	Туре	Author	History Citation	Literature Cutoff Date
	Full Evaluation	N. Nica	NDS 160, 1 (2019)	21-Oct-2019
$Q(\beta^{-}) = -3116 \ 17$; $S(n) = 6833 \ 12$; $Q(\varepsilon) = 2094.5 \ 19$; $S(2n) = 16155 \ 12$; Additional information 1.	$S(p)=6.29 \times 10^3 5;$ S(2p)=10851 5	Q(α)=2608 2017Wa1	<i>10</i> 2017Wa10 0	
			¹⁵⁵ Dy Levels	

Configuration assignments for the levels populated in the heavy-ion reactions are those proposed by 1994V102 and are based on comparison of experimental routhians and alignments with theoretically calculated ones. For the labeling of the quasiparticle orbitals used by 1994V102 and employed here in the discussion of the band assignments, see the (HI,xn γ) Data Set.

Cross Reference (XREF) Flags

			A 155 B 155 C 124	⁵ Dy IT decay (6 μ s) D ¹⁵⁶ Dy(d,t), ¹⁵⁶ Dy(³ He, α) ⁵ Ho ε decay E (HI,xn γ) ⁴ Sn(³⁶ S,5n γ)							
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments							
0.0&	3/2-	9.9 h 2	ABCDE	$%ε+%β^+=100$ μ=-0.339 2; Q=+0.96 2 J ^π : atomic beam (1970Ro21). π=- from L=1 in (d,t) (1976St06). T _{1/2} : weighted average of: 9.59 h <i>IO</i> (1970Ch09); 10.3 h <i>3</i> (1967Ha12); 10.0 h <i>5</i> (1964Ma10); 10.2 h <i>I</i> (1964Pe13). Others: 11 h <i>2</i> (1958Dz02); 9 h <i>2</i> (1958Do61). μ: From 2014StZZ. 2014StZZ also list μ=-0.385 <i>4</i> . Q: From 2016St14. In an evaluation of nuclear rms charge radii, 2013An02 report $ 1/2 = 5.1457$ fm 2751							
39.384 ^a 9	5/2-	3.34 ns <i>3</i>	ABCDE	 J^π: M1+E2 to g.s. Enhanced B(E2) to the g.s. indicates that this is a member of the g.s. band. The small (d,t) cross section to this level is expected for the 5/2⁻ member of the 3/2[521] band. T_{1/2} from ¹⁵⁵ Ho ε decay. 							
86.767 ^{&} 12	7/2-	1.1 ns 2	ABCDE	J^{π} : L=3 in (d,t) requires $J^{\pi}=5/2^{-}$ or $7/2^{-}$. The enhanced B(E2) of the transition to the g.s. and the (d,t) cross section indicate that this is the $7/2^{-}$ member of the $3/2[521]$ band.							
132.195 ^d 22	9/2+	51 ns 3	ABCdE	XREF: d(134). J^{π} : E1 to 7/2 ⁻ . Angular distribution in (d,t) is consistent with L=4, and transition from 13/2 ⁺ requires J^{π} =9/2 ⁺ .							
136.320 ^m 9	5/2-	<0.4 ns	Βd	XREF: d(134). J^{π} : M1+E2 to 3/2 ⁻ and 7/2 ⁻ states. $T_{1/2}$: from ¹⁵⁵ Ho ε decay.							
154.48 ^{<i>d</i>} 5	13/2+		ABCDE	J^{π} : L=6 in (d,t) requires 11/2 ⁺ or 13/2 ⁺ . Large (³ He, α) cross section indicates 13/2 ⁺ because of i13/2 character of the neutron orbitals involved.							
202.413 ¹ 12	3/2-	<0.4 ns	ΒD	J^{π} : L=1 in (d,t), M1 component in the transition to the 5/2 ⁻ state.							
224.532 ^m 13	7/2-	≤5 ns	B d	T _{1/2} : from ¹⁵⁵ Ho ε decay. XREF: d(225). T _{1/2} : from ¹⁵⁵ Ho ε decay. J ^{π} : M1 transitions to 5/2 ⁻ and 7/2 ⁻ require J ^{π} =5/2 ⁻ or 7/2 ⁻ . If J ^{π} were 5/2 ⁻ , the							

Continued on next page (footnotes at end of table)

¹⁵⁵Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments		
				92.2 γ would be M2 and would have B(M2)(W.u.) \geq 220, which violates RUL. Hence, $J^{\pi}=7/2^{-}$. Note, however, that with this J^{π} value the 22.15 γ must be pure E2, which is in disagreement with the reported mult.		
225.285 ^a 16	9/2-	75 [@] ps 17	ABCdE	XREF: d(225). J^{π} : E2 to 5/2 ⁻ , L=5,6 in (d,t).		
234.33 ^b 3	11/2-	6 µs 1	ABCDE	%IT=100 T _{1/2} : from γ (t) (1970Bo02). J ^{π} : E1 components in transitions to 9/2 ⁺ and 13/2 ⁺ .		
240.196 ^j 12	3/2+	≤0.7 ns	ΒD	T _{1/2} : from ¹⁵⁵ Ho ε decay. J ^{π} : L=2 in (d,t) indicates J ^{π} =3/2 ⁺ or 5/2 ⁺ . The large (d,t) cross section indicates that this is the 3/2[402] Nilsson state.		
247.791 <i>13</i>	5/2+	≤ 1 ns	ΒD	$T_{1/2}$: from ¹⁵⁵ Ho ε decay. J ^{π} : E1 transition to 3/2 ⁻ and E2 to 9/2 ⁺ . Coriolis-mixing calculations of 1976St06 indicate that this is the 5/2 ⁺ member of the "1/2[660]" band.		
321 ^k 2	1/2+		d	XREF: d(321). J ^{π} : L=0 in (d,t). The large (d,t) cross section to this level establishes it as the 1/2[400] Nilsson state.		
325.406 ¹ 13	5/2-,(3/2)-		Βd	XREF: d(321). J^{π} : M1 transitions to 3/2 ⁻ and 5/2 ⁻ states. The existence of an M1 component in the 238.5 γ to 7/2 ⁻ would rule out 3/2 ⁻ . Assigned as the 5/2 ⁻ member of the 3/2[532] band by 1976St06.		
345 2	1/2-,3/2-		D	J^{π} : L=1 in (d,t).		
349.002 ^j 12	5/2+		В	J^{π} : M1 to $3/2^+$ and E1 to $7/2^-$.		
351.106 19	5/2+,7/2+		В	J^{π} : E1 to $5/2^{-}$ and E2 to $9/2^{+}$.		
375.401 24	5/2-,7/2-		В	J ^{π} : M1 transition to $7/2^{-}$ and M1+E2 to $5/2^{-}$.		
381.75 ^{<i>a</i>} 11	17/2+	77.6 [@] ps 28	CdE	XREF: d(382). J^{π} : E2 to 13/2 ⁺ . The population pattern in the in-beam studies establishes this as the 17/2 ⁺ member of the indicated band.		
382.89 8	3/2-,(1/2)-		Βd	XREF: d(382). J^{π} : L=1 in (d,t). Strong population in (d,t) suggests that this is the 3/2 ⁻ member of the 1/2[530] band.		
408.533 <i>14</i> 423.33 <i>4</i>	3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ ,7/2 ⁻		B B D	J^{π} : E1 transitions to $3/2^{-}$ and $5/2^{-}$ states. J^{π} : L=3 in (d,t). The multipolarities of the two γ 's tentatively placed from this level are not consistent with the proposed J^{π} value. See the comment regarding these γ 's in the ¹⁵⁵ Ho ε Decay data set.		
		Ø		E(level): Level population is uncertain in ¹⁵⁵ Ho ε decay.		
436.57 [°] 11	$\frac{13}{2^{-}}$	9.3 ^w ps 15	CE			
440.341 <i>14</i> 448.98 <i>3</i>	5/2 ⁺ ,7/2 ⁺ 1/2 ⁻ ,3/2 ⁻		B D B D	J^{-1} : E1 transitions to $S/2$ and $J/2$ states. J^{π} : L=1 in (d,t). From Coriolis-mixing calculations, 1976St06 assign this as the $1/2^{-1}$ member of $1/2[530]$.		
456.218 24	5/2-		ΒD	J^{π} : M1 transitions to $3/2^{-}$ and $5/2^{-}$, L=3,4 in (d,t).		
483.73 ^k 3	5/2+		ΒD	J^{π} : L=2 in (d,t), E1 to 7/2 ⁻ . Assigned as the 5/2 ⁺ member of the 1/2[400] band by 1976St06.		
515 2	$(1/2^+)$		D	J^{π} : L=(0) in (d,t).		
547 2 557.550 <i>19</i>	5/2-,7/2-		D B D	J ^{π} : E1 transitions to 5/2 ⁺ and 5/2 ⁺ ,7/2 ⁺ states suggest J ^{π} =3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ . L=2.3 in (d.t) rules out 3/2 ⁻ , 1976St06 propose 5/2 ⁻ .		
569.11 6	3/2-,5/2-,7/2-		В	J^{π} : E1 transition to $5/2^+$.		
577.77 ^{<i>a</i>} 10 594 2	13/2-		C E D			
645.2 ^e 3	15/2+		E			
656 2	$(3/2^+, 5/2^+)$		D	$J^{*}: L=(2) \text{ in } (d,t).$		
657.78 <mark>°</mark> 13	$15/2^{-}$	4.85 🖤 ps 55	СЕ			

Continued on next page (footnotes at end of table)

¹⁵⁵Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
702.73 20			B D	J^{π} : from Coriolis-mixing calculations, 1976St06 in (d,t) assign this as the $5/2^{-}$ member of $1/2[530]$.
744.73 ^d 14 752.70 8	21/2 ⁺ 3/2 ⁺ ,5/2 ⁺	7.90 [@] ps 21	C E B	J ^{π} : M1 transition to 3/2 ⁺ ,5/2 ⁺ and E1 to 5/2 ⁻ allows J ^{π} +3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺ .
774 2 803 2	(9/2-,11/2-)		D D	J^{π} : L=(5) in (d,t).
874 2	$(1/2^+)$		D	J^{π} : L=(0) in (d,t).
892.19 ⁿ 24 895 2	$1^{7}/2^{+}$ $(1/2^{-}.3/2^{-})$	8.8° ps 23	C E D	J^{π} : L=(1) in (d.t).
896.49 [°] 13	$(1/2^{-})^{-1}$	2.70 [@] ps 42	СE	
902.06 5 925 2	3/2+,5/2+		B D	J^{π} : E2 to $3/2^+$, $5/2^+$ states, gammas to $3/2^-$ and $5/2^-$ states.
$1004.77^{\circ} 23$ $1031.86^{\circ} 14$	19/2	$2.70^{@}$ ns 28	E C E	
1031.80 <i>14</i> 1033.47 <i>4</i> 1037 <i>2</i> 1061 <i>2</i>	3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ ,7/2 ⁻	2.70 ps 20	B D D	J^{π} : E1 transitions to $3/2^{-}$ and $5/2^{-}$ states. J^{π} : L=3 in (d,t).
1084 2	5/2-,7/2-		D	J^{π} : L=3 in (d,t).
1119 2 1145 2	3/2+ 5/2 7/2-		D D	I^{π} : L=2 3 in (d t)
1150.89 ^b 14	19/2 ⁻	1.18 [@] ps 28	СE	• · · · 2,5 m (0,7).
1207 2			D	
1209.05 ^{<i>a</i>} 17	$25/2^+$ $3/2^+$ $5/2^+$	2.36 ^w ps 21		I^{π} . E1 transitions to $3/2^{-}$ and $5/2^{-}$ states
$1225.08^{h} 23$	$\frac{3}{2}, \frac{3}{2}$ $\frac{21}{2^+}$	5.48 [@] ps 49	C E	J. L1 transitions to $J/2$ and $J/2$ states.
1295 2			D	
1325 2 1419.12 ^c 16	$21/2^{-}$		D E	
1424 2	(9/2-,11/2-)		D	J^{π} : L=(5) in (d,t).
1441 2 1461 86 ^e 24	$5/2^{-},7/2^{-}$		D F	J^{π} : L=3 in (d,t).
1533.65 ^{<i>a</i>} 17	$23/2^{-}$	1.59 [@] ps 28	CE	
1547 2	(9/2-,11/2-)	1	D	J^{π} : L=(5) in (d,t).
1573 2 1625 5			D D	
1649.96 ^{<i>h</i>} 24	25/2+	2.91 [@] ps 21	СE	
1688 2	(11/2 ⁻)		D	J^{π} : L=(5) in (d,t). The strong population of this level in (³ He, α), together with the observation of transitions with similar characteristics in several odd-A Gd isotones suggests that this is the 11/2 ⁻ member of 9/2 ⁻ [514]
1688.0 8	23/2		E	
1699.90 ^b 17	23/2-		E	
1719.0 8	23/2*		E D	
1752.74 ^{<i>d</i>} 19	29/2+	1.07 [@] ps <i>31</i>	СE	
1991.24 ^C 18	25/2 ⁻	-	E	
2012.3 f 3	21/2 ⁺ 25/2 ⁻		E F	
2082.75^a 20	25/2-		E	
2169.4 ^h 5	29/2+	1.46 [@] ps 21	CE	
2292.03 ^b 19	27/2-		E	
2357.74 ^a 21	33/2*		СE	

