$^{155}{\rm Ho}\,\varepsilon$ decay 1979Ab18,1979Al31

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019

Parent: ¹⁵⁵Ho: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=48 \text{ min } 2$; $Q(\varepsilon)=3116 \ 17$; $\%\varepsilon+\%\beta^+$ decay=100.0 Additional information 1. Other references: 1972To07, 1972Ki21, 1970To17, 1967Av03.

¹⁵⁵Dy Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2-	9.9 h 2	
39.384 9	5/2-	3.34 ns 3	$T_{1/2}$: adopted value.
			$T_{1/2}$: from 1990AbZW,1990AbZS, $\gamma ce(t)$. Others: 3.4 ns <i>1</i> (1979Al31), 5.5 ns <i>3</i> (1972Ki21), $\gamma ce(t)$.
86.767 12	7/2-	1.1 ns 2	$T_{1/2}$: from $\gamma ce(t)$ (1972Ki21).
132.195 22	9/2+		
136.320 9	5/2-	<0.4 ns	$T_{1/2}$: from $\gamma ce(t)$ (1979Al31). Other: <0.5 ns (1972Ki21).
154.48 5	$13/2^{+}$		
202.413 12	3/2-	<0.4 ns	$T_{1/2}$: from $\gamma ce(t)$ (1979Al31). Other: <0.5 ns (1972Ki21).
224.532 13	7/2-	≤5 ns	$T_{1/2}$: from $\gamma\gamma(t)$ (1979Al31).
225.285 16	9/2-		
234.33 <i>3</i>	11/2-	6 µs 1	$T_{1/2}$: from 1970Bo02, γ (t).
240.196 12	3/2+	≤0.7 ns	$T_{1/2}$: from $\gamma ce(t)$ (1972Ki21).
247.791 <i>13</i>	5/2+	≤1 ns	$T_{1/2}$: from $\gamma ce(t)$ (1979Al31).
325.406 13	$5/2^{-},(3/2)^{-}$		J ^{π} : existence of an M1 component in the 238 γ to 7/2 ⁻ would rule out 3/2 ⁻ .
349.002 12	5/2+		
351.106 19	5/2+,7/2+		
375.401 24	5/2-,7/2-		
382.89 8	$3/2^{-},(1/2)^{-}$		
408.533 14	$3/2^+, 5/2^+$		
423.33 4	5/2-,7/2-		
440.341 14	5/2+,7/2+		
448.98 <i>3</i>	1/2-,3/2-		
456.218 24	5/2-		
483.73 3	5/2+		
557.550 19	5/2-,7/2-		
569.11 6 702.73 20	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻		
752.70 8	$3/2^+, 5/2^+$		
902.06 5	$3/2^+, 5/2^+$		
1033.47 4	$3/2^+, 5/2^+$		
1217.75 3	3/2+,5/2+		

[†] Listed values obtained from a least-squares fit to the γ -ray energies. χ^2 norm = 3.3 greater than χ^2 critical = 1.4.

[‡] From adopted values.

¹⁵⁵Ho ε decay **1979Ab18,1979Al31** (continued)

 $\gamma(^{155}\text{Dy})$

I γ normalization: Average of 0.154 *19* (1979Ab18) and 0.092 *20* (1967Av03). From I β +/Ice(K 240 γ)=16 *3*, 1979Ab18 deduce I β +=40 *3*, relative to I γ (240 γ)=100. From their measured I(K x ray) and ce data, they obtain I ϵ =610 *80*. Requiring I ϵ +I β +=100% yields I γ normalization=0.154 *19*. From the sum of the I(γ +ce) values of the γ transitions feeding the g.s. (=650 *100*, relative to I γ (240 γ)=100), 1979Ab18 conclude that only a small fraction of the ¹⁵⁵Ho ϵ + β + decays goes to the ¹⁵⁵Dy g.s. From Ice(L 39 γ)=24% *5* and Ice(K 136 γ)=3.0% *6* (both values corrected to the different absolute intensity of the 226.9 γ from the ¹⁵⁵Dy decay), 1967Av03 deduce I γ normalization=0.095 *20* and I γ normalization=0.090 *18*, respectively.

Iγ normalization: With Q(ε)=3120 keV and levels reported only up to 1218 keV, together with many unplaced γ's, the decay scheme is incomplete. This suggests that using the proposed scheme to deduce β-feeding intensities may be problematic. For example, using the present data to deduce β-feeding intensities, one finds Iβ⁺/Ice(K 240γ)=49 12, instead the measured value 16 3, from 1979Ab18. The evaluator has thus chosen not to quote β feedings.

1979Ab18 state that the intensity of the unplaced transitions is not more than 12% of the ¹⁵⁵Ho decays.

1979Al31 state that the errors in the Ice values are no more than 20%.

Normalization of the electron intensity scale, relative to that of the γ rays, was accomplished by requiring that $\alpha(K)\exp=0.0256$ for the prominent 240.19 γ , which is the theoretical value for an E1 transition. An E1 multipolarity for this transition has been established from the L-subshell ratios, as measured by, for example, 1979Ab18.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@b}$	α ^{&a}	$I_{(\gamma+ce)}^{c}$	Comments
9.1 1	0.0026 3	234.33	11/2-	225.285 9/2	M1+E2	0.0189 21	≈530	1.4 2	Photons not observed. 1979Al31 and 1979Ab18 report Ice(M1)=7, Ice(M2)=6, Ice(M3)≈1 (relative to Ice(K)=2.56 for the prominent 240.19 E1 transition) and 1975GrYW report Ice(M1)=50, Ice(M2)=10, Ice(M3)=5 and Ice(N1)=10. I _γ : calculated from the listed α and I(γ +ce) values. δ : weighted average of the values calculated by evaluator from conversion electron subshell ratios listed above (with 10% relative unc): 0.0212 +22-20 (1979Al31) and 0.0169 20 (1975GrYW). α : since this E γ value is quite close to the binding energy of the L1 subshell (9.05 keV), there is a question as to whether or not L1 conversion occurs for this transition. The listed α value was computed by the evaluator assuming that (1) L1 conversion does take place, (2) α (M)/ α (L)=0.22, a value typical for M1,E2 transitions in this energy and Z region, (3) α (N+)/ α (M)=0.33, (4) δ =0.0189 for this Δ J=1, $\Delta\pi$ =no transition, and M-tot=90.5 for the 9.1 γ . I(γ +ce): value chosen to reproduce the relative I γ values of the 138 and 147 (and 79) gammas observed in the decay of this level, studied as a 6- μ s isomer (1970Bo02). The listed uncertainty in this value is an estimate by the evaluator which reflects the range of I(γ +ce) over which these relative I γ values can be reasonably well reproduced. This choice of I(γ +ce) appears to conflict with other available data. From the

