (continued) Intensities: Type not specified	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 $^{155}_{66}\text{Dy}_{89}$

Band(I): SD band					
J+30	18449.6+x				
J+28	1552 16897.8+x				
J+26	1507 15390.5+x				
J+24	1461 13929.4+x				
J+22	1415 12514.4+x				
J+20	1369 11145.8+x				
J+18	¹³²³ 9823.0+x				
J+16	1276 8546.7+x				
J+14	¹²³⁰ 7317.0+x				
J+12	¹¹⁸⁴ 6133.4+x				
J+10	¹¹³⁷ 4996.1+x				
J+8	¹⁰⁹¹ 3905.2+x				
J+6	¹⁰⁴⁵ 2860.2+x				
J+4	⁹⁹⁸ 1862.1+x				
J+2	952 909.6+x				
J	910 x				

	Band(F)					
	-		:	Band(G)	
	Т	hree-neutr	on-quasiparti	el :		
		e negative-parity band, j		Three-neutron-	quasiparticl	l
		signature=+1/2		e negative-parity band,		
		02/2-	16347	signature	=-1/2	
		<u>9312</u>	10347	01/2-	15(25	
		89/2- 11	⁸⁶ 15161	91/2	15037	
		0/12	15101	97/2- 1168	14460	
		85/2- 11	¹⁹ 14042	8//2	14409	
Band(D): Strongly mixed		10	57	$83/2^{-1125}$	13344	
1 _{13/2} -related band,		81/2- 10	12985			
signature=+1/2		77/2- 10	11 11073	79/2- 943	12401	
77/2+ 11112		1112	11975	75/2- 950	11451	
$\frac{77/2}{73/2+} = -\frac{11113}{10060}$		73/2- 10	⁰⁰ 10973			
1097		10	07	71/2- 930	10521	
<u>69/2+ 1087 9882</u>		<u>69/2</u> - 10	9965.5	67/2 - 896	9625	
(5/2+ 1033 8840 4		$65/2^{-9}$	⁵⁷ 9008.2	0.12		
<u>65/2 8849.4</u> B	and(E): Strongly mixed			63/2- 928	8696.8	
61/2 ⁺ 979 7870.2	i _{13/2} -related band,	<u>61/2</u> - °	° 8109.9	59/2 ^{- 918}	7778.4	
57/2+ 927 69/3 2	signature=-1/2	57/2- 8	⁶⁸ 7241.6	886		
$\frac{312}{53/2^+}$ 6067.8		53/2- 8	36 6405 4	55/2- 880	6892.6	Band(H): Positive-parity
$\frac{35/2}{49/2^+}$ 875 0007.0	<u>51/2</u> ⁺ 6272.5	3312	0403.4	51/2- 830	6062.3	band, signature=+1/2
$\frac{45/2}{45/2^+}$ $\frac{3230.5}{4454.0}$	47/2+ 813 5459.5	49/2- 7	5 5610.4	$47/2^{-}$ 772	5290.2	45/0± 5011.4
$\frac{11}{41/2^+}$ 784 / 3711.2	<u>43/2+</u> 774 <u>4686.0</u>	45/2 74	44 4866.0	43/2- 716	4574 4	$\frac{45/2}{41/2^+}$ $\frac{5011.4}{4228.5}$
37/2+ 3012.4	<u>39/2+</u> <u>735</u> <u>3951.3</u>	$\frac{41/2}{27}$ 6	36 <u>4180.4</u>	39/2 662	3912.6	$\frac{41/2}{37/2}$ 783 4228.5
33/2+ 2358.1	35/2+ 3256.4	$\frac{37/2}{32/2}$ 6	24 3556.5	35/2 607	3304 5	$33/2^+$ 747 / 2784.8
29/2+ 699 1753.0		33/2 5	2990.5	3012 001		29/2+ 697 2169.7
25/2+ 654 1209.2		29/2 5	$\frac{15}{4}$ $\frac{24/5.8}{2012.5}$			$25/2^+$ 615 / 1650.2
21/2+ 605 744.9	$\frac{23/2^+}{10/2^+}$ 537 1462.1	23/2 4	4 2012.5			$\overline{21/2^+}$ 520 1225.3
	<u>19/2</u> <u>457</u> <u>1004.9</u>					$17/2^+$ 425 892.7
	15/2 359 645.2					333
9/2+ 132.2						

¹⁵⁵₆₆Dy₈₉