¹⁵⁵Dy Levels (continued)

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XREF	Comments
2475.63 ^f 21	$29/2^{-}$		СЕ	
2599.56 ^C 20	29/2-		Е	
2601.7 ^e 3	$31/2^{+}$		E	
2688.4 ^{<i>a</i>} 6	29/2-		E	
2784.5 ^h 5	$33/2^{+}$		E	
2911.06 ^b 21	$31/2^{-}$	_	E	
2990.23 ^{<i>f</i>} 23	33/2-	1.09 [@] ps <i>19</i>	CΕ	
3012.04 ^{<i>d</i>} 23	$37/2^+$	396 [@] fs 53	CΕ	
3212.0 [°] 4	$33/2^{-}$		E	
3241.4 ^{<i>a</i>} 8	33/2-		E	
$3256.2^{\circ} 6$	35/21		E	
3304.48 J	25/2 25/2-		E	
$34/3.4^{\circ}$ 3	35/2 27/2+		E	
3481.5 ¹⁰ 5	37/2	0 (10	E	
3556.33 25	37/2	0.64° ps 12	CE	
3710.84 ^a 25	41/2*	265° is 20	CE	$T_{1/2}$: other value: 0.27 ps +/6-24 (1989Em01).
$3/30.1^{\circ}$ 3	37/2 37/2-		E	
3912.1 ⁸ 5	$39/2^{-}$		E	
3951.2 ^e 8	$39/2^+$		E	
4014.6 ^b 5	39/2-		Е	
4180.2^{f} 3	$41/2^{-}$	448 [@] fs 45	СЕ	$T_{1/2}$: other value: 0.56 ps 21 (2013Pe11).
4228.2 ^h 7	$41/2^+$		Е	1/2 1 ()
4315.5 [°] 6	$41/2^{-}$		E	
4453.6 ^d 3	$45/2^{+}$	166 fs 25	СE	$T_{1/2}$: weighted average of 130 fs 40 (1989Em01) and 177 fs 30 (2013Pe19).
4471.6 ^a 11	$41/2^{-}$		E	
4573.9 <mark>8</mark> 5	43/2-		E	
4634.8 ^b 6	43/2-		E	
4685.9 ^e 9	43/2+	e	E	
4865.8 ^J 3	45/2-	223 ^w fs 32	CE	$T_{1/2}$: other value: 210 fs <i>110</i> (1989Em01).
49/4.70 6	45/2-		E	
5011.1 ⁿ 9	45/2+		E	
5157.6 ^d 15	45/2 40/2+	150@ 5 21	E	
5238.1° 3	49/2	159° is 31	C E	$T_{1/2}$: other value: 50 fs +30-20 (1989Em01).
$5209.10 \ J$	47/2		E	
5351.9° 7 5459 4° 11	47/2 47/2+		E	
$5610.2f_{3}$	10/2-	157 [@] fs 24		T ₁ α ; other value: 170 fs $\pm 30-60$ (1080Em01)
5707.4 [°] 7	$\frac{49}{2^{-}}$	157 15 24	E	$1/2$. once value. $1/0.13 \pm 30 = 00$ (1909Emot).
5896.8 ^{<i>a</i>} 16	49/2-		E	
6061.8 <mark>8</mark> 5	51/2-		E	
6067.4 ^d 3	$53/2^{+}$	0.13 ps 5	E	
6098.6 ^b 7	$51/2^{-}$		Е	
6272.4 ^e 12	$51/2^+$		E	
6405.2 ^{<i>f</i>} 4	53/2-	128 [@] fs 19	CE	$T_{1/2}$: other value: 180 fs 40 (1989Em01).
6506.4 [°] 8	53/2-		E	
6684.5 ^{<i>a</i>} 16	53/2 ⁻		E	
0092.2° J	33/2		Ľ	

¹⁵⁵Dy Levels (continued)

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XREF	Comments
6928.5 ^b 9	55/2-		Е	
6942.9 <mark>d</mark> 4	57/2+	0.15 ps 4	Е	
7241.4 ^{<i>f</i>} 4	, 57/2 ⁻	$116^{@}$ fs 17	СЕ	$T_{1/2}$: other value: <70 fs (1989Em01).
7365.3 ^c 9	57/2-		Е	
7504.5 ^a 19	$57/2^{-}$		E	
7778.0 ^g 7	59/2-		E	
7816.0 ⁰ 10	59/2-		E	
7869.9 ^d 11	$61/2^+$	0.12 ps +76-7	E	
8109.7 [†] 4	$61/2^{-}$	110 [@] fs 41	CΕ	$T_{1/2}$: other value: 160 fs 80 (1989Em01).
8279.5 [°] 11	61/2-		E	
8696.4 ⁸ 9	63/2-		E	
8756.90 12	63/2-		E	
8849.1 ^{<i>a</i>} 12	$65/2^+$	0.06 ps +28-3	E	
9008.0 ^J 4	65/2-	0.12 ps +7-10	E	
9249.9° 12	$65/2^{-}$		E	
9024.48 14	07/2		E	
9/51.8° 13	67/2	10.0	E	
9882.1^{a} 16	69/2 ⁺	≤0.8 ps	E	$I_{1/2}$: value is not corrected for the feeding time.
9965.3^{J} 4	$\frac{69}{2^{-}}$	≤0.15 ps	E	
10272.9° 10 10520.6 <mark>8</mark> 14	$\frac{09/2}{71/2^{-}}$	>1.0 ns	E F	
10802.8^{b} 16	$71/2^{-}$	≥1.0 ps	F	
$10060 1^{d} 10$	73/2+		E E	
10909.1 I I = 10072 2 f 11	73/2	0.4 ps + 14.1	E	
10972.5° 11	13/2 77/0+	0.4 ps + 14 - 1	E	
11137° 11349 9° 19	73/2-		E F	
11450.6 ⁸ 18	$75/2^{-}$	>1.0 ps	Ē	
11905.8 <mark>b</mark> 19	75/2-	_ 1	Е	
11972.0 ^{<i>f</i>} 12	77/2-	<0.14 ps	Е	
12401 ⁸	79/2-		Е	
12477? ^C	$77/2^{-}$		E	
12983.0 ^{<i>f</i>} 16	$81/2^{-}$	0.44 ps +24-17	Е	$T_{1/2}$: value is not corrected for the feeding time.
13067? ^b	79/2-		Е	
13344? ⁸	83/2-		E	
14040.0 ^{<i>f</i>} 19	85/2-		E	
14469 ⁸	87/2-		E	
15159.0 ^J 21	89/2-		E	
15637? ⁸	91/2		E	
16347?	93/2-		E	
X ^ℓ	J		E	Additional information 2. J^{π} : from Cranked Relativistic Mean-Field Theory calculations, 1998Af02 suggest J=75/2 ⁻ .
909.6+x ⁱ 9	J+2		Е	
1862.1+x ⁱ 10	J+4		Е	
2860.2+x ⁱ 10	J+6		Е	
3905.2+x ⁱ 11	J+8		Е	
4996.1+x ⁱ 11	J+10		Е	
6133.4+x ⁱ 11	J+12		Е	

¹⁵⁵Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	J ^π ‡	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
7317.0+x ⁱ 11	J+14	Е	11145.8+x ^{<i>i</i>} 12	J+20	Е	15390.6+x ⁱ 12	J+26	Е
8546.7+x ⁱ 11	J+16	Е	12514.5+x ⁱ 12	J+22	Е	16897.9+x ⁱ 13	J+28	Е
9823.0+x ⁱ 12	J+18	E	13929.5+x ⁱ 12	J+24	Е	18449.7+x ⁱ 14	J+30	E

[†] Values computed from a least-squares fit to the listed γ -ray energies. χ^2 norm = 2.3 greater than χ^2 critical = 1.3.

[‡] For those levels seen only in the heavy-ion reactions, the values are those proposed by 1994V102 and are based on DCO ratios, $\gamma(\theta)$, and the systematics of similar bands in this mass region. Specific arguments for the J^{π} assignments to such levels are not given here.

[#] Unless otherwise noted, the $T_{1/2}$ values are those reported by 1989Em01 from Doppler-shift attenuation measurements.

[@] From 2013Pe19 measured by recoil distance Doppler-shift method or by Doppler-shift attenuation method.

& Band(a): Ground-state band, signature=-1/2 portion. Conf=3/2(521).

^{*a*} Band(A): Ground-state band. Signature=+1/2 portion. Conf=3/2(521). Band is crossed by AB, becomes EAB and at higher energies is crossed by A_pB_p.

^b Band(B): Band built on the 11/2[505] orbital, signature=-1/2.

^c Band(C): Band built on the 11/2[505] orbital, signature=+1/2 band is crossed by AB and, at higher energies, by A_pB_p.

^{*d*} Band(D): Strongly mixed $i_{13/2}$ -related band, signature=+1/2. Dominant component at low energies is 1/2[660]. Band crossings with BC and A_pB_p are proposed to occur in the same energy region. 1984Ha39 report an average g-factor of 0.23 6 for the 17/2⁺ through the 29/2⁺ states in this band, assuming an intrinsic quadrupole moment of 4.5 eb for the band.

^{*e*} Band(E): Strongly mixed $i_{13/2}$ -related band, signature=-1/2. Dominant component at low energies is 1/2[660]. Band crossings with AD and A_pB_p are proposed to occur in the same energy region.

^{*f*} Band(F): Three-neutron-quasiparticle negative-parity band, signature=+1/2. Proposed configuration is EAB. Band is crossed by A_pB_p at higher energies and is seen to approach termination at the highest spins.

^g Band(G): Three-neutron-quasiparticle negative-parity band, signature=-1/2. Proposed configuration is FAB. Band is crossed by A_pB_p at higher energies and is seen to approach termination at the highest spins.