						¹⁵⁵ Ho ε de	cay 1979Ab1	8,1979AI3	(continued)
							γ ⁽¹⁵⁵ Dy) (c	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{\&a}$	$I_{(\gamma+ce)}^{c}$	Comments
									M-conversion-electron intensities of 1979Al31, one computes $I(\gamma+ce)=19$, neglecting L conversion. Including L conversion, as discussed in conjunction with the α value for this transition, one calculates $I(\gamma+ce)=84$. This latter value is much too large, since it leads to an unacceptably poor intensity balance at the 225.28 level. From intensity-balance considerations at the 225.28 level, assuming no $\varepsilon+\beta^+$ feeding, one computes $I(\gamma+ce)(9.1\gamma)=14$ (which is thus an upper limit).
22.15 ^{<i>d</i>} 5	0.00042 8	154.48	13/2+	132.195	9/2+	[E2]	2.39×10 ³ 5	1.0 2	ce(L)/(γ +ce)=0.771 <i>10</i> ; ce(M)/(γ +ce)=0.183 5 ce(N)/(γ +ce)=0.0407 <i>11</i> ; ce(O)/(γ +ce)=0.00474 <i>12</i> ; ce(P)/(γ +ce)=1.47×10 ⁻⁶ 4 α (L)=1.84×10 ³ 4; α (M)=437 8 α (N)=97.2 <i>18</i> ; α (O)=11.32 2 <i>1</i> ; α (P)=0.00350 7 I _{γ} : computed from α and I(γ +ce). This transition is assumed by the evaluator to be distinct from the 22.15 γ presumed to deexcite the 224.5 level. No 22.15-keV photons are observed. The values Ice(L1)=2, Ice(L2)=0.8, reported to be associated with the 22.15 γ and not characteristic of a pure E2 transition, are presumed to be largely due to the other 22.15 γ . I _(γ+ce) : deduced by the evaluator from I(γ +ce)(79.7 γ)=1.0 2, which must equal the I(γ +ce) value of this transition, according
22.15 ^d 5		224.532	7/2-	202.413	3/2-	[E2]	2.39×10 ³ 5		to the decay scheme. $\alpha(L)=1.84\times10^3 4; \alpha(M)=437 8$ $\alpha(N)=97.2 18; \alpha(O)=11.32 21; \alpha(P)=0.00350 7$ Photons not observed. 1979Ab18 report Ice(L1)=2, Ice(L2)=0.8, relative to Ice(K)=2.56 for the prominent 240.19 E1 transition. δ : from Ice(L1)/Ice(L2)=4.0, the evaluator computes mult=M1+E2, with δ =0.07 +3-2. The L1/L2 ratio used was 4.0, which differs from that (=2.5) given by 1979Ab18, since their Ice(L2) value includes a contribution from the "other" 22.15 γ , which, as placed in the level scheme, deexcites the 154.6 level and must have mult=E2. From the I(γ +ce) value of this latter transition and $\alpha(L2)$, Ice(L2)=0.3 is deduced, leaving 0.5 units for the 22.15 γ deexciting the 224.53 level. (Note that the contribution of this other 22.15 γ to the L1 is negligible.) however, the placement of this transition requires mult=E2. The evaluator has chosen to adopt the listed J^{π} value, which leaves the discrepancy with this mult and δ value unexplained.
37.80 4	10.7 20	240.196	3/2+	202.413	3/2-	(E1)	0.778		$\alpha(L)=0.609$ 9; $\alpha(M)=0.1347$ 20 $\alpha(N)=0.0300$ 5; $\alpha(O)=0.00375$ 6; $\alpha(P)=0.0001244$ 18 I _y : calculated from $\alpha(L1)(E1)$ and the measured Ice(L1)=3.

ω

¹⁵⁵₆₆Dy₈₉-3

					¹⁵⁵ Ho	€ decay	1979Ab18,19	79Al31 (co	ntinued)
						$\gamma(^{1})$	⁵⁵ Dy) (contir	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@b}$	α ^{&a}	Comments
39.39 2	26.5 13	39.384	5/2-	0.0	3/2-	M1+E2	0.222 4	11.9 3	α (L)=9.26 21; α (M)=2.13 5 α (N)=0.484 12; α (O)=0.0629 14; α (P)=0.00183 3 δ : weighted average of: 0.212 6, from L- and M-subshell ratios (1975GrYW); 0.239 13 (1979Al31), 0.216 4 (1986GrZQ), and 0.227 3 (1987BaZB), from L-subshell ratios.
45.38 5	36 26	132.195	9/2+	86.767	7/2-	E1		0.467	α(L)=0.366 6; α(M)=0.0806 12 α(N)=0.0180 3; α(O)=0.00230 4; α(P)=8.14×10 ⁻⁵ 12 I _γ : the listed value was deduced from the measured values I(Kα ₁ x ray)=306 30 and I(Kα ₂ x ray)+I _γ (45.4γ)=207 20, together with I(Kα ₂ x ray)/I(Kα ₁ x ray)=0.559. Using a somewhat different I(Kα ₂ x ray)/I(Kα ₁ x ray)=0.559. Using a (≈0.53), 1979Ab18 deduce Iγ=45 20.
47.37 2	18 2	86.767	7/2-	39.384	5/2-	M1+E2	0.115 <i>10</i>	4.03 14	$\alpha(L)=3.14$ 11; $\alpha(M)=0.702$ 25 $\alpha(N)=0.161$ 6; $\alpha(O)=0.0227$ 7; $\alpha(P)=0.001093$ 16 δ : weighted average of: 0.108 17, from L- and M-subshell ratios (1975GrYW); and 0.118 12, from L-subshell ratios (1979Al31).
49.52 <i>5</i>	0.60 12	136.320	5/2-	86.767	7/2-	M1+E2	0.11 3	3.4 3	$\alpha(L)=2.68\ 24;\ \alpha(M)=0.60\ 6$ $\alpha(N)=0.138\ 13;\ \alpha(O)=0.0195\ 15;\ \alpha(P)=0.000961\ 15$ I _y : computed from Ice(L1)=1.2 and the theoretical $\alpha(L1)$.
66.12 <i>3</i>	1.31 6	202.413	3/2-	136.320	5/2-	M1+E2	0.42 5	8.74 22	$\alpha(K)=6.01 \ 16; \ \alpha(L)=2.11 \ 24; \ \alpha(M)=0.49 \ 6$ $\alpha(N)=0.111 \ 13; \ \alpha(O)=0.0143 \ 15; \ \alpha(P)=0.000371 \ 11$
74.33 ^{<i>f</i>} 3	0.33 3	423.33	5/2 ⁻ ,7/2 ⁻	349.002	5/2+				Mult., δ : from α (K)exp=3.6 8, the evaluator computes mult=M1+E2, with δ =0.9 +9-5. However, placement requires $\Delta \pi$ =yes. Note that the placement of this γ is questionable.
79.72 5	0.24 2	234.33	11/2-	154.48	13/2+	E1+M2	0.23 3	3.3 7	$\alpha(\mathbf{K})=2.45; \alpha(\mathbf{L})=0.6616; \alpha(\mathbf{M})=0.164$ $\alpha(\mathbf{N})=0.0369; \alpha(\mathbf{O})=0.005112; \alpha(\mathbf{P})=0.000246$ $\alpha(\mathbf{K})=0.000246$
86.75 2	6.2 3	86.767	7/2-	0.0	3/2-	E2		4.63	$\alpha(K)=1.567\ 22;\ \alpha(L)=2.36\ 4;\ \alpha(M)=0.566\ 8$ $\alpha(N)=0\ 1269\ 18;\ \alpha(Q)=0\ 01515\ 22;\ \alpha(P)=6\ 50\times10^{-5}\ 10$
88.26 5	0.17 4	224.532	7/2-	136.320	5/2-	M1		3.43	$\alpha(K) = 0.0263 \ 10, \ \alpha(C) = 0.01515 \ 22, \ \alpha(I) = 0.00416 \ -10$ $\alpha(K) = 2.88 \ 4; \ \alpha(L) = 0.425 \ 6; \ \alpha(M) = 0.0935 \ 14$ $\alpha(N) = 0.0216 \ 3; \ \alpha(O) = 0.00316 \ 5; \ \alpha(P) = 0.000180 \ 3$
91.35 <i>3</i>	0.6 1	440.341	5/2+,7/2+	349.002	5/2+	M1		3.11	$\alpha(K)=2.61 4; \alpha(L)=0.385 6; \alpha(M)=0.0846 12$ $\alpha(N)=0.0196 3; \alpha(O)=0.00286 4; \alpha(P)=0.0001631 23$
92.22 6	0.3 1	224.532	7/2-	132.195	9/2+	[E1]		0.383	α (K)=0.319 5; α (L)=0.0501 7; α (M)=0.01100 16 α (N)=0.00249 4; α (O)=0.000338 5; α (P)=1.455×10 ⁻⁵ 21
96.91 2	8.3 4	136.320	5/2-	39.384	5/2-	M1+E2	0.22 4	2.64	α (K)=2.16 4; α (L)=0.375 20; α (M)=0.084 5 α (N)=0.0192 11; α (O)=0.00272 12; α (P)=0.0001335 24
100.84 6	0.38 13	325.406	5/2-,(3/2)-	224.532	7/2-	[M1,E2]		2.48 15	$\begin{aligned} &\alpha(\text{K}) = 1.53 \ 44; \ \alpha(\text{L}) = 0.73 \ 45; \ \alpha(\text{M}) = 0.17 \ 11 \\ &\alpha(\text{N}) = 0.039 \ 25; \ \alpha(\text{O}) = 0.0049 \ 28; \ \alpha(\text{P}) = 8.4 \times 10^{-5} \ 39 \\ &\text{I}_{\gamma}: \text{ deduced by the evaluator from Ice}(\text{K}) = 0.6 \text{ and } \alpha(\text{K}). \\ &1979\text{Ab18 report I}_{\gamma}(100.84\gamma + 101.34\gamma) = 0.8 \ 2. \end{aligned}$

 $^{155}_{66}\mathrm{Dy}_{89}\text{-}4$

					155 Ho ε de	ecay 1979	Ab18,1979Al	31 (continu	ed)			
	γ ⁽¹⁵⁵ Dy) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	${ m J}^{\pi}_i$	E_{f}	J_f^π	Mult. [#]	$\delta^{@b}$	α ^{&a}	Comments			
101.34 7	0.52 18	349.002	5/2+	247.791	5/2+	[M1,E2]		2.44 15	$\alpha(\text{K})=1.51 \ 43; \ \alpha(\text{L})=0.72 \ 44; \ \alpha(\text{M})=0.17 \ 11 \ \alpha(\text{N})=0.038 \ 24; \ \alpha(\text{O})=0.0048 \ 27; \ \alpha(\text{P})=8.3\times10^{-5} \ 38 \ \text{I}_{\gamma}: \text{ deduced by the evaluator from Ice}(\text{K})=0.8 \text{ and } \alpha(\text{K}).$			
102.16 3	0.51 6	234.33	11/2-	132.195	9/2+	E1+M2	0.45 6	3.8 8	$\alpha(K) = 2.8 \ 6; \ \alpha(L) = 0.74 \ 16; \ \alpha(M) = 0.17 \ 4$ $\alpha(N) = 0.040 \ 9; \ \alpha(O) = 0.0057 \ 13; \ \alpha(P) = 0.00028 \ 6$ So computed by the evolutor from $\alpha(K) \approx p = 2.07$			
103.89 2	17.4 9	240.196	3/2+	136.320	5/2-	E1		0.279	$\alpha(K) = 0.233 4; \alpha(L) = 0.0360 5; \alpha(M) = 0.00788 11$ $\alpha(K) = 0.0170 2; \alpha(L) = 0.00204 4; \alpha(L) = 1.080 \times 10^{-5} 16$			
108.79 2	3.7 2	349.002	5/2+	240.196	3/2+	M1		1.88	$\alpha(N)=0.00179$ 3, $\alpha(C)=0.00244$ 4, $\alpha(P)=1.080\times10^{-1}$ 76 $\alpha(K)=1.584$ 23; $\alpha(L)=0.233$ 4; $\alpha(M)=0.0511$ 8 $\alpha(N)=0.01183$ 17; $\alpha(O)=0.001730$ 25; $\alpha(P)=9.87\times10^{-5}$			
111.47 3	0.92 6	247.791	5/2+	136.320	5/2-	E1		0.231	$\alpha(K)=0.193 \ 3; \ \alpha(L)=0.0295 \ 5; \ \alpha(M)=0.00647 \ 9$ $\alpha(N)=0.001472 \ 21; \ \alpha(O)=0.000202 \ 3; \ \alpha(P)=9.05\times10^{-6}$ 13			
^x 115.3 <i>1</i>									Shown deexciting the 440 level by 1979A131, but			
115.5 <i>1</i>	6.6 <i>3</i>	247.791	5/2+	132.195	9/2+	E2		1.597	$\alpha(K) = 0.772 \ II; \ \alpha(L) = 0.635 \ I0; \ \alpha(M) = 0.1516 \ 22$			
123.10 6	0.2	325.406	5/2-,(3/2)-	202.413	3/2-	(M1)		1.323	$\alpha(N)=0.0340\ 5;\ \alpha(C)=0.00412\ 6;\ \alpha(F)=3.26\times10^{-5}\ 5$ $\alpha(K)=1.114\ 16;\ \alpha(L)=0.1634\ 23;\ \alpha(M)=0.0359\ 5$ $\alpha(N)=0.00830\ 12;\ \alpha(O)=0.001215\ 17;\ \alpha(P)=6.94\times10^{-5}\ 10^{$			
124.54 5	2.5 1	349.002	5/2+	224.532	7/2-	E1		0.1715	$\alpha(\text{K})=0.1438\ 21;\ \alpha(\text{L})=0.0217\ 3;\ \alpha(\text{M})=0.00476\ 7$ $\alpha(\text{N})=0.001082\ 16;\ \alpha(\text{O})=0.0001493\ 21;$ $\alpha(\text{C})=0.001082\ 16;\ \alpha(\text{O})=0.0001493\ 21;$			
136.30 2	40 2	136.320	5/2-	0.0	3/2-	M1+E2	0.195 24	0.987	$\alpha(P)=6.84\times10^{-10}$ $\alpha(K)=0.822$ 12; $\alpha(L)=0.1290$ 25; $\alpha(M)=0.0285$ 6			
137.76 4	2.5 6	224.532	7/2-	86.767	7/2-	M1		0.961	$\alpha(N)=0.00658\ 13;\ \alpha(O)=0.000949\ 17;\ \alpha(P)=5.08\times10^{-5}\ 8$ $\alpha(K)=0.810\ 12;\ \alpha(L)=0.1186\ 17;\ \alpha(M)=0.0261\ 4$			
138.46 4	7.0 7	225.285	9/2-	86.767	7/2-	E2(+M1)	>2.4	0.843 15	$\alpha(N)=0.00605\ 9;\ \alpha(O)=0.000882\ 13;\ \alpha(P)=5.04\times10^{-5}\ 7$ $\alpha(K)=0.49\ 3;\ \alpha(L)=0.272\ 13;\ \alpha(M)=0.064\ 4$ $\alpha(N)=0.0145\ 8;\ \alpha(O)=0.00179\ 8;\ \alpha(P)=2.26\times10^{-5}\ 22$ δ : deduced by the evaluator from the $\alpha(K)$ exp value of			
146.57 2	5.5 6	349.002	5/2+	202.413	3/2-	E1		0.1109				
147.63 6	0.42 6	234.33	11/2-	86.767	7/2-	[E2]		0.666	$\alpha(K)=0.388\ 6;\ \alpha(L)=0.215\ 3;\ \alpha(M)=0.0509\ 8$ $\alpha(N)=0.01146\ 17;\ \alpha(O)=0.001412\ 20;\ \alpha(P)=1.721\times10^{-5}$			
149.24 4	1.0 1	557.550	5/2-,7/2-	408.533	3/2+,5/2+				25			