^h Band(H): Positive-parity band, signature=+1/2. Proposed " β vibration" based on ν i_{13/2} (1994Vl02).

^{*i*} Band(I): SD band. Proposed configuration is $\pi 6^4 \nu 7^3$, with four $i_{13/2}$ proton and three $j_{15/2}$ intruder neutron orbitals involved (1996Fi08). For other properties of this band, see the (HI,xn γ) data set.

- j Band(J): 3/2[402] band.
- ^k Band(K): 1/2[400] band.
- l Band(L): 3/2[532] band.
- ^m Band(M): 5/2[523] band.

	Adopted Levels, Gammas (continued)								
							$\gamma(^{155}I)$	Dy)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger} &	$\alpha^{@}$	Comments
39.384	5/2-	39.39 2	100	0.0	3/2-	M1+E2	0.222 4	11.9 3	$\alpha(L)=9.26\ 21;\ \alpha(M)=2.13\ 5$ $\alpha(N)=0\ 484\ 12;\ \alpha(O)=0\ 0629\ 14;\ \alpha(P)=0\ 00183\ 3$
86.767	7/2-	47.37 2	100 11	39.384	5/2-	M1+E2	0.115 10	4.03 14	B(M1)(W.u.)=0.00797 20; B(E2)(W.u.)=132 6 α (L)=3.14 11; α (M)=0.702 25 α (N)=0.161 6; α (O)=0.0227 7; α (P)=0.001093 16
		86.75 2	34 2	0.0	3/2-	E2		4.63	B(M1)(W.u.)=0.027 +6-4; B(E2)(W.u.)=82 +25-18 α (K)=1.567 22; α (L)=2.36 4; α (M)=0.566 8 α (N)=0.1269 18; α (O)=0.01515 22; α (P)=6.50×10 ⁻⁵ 10
132.195	9/2+	45.38 5	100	86.767	7/2-	E1		0.467	B(E2)(W.u.)=104 +26-18 α (L)=0.366 6; α (M)=0.0806 12 α (N)=0.0180 3; α (O)=0.00230 4; α (P)=8.14×10 ⁻⁵ 12
136.320	5/2-	49.52 5	1.5 3	86.767	7/2-	M1+E2	0.11 3	3.4 3	B(E1)(W.u.)= $3.35 \times 10^{-5} + 21 - 19$ α (L)= $2.68 \ 24; \ \alpha$ (M)= $0.60 \ 6$ α (N)= $0.138 \ 13; \ \alpha$ (O)= $0.0195 \ 15; \ \alpha$ (P)= $0.000961 \ 15$
		96.91 2	21 1	39.384	5/2-	M1+E2	0.22 4	2.64	B(M1)(W.u.)=0.005 +6-3; B(E2)(W.u.)=12 +18-8 α (K)=2.16 4; α (L)=0.375 20; α (M)=0.084 5 α (N)=0.0192 11; α (O)=0.00272 12; α (P)=0.0001335 24 P(M)(W.u.)=0.000 65 P(D)(W.u.)=0.0001335 24
		136.30 2	100 5	0.0	3/2-	M1+E2	0.195 24	0.987	B(M1)(W.u.)=0.009 +9-5; B(E2)(W.u.)=23 +31-14 α (K)=0.822 12; α (L)=0.1290 25; α (M)=0.0285 6 α (N)=0.00658 13; α (O)=0.000949 17; α (P)=5.08×10 ⁻⁵ 8 (N)=0.00558 13; α (O)=0.000949 17; α (P)=5.08×10 ⁻⁵ 8
154.48	13/2+	22.15 ^a 5	100	132.195	9/2+	[E2]		2.39×10 ³ 5	B(M1)(w.u.)=0.015 +18-8; B(E2)(w.u.)=16 +19-9 $\alpha(L)=1.84\times10^3 4; \alpha(M)=437 8$
202.413	3/2-	66.12 <i>3</i>	4.8 2	136.320	5/2-	M1+E2	0.42 5	8.74 22	$\alpha(N)=97.2 \ 18; \ \alpha(O)=11.32 \ 21; \ \alpha(P)=0.00350 \ 7 \ \alpha(K)=6.01 \ 16; \ \alpha(L)=2.11 \ 24; \ \alpha(M)=0.49 \ 6 \ \alpha(N)=0.111 \ 13; \ \alpha(O)=0.0143 \ 15; \ \alpha(P)=0.000371 \ 11$
		163.02 2	29 2	39.384	5/2-	M1(+E2)	<1.7	0.55 5	B(M1)(W.u.)=0.007 +8-4; B(E2)(W.u.)= 1.5×10^2 +19-8 α (K)=0.43 8; α (L)=0.098 25; α (M)=0.0225 64 α (N)=0.0051 14; α (O)=0.00069 15; α (P)= 2.46×10^{-5} 68 P(M)(W.u.)= 12^{-4} (C) = 0.00069 15; α (P)= 2.46×10^{-5} 68
		202.41 2	100 3	0.0	3/2-	M1		0.328	B(M1)(W.u.)=8×10 ⁻⁴ +16-4; B(E2)(W.u.)=48 +48-30 B(M1)(W.u.)=0.006 +7-3 α (K)=0.277 4; α (L)=0.0403 6; α (M)=0.00884 13
224.532	7/2-	22.15 ^{<i>a</i>} 5		202.413	3/2-	[E2]		2.39×10 ³ 5	$\alpha(N)=0.00205 \ 3; \ \alpha(O)=0.000300 \ 5; \ \alpha(P)=1.718\times10^{-5} \ 24$ $\alpha(L)=1.84\times10^3 \ 4; \ \alpha(M)=437 \ 8$ $\alpha(N)=97.2 \ 18; \ \alpha(O)=11.32 \ 21; \ \alpha(P)=0.00350 \ 7$ Mult., δ : from ce data in ¹⁵⁵ Ho ε decay, mult=M1+E2 with $\delta=0.07 \ +3-2$ is deduced. This is inconsistent with the adopted J^{π} values for the two levels involved. See the
		88.26 5	0.94 22	136.320	5/2-	M1		3.43	$\alpha(K)=2.88$ 4; $\alpha(L)=0.425$ 6; $\alpha(M)=0.0935$ 14 $\alpha(N)=0.0216$ 3; $\alpha(O)=0.00316$ 5; $\alpha(P)=0.000180$ 3
		92.22 6	1.7 6	132.195	9/2+	[E1]		0.383	$\alpha(K)=0.3195; \alpha(L)=0.000105; \alpha(M)=0.0001005$ $\alpha(K)=0.3195; \alpha(L)=0.05017; \alpha(M)=0.0110016$ $\alpha(N)=0.002494; \alpha(O)=0.0003385; \alpha(P)=1.455 \times 10^{-5}21$

 \neg

From ENSDF

¹⁵⁵₆₆Dy₈₉-7

						Adopt	ed Levels, Ga	<mark>mmas</mark> (continue	(b:d)
							$\gamma(^{155}\text{Dy})$ (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger} &	α [@]	Comments
224.532	7/2-	137.76 4	14 <i>3</i>	86.767 7	7/2-	M1		0.961	$\alpha(K)=0.810 \ 12; \ \alpha(L)=0.1186 \ 17; \ \alpha(M)=0.0261 \ 4$
		185.13 2	100 5	39.384 5	5/2-	M1		0.420	$\alpha(N)=0.00603 9; \alpha(O)=0.000882 13; \alpha(P)=5.04\times10^{-5} 7$ $\alpha(K)=0.354 5; \alpha(L)=0.0516 8; \alpha(M)=0.01134 16$
		224.55 2	6.7 22	0.0 3	3/2-	E2		0.1613	α (N)=0.00262 4; α (O)=0.000384 6; α (P)=2.20×10 ⁻⁵ 3 α (K)=0.1126 16; α (L)=0.0377 6; α (M)=0.00880 13
225 285	9/2-	138 46 4	100 10	86 767 7	7/2-	F2(+M1)	>2.4	0 843 15	$\alpha(N)=0.00199$ 3; $\alpha(O)=0.000254$ 4; $\alpha(P)=5.52\times10^{-6}$ 8 $\alpha(K)=0.49$ 3; $\alpha(I)=0.272$ 13; $\alpha(M)=0.064$ 4
223.205	772	130.10 7	100 10	66.767 7	//2	D2(1111)		0.015 15	$\alpha(N)=0.0145 \ 8; \ \alpha(O)=0.00179 \ 8; \ \alpha(P)=2.26\times10^{-5} \ 22$ B(E2)(W.u.)=1090 +440–140 value exceeds RUL(E2)=300 by a factor of 3.4; RUL(E2) suggests $\delta(E2/M1)$ should be about <0.6.
		185.89 2	39 <i>3</i>	39.384 5	5/2-	E2		0.302	α (K)=0.197 3; α (L)=0.0810 12; α (M)=0.0190 3 α (N)=0.00430 6; α (O)=0.000540 8; α (P)=9.25×10 ⁻⁶ 13 B(F2)(Wu)=114 + 36-23
234.33	11/2-	9.1 <i>1</i> 79.72 <i>5</i>	0.52 <i>6</i> 47 <i>4</i>	225.285 9 154.48 1	9/2 ⁻ 13/2 ⁺	M1+E2 E1+M2	0.0189 <i>21</i> 0.23 <i>3</i>	≈530 3.3 7	$B(L2)(W,u)=2.4\times10^{-6} 5; B(E2)(W,u)=0.0042 +22-16 a(K)=2.4 5; a(L)=0.66 16; a(M)=0.16 4 a(N)=0.036 9; a(O)=0.0051 12; a(P)=0.00024 6 D(V)=0.0120 + 46 22 a(V)=0.0120 + 46 a(V)=0.0120 $
		102.16 <i>3</i>	100 12	132.195 9	9/2+	E1+M2	0.45 6	3.8 8	B(E1)(W.u.)=3.1×10 ⁻⁹ +8-6; B(M2)(W.u.)=0.120 +46-33 α (K)=2.8 6; α (L)=0.74 16; α (M)=0.17 4 α (N)=0.040 9; α (O)=0.0057 13; α (P)=0.00028 6
		147.63 6	82 12	86.767 7	7/2-	[E2]		0.666	B(E1)(W,u.)= 2.8×10^{-9} +7-5; B(M2)(W,u.)= 0.25 +9-7 B(E2)(W,u.)= 0.0020 +6-4 α (K)= 0.388 6; α (L)= 0.215 3; α (M)= 0.0509 8
240.196	3/2+	37.80 4	10.7 20	202.413 3	3/2-	(E1)		0.778	$\begin{aligned} \alpha(N) = 0.01146 \ 17; \ \alpha(O) = 0.001412 \ 20; \ \alpha(P) = 1.721 \times 10^{-3} \ 25 \\ B(E1)(W.u.) = 8 \times 10^{-4} + 10 - 5 \\ \alpha(L) = 0.609 \ 9; \ \alpha(M) = 0.1347 \ 20 \end{aligned}$
		103.89 2	17.4 9	136.320 5	5/2-	E1		0.279	$\begin{aligned} \alpha(N) = 0.0300 \ 5; \ \alpha(O) = 0.00375 \ 6; \ \alpha(P) = 0.0001244 \ 18 \\ B(E1)(W.u.) = 7 \times 10^{-5} + 8 - 4 \\ \alpha(K) = 0.233 \ 4; \ \alpha(L) = 0.0360 \ 5; \ \alpha(M) = 0.00788 \ 11 \end{aligned}$
		200.86 7	12.2 5	39.384 5	5/2-	E1		0.0481	$\alpha(N)=0.00179 \ 3; \ \alpha(O)=0.000244 \ 4; \ \alpha(P)=1.080\times10^{-5} \ 16$ B(E1)(W.u.)=6×10 ⁻⁶ +8-4 $\alpha(K)=0.0406 \ 6; \ \alpha(L)=0.00588 \ 9; \ \alpha(M)=0.001286 \ 18$ $\alpha(N)=0.000294 \ 5; \ \alpha(O)=4.14\times10^{-5} \ 6; \ \alpha(P)=2.05\times10^{-6} \ 3$
		240.19 2	100 5	0.0 3	3/2-	E1		0.0302	$\begin{array}{l} a(1)=0.000294 \ 3, \ a(0)=4.14\times10^{-5} \ 3, \ a(1)=2.05\times10^{-5} \ 3 \\ B(E1)(W.u.)=3.1\times10^{-5} \ +37-16 \\ \alpha(K)=0.0255 \ 4; \ \alpha(L)=0.00066 \ 6; \ \alpha(M)=0.000799 \ 12 \\ \alpha(K)=0.000182 \ 2; \ \alpha(D)=2.50\times10^{-5} \ 4; \ \alpha(D)=1.218\times10^{-6} \ 10 \\ \end{array}$
247.791	5/2+	111.47 3	7.1 5	136.320 5	5/2-	E1		0.231	$B(E1)(W.u.) = 7 \times 10^{-6} + 8 - 4$ $\alpha(K) = 0.193 \ 3; \ \alpha(L) = 0.0295 \ 5; \ \alpha(M) = 0.00647 \ 9$ $\alpha(K) = 0.001472 \ 2k = (0) \ 0.000202 \ 3 = (D) \ 0.05 \times 10^{-6} \ 12$
		115.5 <i>1</i>	51 2	132.195 9	9/2+	E2		1.597	$\alpha(N)=0.00147227; \alpha(O)=0.0002023; \alpha(P)=9.05\times10^{\circ}73$ $\alpha(K)=0.77211; \alpha(L)=0.63510; \alpha(M)=0.151622$ $\alpha(N)=0.03405; \alpha(O)=0.004126; \alpha(P)=3.26\times10^{-5}5$ $B(E2)(W.u.)=1.6\times10^{2}+19-8$