S

$^{155}_{66}\mathrm{Dy}_{89}$ -5

From ENSDF

	¹⁵⁵ Ho ε decay 1979Ab18,1979Al31 (continued)													
	γ ⁽¹⁵⁵ Dy) (continued)													
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	δ ^{@b}	α ^{&a}	Comments					
150.09 6 160.55	0.4 <i>1</i> 2.0 <i>4</i>	375.401 569.11	5/2 ⁻ ,7/2 ⁻ 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	225.285 408.533	9/2 ⁻ 3/2 ⁺ ,5/2 ⁺	[E1]		0.0870	$\alpha(K)=0.0732 \ 11; \ \alpha(L)=0.01079 \ 16; \ \alpha(M)=0.00236 \ 4$ $\alpha(N)=0.000539 \ 8; \ \alpha(O)=7.52\times10^{-5} \ 11; \ \alpha(P)=3.61\times10^{-6} \ 5$ $I_{\gamma}: \text{ computed by the evaluator using Ice(K)=0.15 from}$					
160.76 <i>4</i> *160.82 <i>5</i>	7.5 15	408.533	3/2+,5/2+	247.791	5/2+	M1(+E2)		0.56 7	1979Ab18 and $\alpha(K)$ for an E1 transition. $\alpha(K)=0.41$ 12; $\alpha(L)=0.113$ 37; $\alpha(M)=0.0260$ 92 $\alpha(N)=0.0059$ 21; $\alpha(O)=7.8\times10^{-4}$ 21; $\alpha(P)=2.32\times10^{-5}$ 95 I _{\gamma} : deduced by the evaluator from Ice(K)=4 and $\alpha(K)$ for a pure M1 transition. 1979Ab18 report I _γ (160.76 γ +160.82 γ +161.08 γ)=9.3 9, while 1979A131 report I _γ (160.55 γ +160.76 γ +161.08 γ)=10 3. Presumably the 160.55 γ should also have been included in the summed I _γ value of 1979Ab18. For mult=[M1,E2] for this 160.76 γ , the summed γ intensity for this multiplet is 13.5 24, somewhat larger than the measured value. For a pure M1, however, the sum is 11.5 16. The evaluator has assumed that this transition is, at least largely, M1. α : value for a pure M1 transition. Ice(K)=0.3, from 1979Ab18. 1979A131 do not report this γ .					
161.08 8	2.0 4	247.791	5/2+	86.767	7/2-	[E1]		0.0862	From the 17 values deduced for the members of the γ -ray multiplet at ≈ 160 keV, the intensity of this γ must be small (see comment on the 160.76 γ from the 408.53 level). $\alpha(K)=0.0726$ 11; $\alpha(L)=0.01069$ 15; $\alpha(M)=0.00234$ 4 $\alpha(N)=0.000534$ 8; $\alpha(O)=7.46\times10^{-5}$ 11; $\alpha(P)=3.58\times10^{-6}$ 5 I $_{\gamma}$: computed by the evaluator using ce(K)=0.15 and $\alpha(K)$ for					
163.02 2	7.9 4	202.413	3/2-	39.384	5/2-	M1(+E2)	<1.7	0.55 5	$\alpha(K)=0.43 \ 8; \ \alpha(L)=0.098 \ 25; \ \alpha(M)=0.0225 \ 64 \ \alpha(N)=0.0051 \ 14; \ \alpha(O)=0.00069 \ 15; \ \alpha(P)=2.46 \times 10^{-5} \ 68 \ \alpha(N)=0.0051 \ 14; \ \alpha(O)=0.00069 \ 15; \ \alpha(P)=2.46 \times 10^{-5} \ 68 \ 10^{-5} \ 10^$					
185.13 2	18 <i>I</i>	224.532	7/2-	39.384	5/2-	M1		0.420	δ: computed by the evaluator from α (K)exp=0.44 9. α (K)=0.354 5; α (L)=0.0516 8; α (M)=0.01134 16 α (N)=0.00262 4; α (Q)=0.000284 6; α (D)=2.20×10 ⁻⁵ 2					
185.89 2	2.7 2	225.285	9/2-	39.384	5/2-	E2		0.302	$\alpha(N)=0.00262\ 4;\ \alpha(O)=0.000584\ 6;\ \alpha(P)=2.20\times10^{-6}\ 5$ $\alpha(K)=0.197\ 3;\ \alpha(L)=0.0810\ 12;\ \alpha(M)=0.0190\ 3$ $\alpha(N)=0.00430\ 6;\ \alpha(O)=0.000540\ 8;\ \alpha(P)=9.25\times10^{-6}\ 13$					
189.09 2	2.0 2	325.406	5/2-,(3/2)-	136.320	5/2-	M1		0.396	$\alpha(N)=0.00450\ 0,\ \alpha(O)=0.000540\ 0,\ \alpha(P)=2.25\times10^{-1}\ 15$ $\alpha(K)=0.334\ 5;\ \alpha(L)=0.0487\ 7;\ \alpha(M)=0.01069\ 15$ $\alpha(N)=0.00247\ 4;\ \alpha(O)=0.000362\ 5;\ \alpha(P)=2.07\times10^{-5}\ 3$					
200.17 2	3.4 3	440.341	5/2+,7/2+	240.196	3/2+	E2		0.236	$\alpha(N)=0.002477; \alpha(O)=0.0003025; \alpha(P)=2.07\times10^{-5}$ $\alpha(K)=0.158323; \alpha(L)=0.05989; \alpha(M)=0.0140120$ $\alpha(N)=0.003175; \alpha(O)=0.0004006; \alpha(P)=7.56\times10^{-6} 11$					
200.86 7	12.2 5	240.196	3/2+	39.384	5/2-	E1		0.0481	$\alpha(K)=0.0406\ 6;\ \alpha(L)=0.00588\ 9;\ \alpha(M)=0.001286\ 18$ $\alpha(K)=0.00294\ 5;\ \alpha(O)=4\ 14\times10^{-5}\ 6;\ \alpha(P)=2\ 05\times10^{-6}\ 3$					
202.41 2	13.6 7	202.413	3/2-	0.0	3/2-	M1		0.328	$\alpha(K) = 0.00025 + 3, \alpha(G) = 0.11710 = 0, \alpha(G) = 2.05 \times 10^{-5} \text{ s}^{-1}$ $\alpha(K) = 0.277 + 3, \alpha(L) = 0.0403 + 6, \alpha(M) = 0.00884 + 13$ $\alpha(N) = 0.00205 + 3, \alpha(G) = 0.000300 + 5, \alpha(P) = 1.718 \times 10^{-5} + 24$					
206.08 8	1.5	408.533	3/2+,5/2+	202.413	3/2-	E1		0.0450	$\alpha(K) = 0.0380 \ 6; \ \alpha(L) = 0.00549 \ 8; \ \alpha(M) = 0.001200 \ 17$ $\alpha(K) = 0.000275 \ 4; \ \alpha(O) = 3.87 \times 10^{-5} \ 6; \ \alpha(P) = 1.93 \times 10^{-6} \ 3$					