 ∞

 $^{155}_{66}\mathrm{Dy}_{89}$ -8

)					
						$\underline{\gamma}(1)$	⁵⁵ Dy) (continu	ied)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	$\delta^{\dagger \&}$	α [@]	Comments
247.791	5/2+	161.08 8	16 <i>3</i>	86.767	7/2-	[E1]		0.0862	$B(E1)(W.u.)=5 \times 10^{-6} + 6 - 3$
		208.41 2	100 5	39.384	5/2-	E1		0.0437	$\alpha(K)=0.0726 \ 11; \ \alpha(L)=0.01069 \ 15; \ \alpha(M)=0.00234 \ 4$ $\alpha(N)=0.000534 \ 8; \ \alpha(O)=7.46\times10^{-5} \ 11; \ \alpha(P)=3.58\times10^{-6} \ 5$ $\alpha(K)=0.0369 \ 6; \ \alpha(L)=0.00533 \ 8; \ \alpha(M)=0.001165 \ 17$ $\alpha(N)=0.000266 \ 4; \ \alpha(O)=3.76\times10^{-5} \ 6; \ \alpha(P)=1.87\times10^{-6} \ 3$
		247.77 2	96 <i>5</i>	0.0	3/2-	E1		0.0279	B(E1)(W.u.)=1.4×10 ⁻⁶ +18-8 B(E1)(W.u.)=8×10 ⁻⁶ +10-4 α (K)=0.0236 4; α (L)=0.00337 5; α (M)=0.000737 11
325.406	5/2-,(3/2)-	100.84 6	1.7 6	224.532	7/2-	[M1,E2]		2.48 15	α (N)=0.0001688 24; α (O)=2.39×10 ⁻⁵ 4; α (P)=1.221×10 ⁻⁶ 18 α (K)=1.53 44; α (L)=0.73 45; α (M)=0.17 11
		123.10 6	0.9	202.413	3/2-	(M1)		1.323	$\alpha(N)=0.039\ 25;\ \alpha(O)=0.0049\ 28;\ \alpha(P)=8.4\times10^{-5}\ 39$ $\alpha(K)=1.114\ 16;\ \alpha(L)=0.1634\ 23;\ \alpha(M)=0.0359\ 5$ $\alpha(N)=0.00820\ 12;\ \alpha(O)=0.001215\ 17;\ \alpha(D)=6.04\times10^{-5}\ 10$
		189.09 2	9.1 9	136.320	5/2-	M1		0.396	$\alpha(\text{N})=0.00850\ 12;\ \alpha(\text{O})=0.001215\ 17;\ \alpha(\text{P})=0.94\times10^{-10}$ $\alpha(\text{K})=0.334\ 5;\ \alpha(\text{L})=0.0487\ 7;\ \alpha(\text{M})=0.01069\ 15$
		238.54 9	2.3 9	86.767	7/2-	E2(+M1)		0.17 4	α (N)=0.00247 4; α (O)=0.000362 5; α (P)=2.07×10 ⁻⁵ 3 α (K)=0.135 42; α (L)=0.0277 21; α (M)=0.0063 7
		286.02 2	23 1	39.384	5/2-	M1		0.1283	α (N)=0.00143 <i>14</i> ; α (O)=0.000196 <i>7</i> ; α (P)=7.8×10 ⁻⁶ <i>32</i> α (K)=0.1083 <i>16</i> ; α (L)=0.01562 <i>22</i> ; α (M)=0.00343 <i>5</i>
		325.40 2	100 5	0.0	3/2-	M1		0.0909	$\alpha(N)=0.00079371; \alpha(O)=0.000116277; \alpha(P)=6.69\times10^{\circ}70$ $\alpha(K)=0.076871; \alpha(L)=0.0110476; \alpha(M)=0.0024274$
240.002	5/0+	101 24 7	5 9 20	247 701	5/2+			2 4 4 15	$\alpha(N)=0.000560 \ 8; \ \alpha(O)=8.21\times10^{-5} \ 12; \ \alpha(P)=4.73\times10^{-6} \ 7$
349.002	5/2	101.34 /	5.8 20	247.791	5/2	[NII,E2]		2.44 13	$\alpha(\mathbf{K})=1.51\ 43;\ \alpha(\mathbf{L})=0.72\ 44;\ \alpha(\mathbf{M})=0.17\ 11$ $\alpha(\mathbf{N})=0.038\ 24;\ \alpha(\mathbf{O})=0.0048\ 27;\ \alpha(\mathbf{P})=8.3\times10^{-5}\ 38$
		108.79 2	41 2	240.196	$3/2^{+}$	M1		1.88	$\alpha(K)=1.584\ 23;\ \alpha(L)=0.233\ 4;\ \alpha(M)=0.0511\ 8$
		124.54 5	28 1	224.532	7/2-	E1		0.1715	$\alpha(N)=0.01183\ 17;\ \alpha(O)=0.001730\ 25;\ \alpha(P)=9.87\times10^{-5}\ 14$ $\alpha(K)=0.1438\ 21;\ \alpha(L)=0.0217\ 3;\ \alpha(M)=0.00476\ 7$
		146.57 2	61 7	202.413	3/2-	E1		0.1109	$\alpha(N)=0.001082\ 16;\ \alpha(O)=0.0001493\ 21;\ \alpha(P)=6.84\times10^{-5}\ 10$ $\alpha(K)=0.0932\ 13;\ \alpha(L)=0.01385\ 20;\ \alpha(M)=0.00303\ 5$ $\alpha(N)=0.000601\ 10;\ \alpha(O)=0.61\times10^{-5}\ 14,\ \alpha(P)=4.54\times10^{-6}\ 7$
		212.70 2	38 2	136.320	5/2-	E1+M2	0.12 +3-5	0.062 14	$\alpha(N)=0.000091 10; \alpha(O)=9.01\times10^{-1} 14; \alpha(P)=4.54\times10^{-7} 14; \alpha(N)=0.00187 51$ $\alpha(N)=4.3\times10^{-4} 12; \alpha(O)=6.1\times10^{-5} 17; \alpha(P)=3.12\times10^{-6} 88$
		262.23 3	100 11	86.767	7/2-	E1		0.0241	$\alpha(N)=4.5\times10^{-12}, \alpha(O)=0.1\times10^{-17}, \alpha(1)=5.12\times10^{-6}$ 88 $\alpha(K)=0.0204 \ 3; \alpha(L)=0.00291 \ 4; \alpha(M)=0.000635 \ 9$ $\alpha(N)=0.0001457 \ 21; \alpha(O)=2.07\times10^{-5} \ 3; \alpha(P)=1.063\times10^{-6} \ 15$
		309.65 ^b 4	86 ^b 8	39.384	5/2-	E1		0.01590	$\alpha(K) = 0.01347 \ I9; \ \alpha(L) = 0.00190 \ 3; \ \alpha(M) = 0.000415 \ 6 \\ \alpha(N) = 9.52 \times 10^{-5} \ I4; \ \alpha(O) = 1.360 \times 10^{-5} \ I9; \ \alpha(P) = 7.12 \times 10^{-7} \\ I0$
		348.99 <i>3</i>	62 <i>3</i>	0.0	3/2-	E1		0.01186	$\alpha(K)=0.01006\ 14;\ \alpha(L)=0.001410\ 20;\ \alpha(M)=0.000308\ 5$
351.106	5/2+,7/2+	218.93 2	100 5	132.195	9/2+	E2		0.1753	$\alpha(N) = \frac{10}{10} \times 10^{-5} \frac{10}{10}; \ \alpha(O) = 1.012 \times 10^{-5} \frac{15}{15}; \ \alpha(P) = 5.37 \times 10^{-7} \frac{8}{10} \times 10^{-7} \frac{10}{10}; \ \alpha(L) = 0.0417 \frac{10}{10}; \ \alpha(M) = 0.00974 \frac{14}{10} \times 10^{-6} \frac{10}{10} \times $
		264.35 14	11.4 18	86.767	7/2-	[E1]		0.0236	$\alpha(K) = 0.0200 \ 3; \ \alpha(L) = 0.00285 \ 4; \ \alpha(M) = 0.000622 \ 9$
		311.85 <i>3</i>	38 4	39.384	5/2-	E1		0.01562	$\alpha(N)=0.000142720; \ \alpha(O)=2.03\times10^{-5}3; \ \alpha(P)=1.043\times10^{-6}15$ $\alpha(K)=0.0132419; \ \alpha(L)=0.001873; \ \alpha(M)=0.0004086$