					155 Ho ε dec	ay 1979A	xb18,1979Al3 1	(continued)
						<u>γ(155</u> Dy)	(continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. [#]	$\delta^{@b}$	α ^{&a}	Comments
206.52 2	4 1	557.550	5/2-,7/2-	351.106	5/2+,7/2+	E1		0.0447	$\alpha(K)=0.0377\ 6;\ \alpha(L)=0.00546\ 8;\ \alpha(M)=0.001193\ 17$ $\alpha(N)=0.000273\ 4;\ \alpha(O)=3.85\times10^{-5}\ 6;\ \alpha(P)=1.92\times10^{-6}$
208.41 2	12.9 6	247.791	5/2+	39.384	5/2-	E1		0.0437	$\alpha(K)=0.0369\ 6;\ \alpha(L)=0.00533\ 8;\ \alpha(M)=0.001165\ 17$ $\alpha(N)=0.000266\ 4;\ \alpha(O)=3.76\times10^{-5}\ 6;\ \alpha(P)=1.87\times10^{-6}$
212.70 2	3.4 2	349.002	5/2+	136.320	5/2-	E1+M2	0.12 +3-5	0.062 14	$\alpha(K)=0.051 \ 11; \ \alpha(L)=0.0084 \ 22; \ \alpha(M)=0.00187 \ 51 \\ \alpha(N)=4.3\times10^{-4} \ 12; \ \alpha(O)=6.1\times10^{-5} \ 17; \\ \alpha(P)=3.12\times10^{-6} \ 88 $
215.03 2	2.1 1	440.341	5/2+,7/2+	225.285	9/2-	E1		0.0402	δ: computed by the evaluator from α (K)exp=0.053 9. α (K)=0.0340 5; α (L)=0.00490 7; α (M)=0.001071 15 α (N)=0.000245 4; α (O)=3.46×10 ⁻⁵ 5; α (P)=1 733×10 ⁻⁶ 25
218.93 2	11.4 6	351.106	5/2+,7/2+	132.195	9/2+	E2		0.1753	$\alpha(\mathbf{K}) = 0.1213 \ 17; \ \alpha(\mathbf{L}) = 0.0417 \ 6; \ \alpha(\mathbf{M}) = 0.00974 \ 14 \ \alpha(\mathbf{N}) = 0.00220 \ 3; \ \alpha(\mathbf{O}) = 0.000281 \ 4; \ \alpha(\mathbf{P}) = 5.91 \times 10^{-6} \ 9$
224.55 2	1.2 4	224.532	7/2-	0.0	3/2-	E2		0.1613	$\alpha(K) = 0.00220 \ 3; \ \alpha(C) = 0.000201 \ 4; \ \alpha(L) = 5.51 \times 10^{-5} \ 3$ $\alpha(K) = 0.1126 \ 16; \ \alpha(L) = 0.0377 \ 6; \ \alpha(M) = 0.00880 \ 13 \ \alpha(N) = 0.00199 \ 3; \ \alpha(O) = 0.000254 \ 4; \ \alpha(P) = 5.52 \times 10^{-6} \ 8$
238.54 9	0.5 2	325.406	5/2-,(3/2)-	86.767	7/2-	E2(+M1)		0.17 4	$\alpha(K) = 0.135 42; \alpha(L) = 0.0277 21; \alpha(M) = 0.0063 7$
240.19 2	100 5	240.196	3/2+	0.0	3/2-	E1		0.0302	α(N)=0.00143 14; α(O)=0.000196 7; α(P)=7.8×10 ° 32 α(K)=0.0255 4; α(L)=0.00366 6; α(M)=0.000799 12 α(N)=0.000183 3; α(O)=2.59×10-5 4; α(P)=1.318×10-6 19 Mult.: mult=E1, from L-subshell ratios (1979Ab18). Note that this transition is the one which serves as the normalization point for the electron and γ-ray intensity scales.
243.55 3	2.3 3	483.73	5/2+	240.196	3/2+	M1		0.198	$\alpha(K)=0.1670\ 24;\ \alpha(L)=0.0242\ 4;\ \alpha(M)=0.00531\ 8$ $\alpha(N)=0.001228\ 18;\ \alpha(O)=0.000180\ 3;$ $\alpha(P)=1\ 0.04\times10^{-5}\ 15$
247.77 2	12.4 6	247.791	5/2+	0.0	3/2-	E1		0.0279	$\alpha(K) = 0.0236 \ 4; \ \alpha(L) = 0.00337 \ 5; \ \alpha(M) = 0.000737 \ 11$ $\alpha(N) = 0.0001688 \ 24; \ \alpha(O) = 2.39 \times 10^{-5} \ 4;$ $\alpha(P) = 1.221 \times 10^{-6} \ 18$
259.09 7	1.9 <i>1</i>	483.73	5/2+	224.532	7/2-	E1		0.0249	$\alpha(K) = 0.0211 \ 3; \ \alpha(L) = 0.00300 \ 5; \ \alpha(M) = 0.000656 \ 10$ $\alpha(N) = 0.0001503 \ 21; \ \alpha(O) = 2.13 \times 10^{-5} \ 3;$ $\alpha(P) = 1.095 \times 10^{-6} \ 16$
262.23 3	9.0 10	349.002	5/2+	86.767	7/2-	E1		0.0241	$\alpha(K)=0.0204 \ 3; \ \alpha(L)=0.00291 \ 4; \ \alpha(M)=0.000635 \ 9$ $\alpha(N)=0.0001457 \ 21; \ \alpha(O)=2.07\times10^{-5} \ 3;$ $\alpha(P)=1.063\times10^{-6} \ 15$
264.35 14	1.3 2	351.106	5/2+,7/2+	86.767	7/2-	[E1]		0.0236	$\alpha(K) = 0.0200 \ 3; \ \alpha(L) = 0.00285 \ 4; \ \alpha(M) = 0.000622 \ 9$ $\alpha(N) = 0.0001427 \ 20; \ \alpha(O) = 2.03 \times 10^{-5} \ 3;$ $\alpha(P) = 1.043 \times 10^{-6} \ 15$
^x 266.4 1	<2.6								u(r) 1015/10 15

From ENSDF

				1:	⁵⁵ Ηο ε	decay	1979Ab1	18,1979Al3	1 (continue	ed)
						$\gamma(^1$	⁵⁵ Dy) (c	ontinued)		
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ ^{@b}	α ^{&a}	$I_{(\gamma+ce)}^{c}$	Comments
272.22 2	5.7 10	408.533	3/2+,5/2+	136.320	5/2-	E1		0.0220		$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00264 \ 4; \ \alpha(M)=0.000577 \ 8$
										$\alpha(N)=0.0001322$ 19; $\alpha(O)=1.88\times10^{-5}$; $\alpha(P)=9.71\times10^{-7}$ 14
^x 281.22 8	1.1 <i>1</i>					E2		0.0787		$\alpha(K)=0.0582 \ 9; \ \alpha(L)=0.01591 \ 23; \ \alpha(M)=0.00367 \ 6 \ \alpha(N)=0.000834 \ 12; \ \alpha(O)=0.0001090 \ 16;$
										$\alpha(P)=2.99\times10^{-6} 5$
										levels. This place this y between the 485.7 and the 202.4
										is inconsistent with the indicated mult. 1979Ab18 show this γ as unplaced in the level scheme.
286.02 2	5.0 3	325.406	5/2-,(3/2)-	39.384	5/2-	M1		0.1283		$\alpha(\mathbf{K})=0.1083$ <i>16</i> ; $\alpha(\mathbf{L})=0.01562$ <i>22</i> ; $\alpha(\mathbf{M})=0.00343$ <i>5</i> $\alpha(\mathbf{N})=0.000793$ <i>U</i> ; $\alpha(\mathbf{O})=0.0001162$ <i>17</i> :
										$\alpha(P)=6.69\times10^{-6}\ 10$
288.64 <i>4</i>	4.7 4	375.401	5/2-,7/2-	86.767	7/2-	M1		0.1252		$\alpha(K)=0.1057 \ 15; \ \alpha(L)=0.01524 \ 22; \ \alpha(M)=0.00334 \ 5 \ \alpha(N)=0.000773 \ 11; \ \alpha(O)=0.0001134 \ 16;$
304 02 2	312	440 341	5/2+ 7/2+	136 320	5/2-	F1		0.01664		$\alpha(P)=6.53\times10^{-6}$ 10 $\alpha(K)=0.01410.20$; $\alpha(L)=0.00199.3$; $\alpha(M)=0.000435.6$
504.02 2	5.1 2	440.541	5/2 ,7/2	150.520	5/2	LI		0.01004		$\alpha(N)=9.97\times10^{-5} I_{4}^{2}; \ \alpha(O)=1.424\times10^{-5} 20;$
309.65 ^e 4	7.7 <mark>°</mark> 7	349.002	5/2+	39.384	5/2-	E1		0.01590		α (P)=7.44×10 ⁻⁷ 11 α (K)=0.01347 19; α (L)=0.00190 3; α (M)=0.000415 6
			,		,					$\alpha(N) = 9.52 \times 10^{-5}$ 14; $\alpha(O) = 1.360 \times 10^{-5}$ 19;
										$\alpha(P) = 7.12 \times 10^{-7} IO$ 1979Al31 show this γ as being questionably placed here
										but also as deexciting the 557.5 level. 1979Ab18, however, show it as deexciting this level and not the
300 65 ^e 1	ד <mark>9</mark> ר ר	557 550	5/2-7/2-	247 701	5/2+	E1		0.01500		557.5 level. $\alpha(K) = 0.01347$ 10: $\alpha(L) = 0.00190$ 3: $\alpha(M) = 0.000415$ 6
509.05 4	1.1 /	557.550	5/2 ,1/2	247.791	5/2	EI		0.01390		$\alpha(N)=0.0134779, \alpha(L)=0.001903, \alpha(M)=0.0004130$ $\alpha(N)=9.52\times10^{-5}$ 14; $\alpha(O)=1.360\times10^{-5}$ 19;
										α (P)=7.12×10 ⁻⁷ 10 1979A131 show this γ as deexciting this level. However,
211.05.2	424	251 106	5/2+ 7/2+	20.294	5/2-	E1		0.01562		1979Ab18 place it as a γ deexciting the 349.0 level.
511.65 5	4.5 4	551.100	5/2 ,1/2	39.364	3/2	EI		0.01302		$\alpha(N)=0.01524$ 19; $\alpha(L)=0.00187$ 5; $\alpha(M)=0.000408$ 6 $\alpha(N)=9.35\times10^{-5}$ 13; $\alpha(O)=1.336\times10^{-5}$ 19;
321.31.6	5.4.3	569.11	3/2-5/2-7/2-	247.791	$5/2^{+}$	E1		0.01451		$\alpha(P)=7.00\times10^{-7}$ 10 $\alpha(K)=0.01230$ 18: $\alpha(L)=0.001732$ 25: $\alpha(M)=0.000378$ 6
021.01 0	00		-,- ,-,- ,.,2					5.01.01		$\alpha(N) = 8.68 \times 10^{-5} I3; \ \alpha(O) = 1.240 \times 10^{-5} I8;$
325.40 2	22 1	325.406	5/2-,(3/2)-	0.0	3/2-	M1		0.0909		α (P)=6.52×10 ⁻⁷ 10 α (K)=0.0768 11; α (L)=0.01104 16; α (M)=0.00242 4
										α (N)=0.000560 8; α (O)=8.21×10 ⁻⁵ 12; α (P)=4.73×10 ⁻⁶ 7

¹⁵⁵₆₆Dy₈₉-8

From ENSDF

¹⁵⁵Dy₈₉-8

Т

¹⁵⁵ Ho ε decay	1979Ab18,1979Al31	(continued)
---------------------------------------	-------------------	-------------

/(⁽¹⁵⁵ Dv)	(continued)
	~ //	(eoner)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	J^{π}_i	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@b}$	α ^{&a}	Comments
336.02 3	3.7 4	375.401	5/2-,7/2-	39.384	5/2-	M1+E2	1.0 +13-6	0.065 14	$\alpha(K)=0.053 \ 13; \ \alpha(L)=0.0092 \ 7; \ \alpha(M)=0.00207 \ 12 \ \alpha(N)=0.00047 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(P)=3.11\times10^{-6} \ 90 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(P)=3.11\times10^{-6} \ 90 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(P)=3.11\times10^{-6} \ 90 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(P)=3.11\times10^{-6} \ 90 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(P)=3.11\times10^{-6} \ 90 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(P)=3.11\times10^{-6} \ 90 \ 3; \ \alpha(O)=6.7\times10^{-5} \ 7; \ \alpha(O)=6.7\times1$
344.18 8	5.6 8	752.70	3/2+,5/2+	408.533	3/2+,5/2+	M1		0.0784	$\alpha(\mathbf{K})=0.0662 \ 10; \ \alpha(\mathbf{L})=0.00950 \ 14; \ \alpha(\mathbf{M})=0.00208 \ 3 \ \alpha(\mathbf{N})=0.000482 \ 7; \ \alpha(\mathbf{O})=7.07 \times 10^{-5} \ 10; \ \alpha(\mathbf{P})=4.08 \times 10^{-6} \ 6$
348.99 <i>3</i>	5.6 <i>3</i>	349.002	5/2+	0.0	3/2-	E1		0.01186	$\alpha(K)=0.01006 \ 14; \ \alpha(L)=0.001410 \ 20; \ \alpha(M)=0.000308 \ 5 \\ \alpha(N)=7.07\times10^{-5} \ 10; \ \alpha(O)=1.012\times10^{-5} \ 15; \\ \alpha(P)=5.37\times10^{-7} \ 8 $
353.49 9	1.5 9	440.341	5/2+,7/2+	86.767	7/2-	E1		0.01150	$\begin{array}{l} \alpha({\rm K}) = 0.00976 \ 14; \ \alpha({\rm L}) = 0.001366 \ 20; \ \alpha({\rm M}) = 0.000298 \ 5 \\ \alpha({\rm N}) = 6.85 \times 10^{-5} \ 10; \ \alpha({\rm O}) = 9.81 \times 10^{-6} \ 14; \ \alpha({\rm P}) = 5.21 \times 10^{-7} \\ 8 \end{array}$
369.10 <i>10</i>	4.5 9	408.533	3/2+,5/2+	39.384	5/2-	[E1]		0.01037	$\alpha(K)=0.00880 \ 13; \ \alpha(L)=0.001229 \ 18; \ \alpha(M)=0.000268 \ 4$ $\alpha(N)=6.16\times10^{-5} \ 9; \ \alpha(O)=8.83\times10^{-6} \ 13; \ \alpha(P)=4.71\times10^{-7} \ 7$ $I_{\gamma}:$ deduced by the evaluator from Ice(K)=0.04 and $\alpha(K)$ for an E1 transition. 1979Ab18 report $I_{\gamma}(369.10\gamma+369.30\gamma)=6.5 \ 3.$
369.30 10	2.0 10	456.218	5/2-	86.767	7/2-	(M1)		0.0651	$\alpha(K)=0.0551 \ 8; \ \alpha(L)=0.00788 \ 11; \ \alpha(M)=0.001726 \ 25 \\ \alpha(N)=0.000399 \ 6; \ \alpha(O)=5.86\times10^{-5} \ 9; \ \alpha(P)=3.38\times10^{-6} \ 5 \\ I_{\gamma}: \ computed by the evaluator from I_{\gamma} (369.10\gamma)=4.5 \ 9 \\ and I_{\gamma}(369.10\gamma+369.30\gamma)=6.5 \ 3 (1979Ab18). \\ Mult.: \ from Ice(K)=0.20 \ and the deduced I_{\gamma} value, one \\ obtains \ \alpha(K)exp=0.10 \ +10-4. \ The placement in the level \\ scheme indicates mult=M1,E2. \ Since \ \alpha(K)=0.056 \ and \\ 0.027 \ for \ M1 \ and \ E2, \ respectively, the deduced \ \alpha(K)exp \\ value indicates a preference for \ M1. \\ \end{cases}$
x375.20 4 x377.6 2 382.88 14	5.2 5 0.8 2 4.5 5	382.89	$3/2^{-}.(1/2)^{-}$	0.0	3/2-	M1		0.0592	$\alpha(K)=0.0501$ 7; $\alpha(L)=0.00716$ 10; $\alpha(M)=0.001568$ 22
282.05f 14	70.9	402.22	5/0- 7/0-	20.294	5/2-				$\alpha(N)=0.000363 5; \alpha(O)=5.32\times10^{-5} 8; \alpha(P)=3.08\times10^{-6} 5$
x391.15 10	1.3 2	425.55	3/2 ,1/2	39.364	5/2	E2		0.0295	placement. Note that this placement is questionable. $\alpha(K)=0.0231$ 4; $\alpha(L)=0.00499$ 7; $\alpha(M)=0.001135$ 16
397.14 <i>15</i>	1.4 2	483.73	5/2+	86.767	7/2-	E1		0.00871	α (N)=0.000259 4; α (O)=3.49×10 ⁻³ 5; α (P)=1.257×10 ⁻⁶ 18 α (K)=0.00740 11; α (L)=0.001029 15; α (M)=0.000224 4
408.58 2	9.9 5	408.533	3/2+,5/2+	0.0	3/2-	E1		0.00815	$\alpha(N)=5.16\times10^{-3} \ 8; \ \alpha(O)=7.41\times10^{-6} \ 11; \ \alpha(P)=3.98\times10^{-7} \ 6$ $\alpha(K)=0.00692 \ 10; \ \alpha(L)=0.000962 \ 14; \ \alpha(M)=0.000210 \ 3$
416.84 3	2.7 2	456.218	5/2-	39.384	5/2-	M1		0.0475	$\alpha(N)=4.82\times10^{-5}$ /; $\alpha(O)=6.93\times10^{-5}$ /0; $\alpha(P)=3.73\times10^{-7}$ 6 $\alpha(K)=0.0402$ 6; $\alpha(L)=0.00572$ 8; $\alpha(M)=0.001253$ 18 $\alpha(N)=0.000200$ 4 $\alpha(O)=4.20\times10^{-5}$ (C) $\alpha(D)=2.46\times10^{-6}$ (C)
420.97 3	5.6 3	557.550	5/2-,7/2-	136.320	5/2-	M1		0.0463	α(N)=0.000290 4; α(O)=4.26×10 5; α(P)=2.46×10-6 4 α(K)=0.0391 6; α(L)=0.00558 8; α(M)=0.001221 17 $α(N)=0.000283 4; α(O)=4.15×10^{-5} 6; α(P)=2.40×10^{-6} 4$ Placement of this γ in the level scheme is that of 1979Al31. 1979Ab18 show it as unplaced.