Adopted Levels, Gammas (continued)									
						$\gamma(^{15}$	⁵ Dy) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger} &	α [@]	Comments
									$\alpha(N)=9.35\times10^{-5} \ 13; \ \alpha(O)=1.336\times10^{-5} \ 19; \ \alpha(P)=7.00\times10^{-7}$
375 401	5/2- 7/2-	150.00.6	8 2	225 285	0/2-				10
575.101	5/2 ,7/2	288.64 4	100 9	86.767	$7/2^{-}$	M1		0.1252	$\alpha(K)=0.1057 \ 15; \ \alpha(L)=0.01524 \ 22; \ \alpha(M)=0.00334 \ 5$
		226.02.2	70.0	20.204	510-		10.12.6	0.065.14	α (N)=0.000773 11; α (O)=0.0001134 16; α (P)=6.53×10 ⁻⁶ 10
		336.02 3	79.9	39.384	5/2	M1+E2	1.0 + 13 - 6	0.065 14	$\alpha(\mathbf{K})=0.053\ 13;\ \alpha(\mathbf{L})=0.0092\ 7;\ \alpha(\mathbf{M})=0.0020\ 72$ $\alpha(\mathbf{N})=0.00047\ 3;\ \alpha(\mathbf{C})=6\ 7\times10^{-5}\ 7;\ \alpha(\mathbf{P})=3\ 11\times10^{-6}\ 90$
381.75	$17/2^{+}$	227.3 1	100	154.48	$13/2^{+}$	E2		0.1550	$\alpha(K)=0.1086 \ 16; \ \alpha(L)=0.0359 \ 5; \ \alpha(M)=0.00838 \ 12$
									α (N)=0.00190 3; α (O)=0.000243 4; α (P)=5.34×10 ⁻⁶ 8
382 89	$3/2^{-}(1/2)^{-}$	382 88 14	100	0.0	3/2-	M1		0.0592	B(E2)(W.u.)=210 8 $\alpha(K)=0.0501.7; \alpha(L)=0.00716.10; \alpha(M)=0.001568.22$
502.07	5/2 ,(1/2)	502.00 17	100	0.0	5/2	1011		0.0372	$\alpha(R) = 0.000363 \ 5; \ \alpha(O) = 5.32 \times 10^{-5} \ 8; \ \alpha(P) = 3.08 \times 10^{-6} \ 5$
408.533	3/2+,5/2+	160.76 4	76 15	247.791	5/2+	M1(+E2)		0.56 7	$\alpha(K)=0.41$ 12; $\alpha(L)=0.113$ 37; $\alpha(M)=0.0260$ 92
		206.08.8	15	202 413	3/2-	F1		0.0450	$\alpha(N)=0.0059\ 21;\ \alpha(O)=7.8\times10^{-4}\ 21;\ \alpha(P)=2.32\times10^{-3}\ 95$ $\alpha(K)=0.0380\ 6;\ \alpha(L)=0.00549\ 8;\ \alpha(M)=0.001200\ 17$
		200.08 8	15	202.415	5/2	LI		0.0450	$\alpha(N)=0.000275 \ 4; \ \alpha(O)=3.87\times10^{-5} \ 6; \ \alpha(P)=1.93\times10^{-6} \ 3$
		272.22 2	58 10	136.320	5/2-	E1		0.0220	$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00264 \ 4; \ \alpha(M)=0.000577 \ 8$
		260 10 10	45 0	20.294	5/2-	[17:1]		0.01027	$\alpha(N)=0.0001322 \ 19; \ \alpha(O)=1.88\times10^{-5} \ 3; \ \alpha(P)=9.71\times10^{-7} \ 14$
		509.10 10	43 9	39.364	5/2	[E1]		0.01057	$\alpha(\mathbf{N})=0.00880 \ 15; \ \alpha(\mathbf{L})=0.001229 \ 18; \ \alpha(\mathbf{M})=0.000208 \ 4$ $\alpha(\mathbf{N})=6.16\times10^{-5} \ 9; \ \alpha(\mathbf{O})=8.83\times10^{-6} \ 13; \ \alpha(\mathbf{P})=4.71\times10^{-7} \ 7$
		408.58 2	100 5	0.0	3/2-	E1		0.00815	$\alpha(K) = 0.00692 \ 10; \ \alpha(L) = 0.000962 \ 14; \ \alpha(M) = 0.000210 \ 3$
100.00					z (2)				α (N)=4.82×10 ⁻⁵ 7; α (O)=6.93×10 ⁻⁶ 10; α (P)=3.73×10 ⁻⁷ 6
423.33	5/2-,7/2-	$74.33^{\circ}3$	4.2 4	349.002	5/2 ⁺ 5/2 ⁻				
436.57	13/2-	202.2 1	100 10	234.33	$\frac{3/2}{11/2^{-}}$	[M1]		0.329	α(K)=0.278 4; α(L)=0.0404 6; α(M)=0.00887 13
									α (N)=0.00205 3; α (O)=0.000301 5; α (P)=1.723×10 ⁻⁵ 25
									B(M1)(W.u.)=0.216 + 43 - 30
440.341	5/2+,7/2+	91.35 <i>3</i>	18 <i>3</i>	349.002	5/2+	M1		3.11	$\alpha(K)=2.61$ 4; $\alpha(L)=0.385$ 6; $\alpha(M)=0.0846$ 12
			100.0					0.001	α (N)=0.0196 3; α (O)=0.00286 4; α (P)=0.0001631 23
		200.17 2	100 9	240.196	3/2+	E2		0.236	$\alpha(K)=0.1583\ 23;\ \alpha(L)=0.0598\ 9;\ \alpha(M)=0.01401\ 20$ $\alpha(N)=0.00317\ 5;\ \alpha(Q)=0.000400\ 6;\ \alpha(P)=7.56\times10^{-6}\ 11$
		215.03 2	62 <i>3</i>	225.285	9/2-	E1		0.0402	$\alpha(K)=0.003175, \alpha(C)=0.0040005, \alpha(T)=7.50\times10^{-1}$ $\alpha(K)=0.03405; \alpha(L)=0.004907; \alpha(M)=0.00107115$
									α (N)=0.000245 4; α (O)=3.46×10 ⁻⁵ 5; α (P)=1.733×10 ⁻⁶ 25
		304.02 2	91 6	136.320	5/2-	E1		0.01664	$\alpha(K)=0.01410\ 20;\ \alpha(L)=0.00199\ 3;\ \alpha(M)=0.000435\ 6$
									$\alpha(N) = 9.97 \times 10^{-5} 14; \ \alpha(O) = 1.424 \times 10^{-5} 20; \ \alpha(P) = 7.44 \times 10^{-5} 11$
		353.49 9	44 26	86.767	7/2-	E1		0.01150	α(K)=0.00976 14; α(L)=0.001366 20; α(M)=0.000298 5
110 00	1/2-2/2-	110 00 2	100	0.0	2/2-	M1		0.0202	$\alpha(N)=6.85\times10^{-5}$ 10; $\alpha(O)=9.81\times10^{-6}$ 14; $\alpha(P)=5.21\times10^{-7}$ 8
440.90	1/2 ,3/2	440.90 J	100	0.0	3/2	1111		0.0392	$\alpha(N) = 0.001032 \ 15$ $\alpha(N) = 0.000239 \ 4; \ \alpha(O) = 3.50 \times 10^{-5} \ 5; \ \alpha(P) = 2.03 \times 10^{-6} \ 3$

¹⁵⁵₆₆Dy₈₉-10

	Adopted Levels, Gammas (continued)												
						γ (¹⁵⁵ Dy	y) (continue	<u>d)</u>					
E _i (level)	${f J}^\pi_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [†]	α [@]	Comments					
456.218	5/2-	369.30 10	36 18	86.767	7/2-	(M1)	0.0651	$\alpha(K)=0.0551 \ 8; \ \alpha(L)=0.00788 \ 11; \ \alpha(M)=0.001726 \ 25 \ \alpha(N)=0.000399 \ 6; \ \alpha(Q)=5.86\times10^{-5} \ 9; \ \alpha(P)=3.38\times10^{-6} \ 5$					
		416.84 <i>3</i>	48 4	39.384	5/2-	M1	0.0475	$\alpha(K)=0.000290 4; \ \alpha(C)=0.00572 8; \ \alpha(M)=0.001253 18$ $\alpha(K)=0.000290 4; \ \alpha(O)=4.26\times10^{-5} 6; \ \alpha(P)=2.46\times10^{-6} 4$					
		456.23 4	100 5	0.0	3/2-	M1	0.0376	$\alpha(K) = 0.0318 5; \ \alpha(L) = 0.00452 7; \ \alpha(M) = 0.000989 14$ $\alpha(N) = 0.000229 4; \ \alpha(Q) = 3.36 \times 10^{-5} 5; \ \alpha(P) = 1.95 \times 10^{-6} 3$					
483.73	5/2+	243.55 3	100 13	240.196	3/2+	M1	0.198	$\alpha(K) = 0.1670 \ 24; \ \alpha(L) = 0.0242 \ 4; \ \alpha(M) = 0.00531 \ 8 \ \alpha(N) = 0.001228 \ 18; \ \alpha(Q) = 0.000180 \ 3; \ \alpha(P) = 1.034 \times 10^{-5} \ 15$					
		259.09 7	83 4	224.532	7/2-	E1	0.0249	$\alpha(K) = 0.0211 \ 3; \ \alpha(L) = 0.00300 \ 5; \ \alpha(M) = 0.000656 \ 10 \ \alpha(N) = 0.0001503 \ 21; \ \alpha(O) = 2.13 \times 10^{-5} \ 3; \ \alpha(P) = 1.095 \times 10^{-6} \ 16$					
		397.14 <i>15</i>	61 9	86.767	7/2-	E1	0.00871	$\alpha(K) = 0.00740 \ II; \ \alpha(L) = 0.001029 \ I5; \ \alpha(M) = 0.000224 \ 4$ $\alpha(N) = 5.16 \times 10^{-5} \ 8; \ \alpha(O) = 7.41 \times 10^{-6} \ II; \ \alpha(P) = 3.98 \times 10^{-7} \ 6$					
557.550	$5/2^{-},7/2^{-}$	149.24 4	13 <i>I</i>	408.533	$3/2^+, 5/2^+$								
		206.52 2	52 13	351.106	5/2+,7/2+	E1	0.0447	α (K)=0.0377 6; α (L)=0.00546 8; α (M)=0.001193 17 α (N)=0.000273 4; α (O)=3.85×10 ⁻⁵ 6; α (P)=1.92×10 ⁻⁶ 3					
		309.65 ^b 4	100 ^b 9	247.791	5/2+	E1	0.01590	$\alpha(K)=0.01347 \ 19; \ \alpha(L)=0.00190 \ 3; \ \alpha(M)=0.000415 \ 6$ $\alpha(N)=9.52\times10^{-5} \ 14; \ \alpha(O)=1.360\times10^{-5} \ 19; \ \alpha(P)=7.12\times10^{-7} \ 10$					
		420.97 <i>3</i>	73 4	136.320	5/2-	M1	0.0463	$\alpha(K)=0.0391 6; \ \alpha(L)=0.00558 8; \ \alpha(M)=0.001221 17 \ \alpha(N)=0.000283 4; \ \alpha(Q)=4.15\times10^{-5} 6; \ \alpha(P)=2.40\times10^{-6} 4$					
		518.43 <i>15</i> 557.6 2	16 6 ≤36	39.384 0.0	5/2 ⁻ 3/2 ⁻								
569.11	3/2-,5/2-,7/2-	160.55	37 7	408.533	3/2+,5/2+	[E1]	0.0870	α (K)=0.0732 <i>11</i> ; α (L)=0.01079 <i>16</i> ; α (M)=0.00236 <i>4</i> α (N)=0.000539 <i>8</i> ; α (O)=7.52×10 ⁻⁵ <i>11</i> ; α (P)=3.61×10 ⁻⁶ <i>5</i>					
		321.31 6	100 6	247.791	5/2+	E1	0.01451	α (K)=0.01230 <i>18</i> ; α (L)=0.001732 <i>25</i> ; α (M)=0.000378 <i>6</i> α (N)=8.68×10 ⁻⁵ <i>13</i> ; α (O)=1.240×10 ⁻⁵ <i>18</i> ; α (P)=6.52×10 ⁻⁷ <i>10</i>					
		569.2 2	43 15	0.0	3/2-	E2	0.01090	α (K)=0.00887 <i>13</i> ; α (L)=0.001576 <i>23</i> ; α (M)=0.000353 <i>5</i> α (N)=8.09×10 ⁻⁵ <i>12</i> ; α (O)=1.128×10 ⁻⁵ <i>16</i> ; α (P)=5.02×10 ⁻⁷ <i>7</i>					
577.77 645.2	13/2 ⁻ 15/2 ⁺	352.5 <i>1</i> 263.4 <i>5</i>	100 100 <i>22</i>	225.285 381.75	9/2 ⁻ 17/2 ⁺								
		490.6 5		154.48	$13/2^{+}$								
657.78	15/2-	221.2 <i>I</i>	100 10	436.57	13/2-	[M1]	0.257	$\alpha(K)=0.217 \ 3; \ \alpha(L)=0.0315 \ 5; \ \alpha(M)=0.00692 \ 10$ $\alpha(N)=0.001600 \ 23; \ \alpha(O)=0.000234 \ 4; \ \alpha(P)=1.346\times10^{-5} \ 19$ B(M1)(W u)=0.244 + 32-28					
		423.5 5	45 5	234.33	11/2-	[E2]	0.0236	$\alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00385 \ 6; \ \alpha(M)=0.000873 \ 13 \ \alpha(N)=0.000199 \ 3; \ \alpha(O)=2.71\times10^{-5} \ 4; \ \alpha(P)=1.028\times10^{-6} \ 15 \ B(E2)(W.u.)=46 \ 7$					
702.73		478.2 2	100	224.532	7/2-								
744.73	21/2+	363.0 1	100	381.75	17/2+	E2	0.0366	α (K)=0.0283 4; α (L)=0.00641 9; α (M)=0.001463 21 α (N)=0.000333 5; α (O)=4.47×10 ⁻⁵ 7; α (P)=1.524×10 ⁻⁶ 22 B(E2)(W.u.)=222 6 E _{γ} ,I _{γ} ,Mult.: from (HI,xn γ) dataset.					