¹⁵⁵ Ho ε decay 1979Ab18,1979Al31 (continued)											
$\gamma(^{155}\text{Dy})$ (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^{&a}	Comments			
^x 430.70 <i>14</i> ^x 439.71 <i>3</i>	1.05 <i>10</i> 4.2 2					M1	0.0413	$\alpha(K)=0.0350\ 5;\ \alpha(L)=0.00498\ 7;\ \alpha(M)=0.001089\ 16$			
^x 444.3 1	0.4 1					M1	0.0402	$\alpha(N)=0.002324, \alpha(O)=2.004847; \alpha(N)=0.00106015$ $\alpha(N)=0.002454, \alpha(O)=2.004847; \alpha(N)=0.00106015$			
448.98 <i>3</i>	5.9 3	448.98	1/2-,3/2-	0.0	3/2-	M1	0.0392	$\alpha(N)=0.002434; \alpha(O)=3.00\times10^{-5}; \alpha(P)=2.09\times10^{-5}$ $\alpha(K)=0.03315; \alpha(L)=0.004717; \alpha(M)=0.00103215$ $\alpha(N)=0.0023204; \alpha(O)=2.50\times10^{-5}; \alpha(P)=2.02\times10^{-6}$			
456.23 4	5.6 <i>3</i>	456.218	5/2-	0.0	3/2-	M1	0.0376	$\begin{array}{l} \alpha(N)=0.000259 \ 4, \ \alpha(O)=3.50\times10^{-5} \ 5, \ \alpha(P)=2.05\times10^{-5} \ 5 \ \alpha(N)=0.000989 \ 14 \ \alpha(N)=0.000250 \ 4, \ \alpha(O)=0.00452 \ 7, \ \alpha(M)=0.000989 \ 14 \ \alpha(N)=0.000250 \ 4, \ \alpha(O)=2.000000 \ 10^{-5} \ 5 \ \alpha(D)=0.000989 \ 14 \ \alpha(D)=0.0$			
^x 460.73 5	4.8 3					M1	0.0366	$\alpha(N)=0.0002294; \alpha(O)=3.50\times10^{-5}; \alpha(P)=1.95\times10^{-5}; \alpha(K)=0.03105; \alpha(L)=0.004417; \alpha(M)=0.00096414$			
^x 476.42 9	3.2 2					E2,M1	0.0254 83	$\alpha(N)=0.0002234; \alpha(O)=3.28\times10^{-5} 3; \alpha(P)=1.90\times10^{-5} 3$ $\alpha(K)=0.021174; \alpha(L)=0.00337; \alpha(M)=0.0007415$ $\alpha(N)=0.000174; \alpha(L)=0.00337; \alpha(M)=0.0007415$			
478.2 <i>2</i> <i>x</i> 479.13 <i>4</i>	≤5.2 ≤5.2	702.73		224.532	7/2-			$\alpha(N)=0.000174; \alpha(O)=2.4\times10^{-5}6; \alpha(P)=1.25\times10^{-6}49$ I _{γ} : 1979Ab18 report I γ (478.2 γ + 479.13 γ)=5.2 3. I _{γ} : 1979Ab18 report I γ (478.2 γ + 479.13 γ)=5.2 3.			
493.3 <i>3</i>	1.10 11	902.06	3/2+,5/2+	408.533	3/2+,5/2+	E2	0.01570	α (K)=0.01262 <i>18</i> ; α (L)=0.00240 <i>4</i> ; α (M)=0.000539 <i>8</i> α (N)=0.0001234 <i>18</i> ; α (O)=1.700×10 ⁻⁵ <i>24</i> ; α (P)=7.05×10 ⁻⁷ <i>10</i>			
x495.3 3 x502.9 3 x515.62 7 518.43 15 x523.66 5 x529.4 3 x533.1 3 x536.6 1 x542.50 7	1.10 <i>11</i> 1.0 5 3.4 3 1.2 5 1.87 <i>14</i> 0.7 2 0.5 2 0.76 8 0.97 <i>16</i>	557.550	5/2-,7/2-	39.384	5/2-						
^x 554.0 2 ^x 555.9 2 557.6 2	≤2.8 ≤2.8	557.550	5/2-,7/2-	0.0	3/2-			Ice(K)=0.015 3. I_{γ} : 1979Ab18 report $I_{\gamma}(555.9\gamma + 557.6\gamma)=2.8$ 3. I_{γ} : 1979Ab18 report $I_{\gamma}(555.9\gamma + 557.6\gamma)=2.8$ 3.			
x566.28 4 569.2 2	2.73 <i>14</i> 2.3 8	569.11	3/2-,5/2-,7/2-	0.0	3/2-	E2	0.01090	$\alpha(K)=0.00887 \ 13; \ \alpha(L)=0.001576 \ 23; \ \alpha(M)=0.000353 \ 5$			
^x 576.74 <i>10</i> ^x 599.22 <i>15</i> ^x 615.7 <i>3</i>	0.89 <i>9</i> 0.8 <i>3</i> 3.2 <i>4</i>							$\alpha(N) = 8.09 \times 10^{-5} \ I2; \ \alpha(O) = 1.128 \times 10^{-5} \ I6; \ \alpha(P) = 5.02 \times 10^{-7} \ 7$			
616.2 4	0.8 3	752.70	3/2+,5/2+	136.320	5/2-	E1	0.00326	$\alpha(K)=0.00278 \ 4; \ \alpha(L)=0.000378 \ 6; \ \alpha(M)=8.21\times10^{-5} \ 12 \ \alpha(N)=1.89\times10^{-5} \ 3; \ \alpha(O)=2.74\times10^{-6} \ 4; \ \alpha(P)=1.531\times10^{-7} \ 22$			
x623.9 3 x648.45 8 654.16 9 659.6 2 x687.19 10 x689.07 11	0.6 2 0.99 <i>13</i> 1.8 2 1.3 2 1.11 9 0.98 <i>13</i>	902.06 1217.75	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	247.791 557.550	5/2 ⁺ 5/2 ⁻ ,7/2 ⁻			a(1,) 10,710 0, a(0) 2,71710 1, a(1)-1,001710 22			