From ENSDF

 $^{155}_{66}\mathrm{Dy}_{89}$ -11

	Adopted Levels, Gammas (continued)											
	γ ⁽¹⁵⁵ Dy) (continued)											
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger} &	α [@]	Comments			
752.70	3/2+,5/2+	344.18 8	100 15	408.533	3/2+,5/2+	M1		0.0784	$\alpha(K)=0.0662 \ 10; \ \alpha(L)=0.00950 \ 14; \ \alpha(M)=0.00208 \ 3 \ \alpha(N)=0.000482 \ 7; \ \alpha(O)=7.07 \times 10^{-5} \ 10; \ \alpha(P)=4.08 \times 10^{-6} \ 6$			
		616.2 4	14 5	136.320	5/2-	E1		0.00326	α (K)=0.00278 4; α (L)=0.000378 6; α (M)=8.21×10 ⁻⁵ 12 α (N)=1.89×10 ⁻⁵ 3; α (O)=2.74×10 ⁻⁶ 4; α (P)=1.531×10 ⁻⁷ 22			
		752.5 4		0.0	3/2-							
892.19	17/2+	510.6 5	96 14	381.75	17/2+	[M1+E2]	1.0 [#]	0.0213	$\alpha(K)=0.0177 \ 3; \ \alpha(L)=0.00277 \ 4; \ \alpha(M)=0.000612 \ 9 \\ \alpha(N)=0.0001410 \ 21; \ \alpha(O)=2.02\times10^{-5} \ 3; \ \alpha(P)=1.053\times10^{-6} \ 15 \\ B(M1)(W.u.)=0.0045 \ +21-13; \ B(E2)(W.u.)=9.1 \ +38-28 \\ F \ L : from (HI xn2) \ dataset$			
		737.8 5	100 18	154.48	13/2+	[E2]		0.00588	$\alpha(\text{K})=0.00488\ 7;\ \alpha(\text{L})=0.000786\ 11;\ \alpha(\text{M})=0.0001744\ 25$ $\alpha(\text{N})=4.01\times10^{-5}\ 6;\ \alpha(\text{O})=5.69\times10^{-6}\ 8;\ \alpha(\text{P})=2.80\times10^{-7}\ 4$ B(E2)(W.u.)=3.0 +11-7			
896.49	17/2-	238.7 1	100 8	657.78	15/2-	[M1]		0.209	$\alpha(K)=0.1764\ 25;\ \alpha(L)=0.0256\ 4;\ \alpha(M)=0.00561\ 8$ $\alpha(N)=0.001298\ 19;\ \alpha(O)=0.000190\ 3;\ \alpha(P)=1.092\times10^{-5}\ 16$ B(M1)(W.u.)=0.30 +6-4			
		459.9 <i>1</i>	77 5	436.57	13/2-	[E2]		0.0189	$\alpha_{\gamma,1\gamma}$: from (H1,xny) dataset. $\alpha(K)=0.01509\ 22;\ \alpha(L)=0.00297\ 5;\ \alpha(M)=0.000670\ 10$ $\alpha(N)=0.0001532\ 22;\ \alpha(O)=2.10\times10^{-5}\ 3;\ \alpha(P)=8.37\times10^{-7}\ 12$ B(E2)(W.u.)=80 +15-12			
902.06	3/2+,5/2+	493.3 <i>3</i>	42 4	408.533	3/2+,5/2+	E2		0.01570	E_{γ}, I_{γ} : from (HI,xn γ) dataset. $\alpha(K)=0.01262 \ 18; \ \alpha(L)=0.00240 \ 4; \ \alpha(M)=0.000539 \ 8$ $\alpha(K)=0.0001234 \ 18; \ \alpha(Q)=1.700\times10^{-5} \ 24; \ \alpha(R)=7.05\times10^{-7} \ $			
		654.16 9 699.50 15 765.85 7 902.03 11	69 8 46 4 70 4 100 8	247.791 202.413 136.320 0.0	5/2 ⁺ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻				<i>a</i> (1)=0.0001254 18, <i>a</i> (0)=1.700×10 24, <i>a</i> (1)=7.05×10 10			
1004.77	19/2+	260.4 5 359.3 5 623 1	100 17	744.73 645.2 381.75	21/2 ⁺ 15/2 ⁺ 17/2 ⁺				E_{γ}, I_{γ} : from (HI, xn γ) dataset. E_{γ}, I_{γ} : from (HI, xn γ) dataset. F. L : from (HI xn γ) dataset			
1031.86	17/2-	454.1 <i>I</i>	100	577.77	13/2-	[E2]		0.0196	$\alpha(K)=0.01559\ 22;\ \alpha(L)=0.00309\ 5;\ \alpha(M)=0.000698\ 10$ $\alpha(N)=0.0001595\ 23;\ \alpha(O)=2.18\times10^{-5}\ 3;\ \alpha(P)=8.64\times10^{-7}\ 13$ B(E2)(W.u.)=215 +25-20 E _y ,I _y : from (HI,xny) dataset.			

	Adopted Levels, Gammas (continued)											
						<u>γ(</u>	(¹⁵⁵ Dy)	(continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	δ^{\dagger} &	α [@]	Comments			
1033.47	3/2+,5/2+	897.14 7	94 5	136.320	5/2-	E1		1.53×10 ⁻³	α (K)=0.001309 <i>19</i> ; α (L)=0.0001746 <i>25</i> ; α (M)=3.79×10 ⁻⁵ <i>6</i> α (N)=8.74×10 ⁻⁶ <i>13</i> ; α (O)=1.275×10 ⁻⁶ <i>18</i> ; α (P)=7.29×10 ⁻⁸ <i>11</i>			
		994.10 7	71 6	39.384	5/2-	E1		1.26×10 ⁻³	$\alpha(K) = 0.001079 \ 16; \ \alpha(L) = 0.0001432 \ 20; \ \alpha(M) = 3.11 \times 10^{-5} \ 5$ $\alpha(N) = 7.17 \times 10^{-6} \ 10; \ \alpha(O) = 1.047 \times 10^{-6} \ 15;$ $\alpha(P) = 6.02 \times 10^{-8} \ 9$			
		1033.47 4	100 5	0.0	3/2-	E1		1.17×10^{-3}	$\begin{array}{l} \alpha(\mathrm{K}) = 0.001004 \ 14; \ \alpha(\mathrm{L}) = 0.0001331 \ 19; \ \alpha(\mathrm{M}) = 2.89 \times 10^{-5} \ 4\\ \alpha(\mathrm{N}) = 6.66 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 9.73 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 5.61 \times 10^{-8} \\ 8 \end{array}$			
1150.89	19/2-	254.4 1	100 6	896.49	17/2-	[M1]		0.1759	$\alpha(K)=0.1484\ 21;\ \alpha(L)=0.0215\ 3;\ \alpha(M)=0.00471\ 7$ $\alpha(N)=0.001090\ 16;\ \alpha(O)=0.0001598\ 23;\ \alpha(P)=9.18\times10^{-6}$ I3 B(M1)(W,u,)=0.53 + 16-11			
		493.1 <i>1</i>	93 6	657.78	15/2-	[E2]		0.01571	E _γ ,I _γ : from (HI,xnγ) dataset. α (K)=0.01263 <i>I8</i> ; α (L)=0.00240 <i>4</i> ; α (M)=0.000540 <i>8</i> α (N)=0.0001236 <i>I8</i> ; α (O)=1.702×10 ⁻⁵ 24; α (P)=7.06×10 ⁻⁷ <i>10</i> D(T2)V(L) = 10 ⁻⁷ 10			
1209.05	25/2+	464.3 <i>I</i>	100	744.73	21/2+	E2		0.0184	B(E2)(W.u.)=146 +40-29 E _{γ} ,I _{γ} : from (HI,xn γ) dataset. α (K)=0.01472 21; α (L)=0.00288 4; α (M)=0.000651 10 α (N)=0.0001487 21; α (O)=2.04×10 ⁻⁵ 3; α (P)=8.18×10 ⁻⁷ 12 B(E2)(W.u.)=221 +22-19			
1217 75	3/2+ 5/2+	650 6 2	24 4	557 550	5/2- 7/2-				E_{γ} , I_{γ} ,Mult.: from (HI,xn γ) dataset.			
1217.75	5/2 ,5/2	834.85 9	31 7	382.89	3/2 ⁻ ,(1/2) ⁻	E1		1.76×10 ⁻³	α (K)=0.001504 21; α (L)=0.000201 3; α (M)=4.37×10 ⁻⁵ 7 α (N)=1.007×10 ⁻⁵ 15; α (O)=1.468×10 ⁻⁶ 21; α (P)=8 36×10 ⁻⁸ 12			
		892.2 2	789	325.406	5/2-,(3/2)-	E1		1.55×10^{-3}	$\alpha(K) = 0.001323 \ I9; \ \alpha(L) = 0.0001765 \ 25; \ \alpha(M) = 3.83 \times 10^{-5} \ 6$ $\alpha(N) = 8.83 \times 10^{-6} \ I3; \ \alpha(O) = 1.289 \times 10^{-6} \ I8; $ $\alpha(P) = 7 \ 37 \times 10^{-8} \ II$			
		1015.35 6	87 7	202.413	3/2-	E1		1.21×10 ⁻³	$\alpha(\mathbf{K}) = 0.001038 \ I5; \ \alpha(\mathbf{L}) = 0.0001376 \ 20; \ \alpha(\mathbf{M}) = 2.98 \times 10^{-5} \ 5$ $\alpha(\mathbf{N}) = 6.88 \times 10^{-6} \ I0; \ \alpha(\mathbf{O}) = 1.006 \times 10^{-6} \ I4; $ $\alpha(\mathbf{P}) = 5.79 \times 10^{-8} \ 9$			
		1081.40 6	100 9	136.320	5/2-	E1		1.08×10^{-3}	$\alpha(K) = 0.000924 \ 13; \ \alpha(L) = 0.0001222 \ 18; \ \alpha(M) = 2.65 \times 10^{-5} \ 4$			
		1178.39 4	82 4	39.384	5/2-	E1		9.40×10 ⁻⁴	$\alpha(N)=0.12\times10^{-5} 9; \ \alpha(O)=8.94\times10^{-1} 13; \ \alpha(P)=5.16\times10^{-6} 8 \\ \alpha(K)=0.000791 \ 11; \ \alpha(L)=0.0001043 \ 15; \ \alpha(M)=2.26\times10^{-5} 4 \\ \alpha(N)=5.22\times10^{-6} 8; \ \alpha(O)=7.64\times10^{-7} \ 11; \ \alpha(P)=4.43\times10^{-8} \\ 7; \ \alpha(PE)=1.572\times10^{-5} \ 22$			
		1218.0 3	21 3	0.0	3/2-				$(, u(11 \Gamma) - 1.3/2 \times 10) 22$			

Т

						Ad	opted L	evels, Gam	mas (continued)
							<u> </u>	¹⁵⁵ Dy) (cor	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger} &	α [@]	Comments
1225.08	21/2+	332.9 1	100 19	892.19	17/2+	[E2]		0.0471	$\alpha(K)=0.0360\ 5;\ \alpha(L)=0.00865\ 13;\ \alpha(M)=0.00198\ 3$ $\alpha(N)=0.000451\ 7;\ \alpha(O)=5.99\times10^{-5}\ 9;\ \alpha(P)=1.91\times10^{-6}\ 3$ B(E2)(W.u.)=226\ 33
		480.5 5	45 6	744.73	21/2+	[M1+E2]	1.0 [#]	0.0249	$\alpha(K)=0.0207 \ 3; \ \alpha(L)=0.00327 \ 5; \ \alpha(M)=0.000725 \ 11 \ \alpha(N)=0.0001669 \ 24; \ \alpha(O)=2.39\times10^{-5} \ 4; \ \alpha(P)=1.228\times10^{-6} \ 18 \ P(M1)(W,u)=0.0026 \ +11 \ 8; \ P(E2)(W,u)=8.222$
		843.4 5	74 11	381.75	17/2+	[E2]		0.00437	$\alpha(K)=0.00365 \ 6; \ \alpha(L)=0.000565 \ 8; \ \alpha(M)=0.0001249 \ 18 \\ \alpha(N)=2.87\times10^{-5} \ 4; \ \alpha(O)=4.11\times10^{-6} \ 6; \ \alpha(P)=2.10\times10^{-7} \ 3 \\ B(E2)(W.u.)=1.61 \ +29-25$
1419.12	21/2-	268.3 <i>5</i> 522.6 <i>1</i>	62 <i>6</i> 100 <i>10</i>	1150.89 896.49	19/2- 17/2-				
1461.86	23/2+	252.9 5 457.1 1 717.5 5	24 5 100 <i>11</i> 45 <i>12</i>	1209.05 1004.77 744.73	25/2 ⁺ 19/2 ⁺ 21/2 ⁺				
1533.65	21/2-	501.8 <i>1</i>	100	1031.86	17/2-	[E2]		0.01501	α (K)=0.01209 <i>17</i> ; α (L)=0.00228 <i>4</i> ; α (M)=0.000512 <i>8</i> α (N)=0.0001172 <i>17</i> ; α (O)=1.617×10 ⁻⁵ <i>23</i> ; α (P)=6.77×10 ⁻⁷ <i>10</i> P(E2)(Wu) = 223 + 40 - 33
1649.96	25/2+	424.9 1	100 17	1225.08	21/2+	[E2]		0.0234	$\alpha(K) = 0.0185 \ 3; \ \alpha(L) = 0.00381 \ 6; \ \alpha(M) = 0.000864 \ 13$ $\alpha(N) = 0.000197 \ 3; \ \alpha(O) = 2.68 \times 10^{-5} \ 4; \ \alpha(P) = 1.019 \times 10^{-6} \ 15$ $B(E2)(W.u.) = 200 \ 18$
		440.4 5	23 3	1209.05	25/2+	[M1+E2]	1.0 [#]	0.0312	$\alpha(K)=0.0259 \ 4; \ \alpha(L)=0.00418 \ 6; \ \alpha(M)=0.000927 \ 14$ $\alpha(N)=0.000213 \ 3; \ \alpha(O)=3.04\times10^{-5} \ 5; \ \alpha(P)=1.533\times10^{-6} \ 22$ $P(M1)(W,w)=0.0072 \ +22 \ 17 \ P(E2)(W,w)=10.5$
		905.3 5	16 3	744.73	21/2+	[E2]		0.00375	$\alpha(\text{K})=0.00314 \ 5; \ \alpha(\text{L})=0.000478 \ 7; \ \alpha(\text{M})=0.0001054 \ 15$ $\alpha(\text{N})=2.43\times10^{-5} \ 4; \ \alpha(\text{O})=3.48\times10^{-6} \ 5; \ \alpha(\text{P})=1.81\times10^{-7} \ 3$ $B(\text{E2})(\text{W},\text{u},\text{L})=0.73 \ +18-15$
1688.0	23/2	943 1	100	744.73	$21/2^+$				
1699.90	23/2	280.6 5 549.0 <i>1</i>	60 5 100 9	1419.12 1150.89	$\frac{21}{2}$ $\frac{19}{2}^{-}$				
1719.0 1752.74	23/2 ⁺ 29/2 ⁺	974 <i>1</i> 543.7 <i>1</i>	100 100	744.73 1209.05	21/2 ⁺ 25/2 ⁺	E2		0.01222	$\alpha(K)=0.00992 \ 14; \ \alpha(L)=0.00180 \ 3; \ \alpha(M)=0.000403 \ 6$ $\alpha(N)=9.24\times10^{-5} \ 13; \ \alpha(O)=1.283\times10^{-5} \ 18; \ \alpha(P)=5.59\times10^{-7} \ 8$ B(E2)(Wu)=2.2×10 ² +9-5
1991.24	25/2-	291.5 5 572.1 <i>1</i>	48 <i>4</i> 100 7	1699.90 1419.12	$\frac{23}{2^{-}}$				$D(L2)(m,u,j=2,2\wedge 10 + 7) = 3$
1998.85	27/2+	537.0 1	100	1461.86	$23/2^+$				
2012.3	25/2-	293 <i>1</i> 324 <i>1</i> 479 0 5	69.7	1719.0 1688.0 1533.65	$23/2^+$ 23/2 $21/2^-$				
		550.7 5 803 2 5	78 13	1461.86	$\frac{23}{2^+}$				
2082.75	25/2-	549.1 <i>1</i>	100 18	1209.05	$\frac{23/2}{21/2^{-}}$				
2002.13	23/2	577.1 1	100	1555.05	~1/ <i>~</i>				

Т

γ (¹⁵⁵Dy) (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	$\alpha^{@}$ Comments	
2169.4	29/2+	519.5 5	100	1649.96 25/2+	[E2]	0.01373	α (K)=0.01109 <i>16</i> ; α (L)=0.00205 <i>3</i> ; α (M)=0.000461 <i>7</i> α (N)=0.0001056 <i>15</i> ; α (O)=1.461×10 ⁻⁵ <i>21</i> ; α (P)=6.23×10 ⁻⁷ <i>9</i> B(E2)(W µ)=204 + 34-25
2292.03	27/2-	301 <i>1</i> 592 1 <i>1</i>	100	1991.24 25/2 ⁻ 1699.90 23/2 ⁻			
2357.74	33/2+	605.0 1	100	1752.74 29/2+	E2	0.00938	$\alpha(K)=0.00767 \ 11; \ \alpha(L)=0.001329 \ 19; \ \alpha(M)=0.000297 \ 5$ $\alpha(N)=6.81 \times 10^{-5} \ 10; \ \alpha(O)=9.53 \times 10^{-6} \ 14; \ \alpha(P)=4.36 \times 10^{-7} \ 7$
2475.63	29/2-	463.7 <i>5</i> 476.2 <i>5</i>	40.8	2012.3 25/2 ⁻ 1998.85 27/2 ⁺			
2599.56	29/2-	722.9 1 307.7 5 608.3 1	100 <i>31</i> 45 <i>4</i> 100 <i>8</i>	1/52.74 29/2 ⁺ 2292.03 27/2 ⁻ 1991.24 25/2 ⁻			DCO=0.7 2.
2601.7 2688.4	$\frac{31/2^+}{29/2^-}$	602.9 <i>1</i> 605.7 <i>5</i>	100 100	1998.85 $27/2^+$ 2082.75 $25/2^-$			
2784.5	$\frac{33}{2^+}$	615.17	100	2169.4 $29/2^+$			
2911.06	$31/2^{-}$	311.3.5	29.3	2599.56 29/2-			
_,	/ -	619.0 <i>I</i>	100 11	2292.03 27/2-			
2990.23	33/2-	514.6 1	100 5	2475.63 29/2-	[E2]	0.01406	α (K)=0.01135 <i>16</i> ; α (L)=0.00211 <i>3</i> ; α (M)=0.000475 <i>7</i> α (N)=0.0001086 <i>16</i> ; α (O)=1.502×10 ⁻⁵ <i>21</i> ; α (P)=6.37×10 ⁻⁷ <i>9</i> B(E2)(W.u.)=2.5×10 ² +5-4
		632.5 5	16 <i>3</i>	2357.74 33/2+	[E1]	0.00309	$\alpha(K)=0.00263 \ 4; \ \alpha(L)=0.000357 \ 5; \ \alpha(M)=7.77\times10^{-5} \ 11 \ \alpha(N)=1.79\times10^{-5} \ 3; \ \alpha(O)=2.60\times10^{-6} \ 4; \ \alpha(P)=1.451\times10^{-7} \ 21 \ P(E1)(Wu)=1.16\times10^{-4} + 33 \ 25$
3012.04	37/2+	654.3 1	100	2357.74 33/2+	E2	0.00777	$\begin{aligned} \alpha(\mathbf{K}) = 0.00639 \ 9; \ \alpha(\mathbf{L}) = 0.01075 \ 15; \ \alpha(\mathbf{M}) = 0.000239 \ 4 \\ \alpha(\mathbf{N}) = 5.50 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 7.74 \times 10^{-6} \ 11; \ \alpha(\mathbf{P}) = 3.65 \times 10^{-7} \ 6 \\ \mathbf{B}(\mathbf{F}_2)(\mathbf{W} _{\mathbf{U}}) = 239 \ + 38 - 28 \end{aligned}$
3212.0	$33/2^{-}$	300 1		2911.06 31/2-			D(E2)(w.u.) - 257 + 50 - 20
5212.0	55/2	611.2.5	100.8	$2601.7 31/2^+$			
3241.4	$33/2^{-}$	552.9 5	100	2688.4 29/2-			
3256.2	$35/2^{+}$	654.5 5	100	2601.7 31/2+			
3304.4	35/2-	520 <i>1</i>	100 9	2784.5 33/2+			
	,	946.4 5	53 <i>5</i>	2357.74 33/2+			
3473.4	$35/2^{-}$	261.8 5		3212.0 33/2-			
	,	561.7 5	100	2911.06 31/2-			
3481.5	$37/2^{+}$	697.0 <i>1</i>	100	2784.5 33/2+			
3556.33	37/2-	544 1	≤20	3012.04 37/2+	[E1]	0.00426	$\alpha(K)=0.00363\ 6;\ \alpha(L)=0.000496\ 8;\ \alpha(M)=0.0001080\ 16$ $\alpha(N)=2.49\times10^{-5}\ 4;\ \alpha(O)=3.60\times10^{-6}\ 6;\ \alpha(P)=1.99\times10^{-7}\ 3$ B(E1)(W.u.)=2.0×10^{-4}\ +20-11 L : the limit <20 results from B(E1) limit in 2013Pa19 (¹²⁴ Sn(³⁶ S 5na))
		566.1 <i>1</i>	100	2990.23 33/2-	[E2]	0.01105	$\alpha(K)=0.00899\ 13;\ \alpha(L)=0.001601\ 23;\ \alpha(M)=0.000359\ 5$ $\alpha(N)=8.22\times10^{-5}\ 12;\ \alpha(O)=1.145\times10^{-5}\ 16;\ \alpha(P)=5.08\times10^{-7}\ 8$ B(E2)(W.u.)=2.8×10 ² +6-5