¹⁵⁵₆₆Dy₈₉-10

From ENSDF

¹⁵⁵ Ho ε decay 1979Ab18,1979Al31 (continued)											
γ ⁽¹⁵⁵ Dy) (continued)											
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^{&a}	Comments			
x692.29 12 699.50 15 752.5 4 765.85 7 x768.72 6 x791.75 8 x802.94 6 x825.5 3 x825.5 4	0.97 10 1.22 10 1.82 11 2.0 10 1.15 10 2.6 2 1.6 2 1.2 2	902.06 752.70 902.06	3/2+,5/2+ 3/2+,5/2+ 3/2+,5/2+	202.413 0.0 136.320	3/2 ⁻ 3/2 ⁻ 5/2 ⁻						
834.85 9	1.7 4	1217.75	3/2+,5/2+	382.89	3/2-,(1/2)-	E1	1.76×10 ⁻³	$\alpha(K)=0.001504\ 21;\ \alpha(L)=0.000201\ 3;\ \alpha(M)=4.37\times10^{-5}\ 7$ $\alpha(N)=1.007\times10^{-5}\ 15;\ \alpha(O)=1.468\times10^{-6}\ 21;\ \alpha(P)=8.36\times10^{-8}\ 12$ Mult.: from $\alpha(K)$ exp=0.0024 5, mult is E1 or E2. Placement in the level scheme requires $\Delta\pi$ =ves			
^x 867.6 2	1.2 2							iever scheme requires $\Delta x = yes$.			
^x 872.42 12	1.0 2										
*8/5.40 12	1.2 2	1017 75	2/2+ 5/2+	225 406	5/0= (2/0)=	F 1	1.55.10-3	(II) 0.001000 10 (I) 0.00017(5.05 (III) 0.00 (10 ⁻⁵)			
892.2 2	4.3 5	1217.75	3/2",5/2"	325.406	5/2 ,(3/2)	EI	1.55×10 ⁻⁵	$\alpha(\mathbf{K})=0.001323\ I9;\ \alpha(\mathbf{L})=0.0001765\ 25;\ \alpha(\mathbf{M})=3.83\times10^{-5}\ 6$ $\alpha(\mathbf{N})=8.83\times10^{-6}\ I3;\ \alpha(\mathbf{O})=1.289\times10^{-6}\ I8;\ \alpha(\mathbf{P})=7.37\times10^{-8}\ I1$			
897.14 7	8.0 4	1033.47	3/2+,5/2+	136.320	5/2-	E1	1.53×10^{-3}	$\alpha(K)=0.001309 \ I9; \ \alpha(L)=0.0001746 \ 25; \ \alpha(M)=3.79\times10^{-5} \ 6 \ \alpha(N)=8.74\times10^{-6} \ I3; \ \alpha(O)=1.275\times10^{-6} \ I3; \ \alpha(P)=7.29\times10^{-8} \ I1$			
902.03 11	2.6 2	902.06	3/2+,5/2+	0.0	3/2-						
x955.09 14	0.8 2							5 -			
994.10 7	6.0 5	1033.47	3/2+,5/2+	39.384	5/2-	E1	1.26×10^{-3}	$\alpha(K)=0.001079 \ I6; \ \alpha(L)=0.0001432 \ 20; \ \alpha(M)=3.11\times10^{-3} \ 5 \\ \alpha(N)=7.17\times10^{-6} \ I0; \ \alpha(O)=1.047\times10^{-6} \ I5; \ \alpha(P)=6.02\times10^{-8} \ 9 $			
^x 1010.8 3	1.3 2							5			
1015.35 6	4.8 4	1217.75	3/2+,5/2+	202.413	3/2-	El	1.21×10 ⁻⁵	$\alpha(K)=0.001038 \ 15; \ \alpha(L)=0.0001376 \ 20; \ \alpha(M)=2.98\times10^{-5} \ 5 \\ \alpha(N)=6.88\times10^{-6} \ 10; \ \alpha(O)=1.006\times10^{-6} \ 14; \ \alpha(P)=5.79\times10^{-8} \ 9$			
^x 1027.9 2	1.1 4							5			
1033.47 4	8.5 4	1033.47	3/2+,5/2+	0.0	3/2-	El	1.17×10 ⁻⁵	$\alpha(K)=0.001004 \ 14; \ \alpha(L)=0.0001331 \ 19; \ \alpha(M)=2.89\times10^{-5} \ 4 \\ \alpha(N)=6.66\times10^{-6} \ 10; \ \alpha(O)=9.73\times10^{-7} \ 14; \ \alpha(P)=5.61\times10^{-8} \ 8$			
*1057.2 2	1.3 2	1017 75	2/2+ 5/2+	106.000	5/0-	F 1	1.00.10-3				
1081.40 6	5.5 5	1217.75	3/2+,5/2+	136.320	5/2-	EI	1.08×10 ⁻⁵	$\alpha(\mathbf{K})=0.000924 \ I3; \ \alpha(\mathbf{L})=0.0001222 \ I8; \ \alpha(\mathbf{M})=2.65\times10^{-3} \ 4$ $\alpha(\mathbf{N})=6.12\times10^{-6} \ 9; \ \alpha(\mathbf{O})=8.94\times10^{-7} \ I3; \ \alpha(\mathbf{P})=5.16\times10^{-8} \ 8$			
1178.39 4	4.5 2	1217.75	3/2+,5/2+	39.384	5/2-	E1	9.40×10 ⁻⁴	$\alpha(K)=0.000791 \ 11; \ \alpha(L)=0.0001043 \ 15; \ \alpha(M)=2.26\times10^{-5} \ 4 \\ \alpha(N)=5.22\times10^{-6} \ 8; \ \alpha(O)=7.64\times10^{-7} \ 11; \ \alpha(P)=4.43\times10^{-8} \ 7; \\ \alpha(IPF)=1.572\times10^{-5} \ 22$			
1218.0 3 ^x 1259.21 9 ^x 1270.95 14 ^x 1327.48 7 ^x 1332.63 12 ^x 1371.9 4 ^x 1398.0 6	1.18 <i>14</i> 1.2 2 1.1 2 1.60 <i>12</i> 0.91 <i>12</i> 0.99 9 0.7 2	1217.75	3/2+,5/2+	0.0	3/2-						

¹⁵⁵₆₆Dy₈₉-11

From ENSDF

$\gamma(^{155}\text{Dy})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E_i (level)	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)
^x 1471.1 3	0.56 11		^x 1693.6 2	0.7 2		^x 2018.9 2	1.7 4		^x 2184.6 2	0.5 2	
^x 1476.5 5	0.6 2		^x 1696.0 3	0.6 2		^x 2045.0 2	0.65 15		^x 2192.1 2	1.4 2	
^x 1504.8 4	0.6 2		^x 1700.7 2	1.0 2		x2063.5 2	1.3 2		^x 2200.9 1	1.8 2	
^x 1516.6 3	0.5 2		^x 1708.3 5	0.8 3		^x 2069.2 1	2.1 5		^x 2207.3 2	1.2 2	
^x 1530.2 2	1.0 2		^x 1883.0 15	1.1 4		^x 2113.2 2	1.2 2		^x 2218.5 3	0.6 2	
^x 1535.9 2	1.1 2		^x 1935.3 3	1.1 3		^x 2128.6 2	1.1 3		^x 2222.1 4	0.7 2	
^x 1540.0 2	1.2 2		^x 1939.7 2	1.3 2		x2150.3 2	1.8 2		^x 2241.3 1	3.5 2	
^x 1613.6 2	1.7 3		^x 1943.0 3	0.8 2		x2167.8 2	1.0 2				
^x 1672.5 3	0.7 2		^x 1972.8 3	1.1 2		^x 2170.7 2	1.2 2				
^x 1679.4 4	0.5 2		^x 1994.7 2	0.9 2		^x 2182.1 2	0.6 2				

[†] From 1979Ab18.

[‡] I(Dy K α_1 x ray)=306 30 (1979Ab18).

[#] Deduced from the $\alpha(K)$ exp data of 1979Ab18, unless noted otherwise.

[@] Calculated from the measured L-subshell ratios of 1979Al31, unless otherwise noted. [&] For mixed transitions for which δ is not known, the listed value was calculated assuming δ =1.

^{*a*} Additional information 2.

^b If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c For absolute intensity per 100 decays, multiply by 0.125 15.

^d Multiply placed.

12

^e Multiply placed with undivided intensity.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁵Ho ε decay 1979Ab18,1979Al31

¹⁵⁵₆₆Dy₈₉

¹⁵⁵Ho ε decay 1979Ab18,1979Al31

¹⁵⁵Ho ε decay 1979Ab18,1979Al31

Decay Scheme (continued)

¹⁵⁵₆₆Dy₈₉