From ENSDF

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

γ ⁽¹⁵⁵Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	α [@]	Comments
3710.84	41/2+	698.8 <i>1</i>	100	3012.04	37/2+	[E2]	0.00666	$ \begin{array}{l} \alpha(\text{K}) = 0.00551 \ 8; \ \alpha(\text{L}) = 0.000904 \ 13; \ \alpha(\text{M}) = 0.000201 \ 3 \\ \alpha(\text{N}) = 4.61 \times 10^{-5} \ 7; \ \alpha(\text{O}) = 6.52 \times 10^{-6} \ 10; \ \alpha(\text{P}) = 3.15 \times 10^{-7} \ 5 \\ \text{B}(\text{E2})(\text{W.u.}) = 257 \ + 21 - 18 \\ \end{array} $
3736.1	37/2-	262.5 5 524.3 5		3473.4 3212.0	35/2 ⁻ 33/2 ⁻			
3832.1	37/2-	590.7 5	100	3241.4	33/2-			
3912.1	39/2-	430.6 5 607 <i>1</i> 900.3 5	100 <i>11</i> 83 <i>11</i>	3481.5 3304.4 3012.04	37/2 ⁺ 35/2 ⁻ 37/2 ⁺			
3951.2	$39/2^{+}$	695.0 5	100	3256.2	$35/2^{+}$			
4014.6	39/2-	278.7 5	22 4	3736.1	37/2-			
		541.2 <i>1</i>	100 8	3473.4	35/2-			
4180.2	41/2-	623.9 1	100	3556.33	37/2-	[E2]	0.00871	$ \alpha(K)=0.00714 \ I0; \ \alpha(L)=0.001222 \ I8; \ \alpha(M)=0.000273 \ 4 \\ \alpha(N)=6.25\times10^{-5} \ 9; \ \alpha(O)=8.78\times10^{-6} \ I3; \ \alpha(P)=4.06\times10^{-7} \ 6 \\ B(E2)(W.u.)=268 \ +29-25 $
4228.2	$41/2^{+}$	746.7 5	100	3481.5	$37/2^+$			
4315.5	$41/2^{-}$	301 I 570 4 5		4014.6	39/2-			
1153.6	45/2+	579.4 5 772 8 1	100	3730.1	$\frac{31}{2}$	E2	0.00579	$\alpha(\mathbf{K}) = 0.00480.7; \alpha(\mathbf{I}) = 0.000773.11; \alpha(\mathbf{M}) = 0.0001714.24$
4455.0	43/2	742.8 1	100	3710.84	41/2	E2	0.00579	$\begin{aligned} \alpha(\text{N}) &= 0.00430^{-7}, \ \alpha(\text{L}) = 0.000773^{-7}17, \ \alpha(\text{M}) = 0.0001714^{-2}4^{-7}\\ \alpha(\text{N}) &= 3.94 \times 10^{-5} 6; \ \alpha(\text{O}) = 5.59 \times 10^{-6} 8; \ \alpha(\text{P}) = 2.75 \times 10^{-7} 4^{-7}\\ \text{B}(\text{E2})(\text{W.u.}) &= 3.0 \times 10^{2} + 6 - 4 \end{aligned}$
4471.6	$41/2^{-}$	639.5 5	100	3832.1	37/2-			
4573.9	43/2-	661.8 <i>1</i>	100	3912.1	39/2-			
4634.8	43/2-	319.5 5 620.2 5	100	4315.5 4014.6	41/2 ⁻ 39/2 ⁻			
4685.9	43/2+	734.7 5	100	3951.2	39/2*	EO	0.00000	$(W) = 0.00575 \ 0.000050 \ 1.4 \ .0000011 \ 2$
4803.8	45/2	685.6 <i>I</i>	100	4180.2	41/2	E2	0.00696	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00575 \ 8; \ \alpha(\mathbf{L}) = 0.000950 \ 14; \ \alpha(\mathbf{M}) = 0.000211 \ 3 \\ \alpha(\mathbf{N}) &= 4.85 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 6.85 \times 10^{-6} \ 10; \ \alpha(\mathbf{P}) = 3.29 \times 10^{-7} \ 5 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.\mathbf{u}) &= 3.4 \times 10^2 \ +6 -4 \end{aligned}$
4974.7	$45/2^{-}$	340.0 5	17 4	4634.8	43/2-			
5011.1	15/0+	659.2 <i>1</i>	100 8	4315.5	$41/2^{-}$			
5011.1 5157.6	45/2 '	182.9 J 686 1	100	4228.2	41/2'			
5238.1	$\frac{43}{2}$ $\frac{49}{2^+}$	784 5 1	100	4471.0	$\frac{41}{2}$ $\frac{45}{2^+}$	F2	0.00512	$\alpha(\mathbf{K}) = 0.00426.6; \alpha(\mathbf{I}) = 0.000674.10; \alpha(\mathbf{M}) = 0.0001493.21$
5250.1	4 <i>7</i> /2	704.51	100		45/2	112	0.00512	$\alpha(N)=3.43\times10^{-5} 5; \ \alpha(O)=4.89\times10^{-6} 7; \ \alpha(P)=2.45\times10^{-7} 4$ B(E2)(W.u.)=2.4×10 ² +6-4
5289.7	$47/2^{-}$	715.8 <i>1</i>	100	4573.9	$43/2^{-}$			
5331.9	$47/2^{-}$	357.3 5	24 5	4974.7	45/2-			
5450 4	47/0+	697.05	100 7	4634.8	$43/2^{-}$			
5459.4 5610 2	47/21	115.5 J 744 A I	100	4085.9 1865 9	45/2'	E2	0.00577	$\alpha(\mathbf{K}) = 0.00478.7; \ \alpha(\mathbf{I}) = 0.000760.11; \ \alpha(\mathbf{M}) = 0.0001705.24$
3010.2	49/2	/44.4 1	100	4803.8	43/2	E2	0.00577	$\begin{array}{l} \alpha(\text{K}) = 0.004787; \ \alpha(\text{L}) = 0.00070971; \ \alpha(\text{M}) = 0.00070524\\ \alpha(\text{N}) = 3.92 \times 10^{-5} 6; \ \alpha(\text{O}) = 5.56 \times 10^{-6} 8; \ \alpha(\text{P}) = 2.74 \times 10^{-7} 4\\ \text{B}(\text{E2})(\text{W.u.}) = 3.2 \times 10^{2} + 6 - 4 \end{array}$
4974.7 5011.1 5157.6 5238.1 5289.7 5331.9 5459.4 5610.2	45/2 ⁻ 45/2 ⁺ 45/2 ⁻ 49/2 ⁺ 47/2 ⁻ 47/2 ⁻ 47/2 ⁺ 49/2 ⁻	340.0 5 659.2 1 782.9 5 686 1 784.5 1 715.8 1 357.3 5 697.0 5 773.5 5 744.4 1	17 4 100 8 100 100 100 24 5 100 7 100	4634.8 4315.5 4228.2 4471.6 4453.6 4573.9 4974.7 4634.8 4685.9 4865.8	43/2 ⁻ 41/2 ⁻ 41/2 ⁺ 41/2 ⁻ 45/2 ⁺ 45/2 ⁻ 43/2 ⁻ 43/2 ⁻ 43/2 ⁻ 43/2 ⁻ 43/2 ⁻	E2 E2	0.00512	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00426\ 6;\ \alpha(\mathrm{L}) = 0.000674\ 10;\ \alpha(\mathrm{M}) = 0.0001493\ 21\\ &\alpha(\mathrm{N}) = 3.43 \times 10^{-5}\ 5;\ \alpha(\mathrm{O}) = 4.89 \times 10^{-6}\ 7;\ \alpha(\mathrm{P}) = 2.45 \times 10^{-7}\ 4\\ &\mathrm{B(E2)(W.u.)} = 2.4 \times 10^2\ +6-4 \end{aligned}$

16

$\gamma(^{155}\text{Dy})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α [@]	Comments
5707.4	49/2-	375.5 5	18 <i>3</i>	5331.9	$47/2^{-}$			
		732.7 5	100 5	4974.7	$45/2^{-}$			
5896.8	49/2-	739.2 5	100	5157.6	$45/2^{-}$			
6061.8	51/2-	772.1 <i>1</i>	100	5289.7	47/2-			
6067.4	$53/2^{+}$	829.3 <i>1</i>	100	5238.1	49/2+	[E2]	0.00453	$B(E2)(W.u.)=2.2\times10^2 + 14-6$
								$\alpha(K)=0.003786; \alpha(L)=0.0005899; \alpha(M)=0.000130179$
(000 (51/0-	201.1.5	24.2	5707 4	40/0-			$\alpha(N)=2.99\times10^{-5}$ 5; $\alpha(O)=4.27\times10^{-6}$ 6; $\alpha(P)=2.17\times10^{-7}$ 3
6098.6	51/2	391.1.3	24 3	5/0/.4	49/2			
6272 1	51/2+	/00.8 3	100 8	5450.4	47/2			
6405.2	53/2-	015.0 J 705.0 J	100	5610.2	41/2	E2	0.00408	$\alpha(\mathbf{K}) = 0.00414.6; \alpha(\mathbf{L}) = 0.000653.10; \alpha(\mathbf{M}) = 0.0001444.21$
0405.2	55/2	795.01	100	5010.2	49/2	E2	0.00498	$\alpha(\mathbf{N}) = 0.00414 \ 0, \ \alpha(\mathbf{L}) = 0.000035 \ 10, \ \alpha(\mathbf{M}) = 0.0001444 \ 21$ $\alpha(\mathbf{N}) = 3.22 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.73 \times 10^{-6} \ 7; \ \alpha(\mathbf{D}) = 2.38 \times 10^{-7} \ 4$
								$B(F_2)(W_{\rm H}) = 280 + 49 - 37$
6506.4	$53/2^{-}$	407.8.5	13.3	6098.6	$51/2^{-}$			
000011	00/2	799.0 5	100 13	5707.4	$49/2^{-}$			
6684.5	$53/2^{-}$	787.7 5	100	5896.8	$49/2^{-}$			
6892.2	55/2-	830.3 1	100	6061.8	$51/2^{-}$			
6928.5	$55/2^{-}$	829.9 5	100	6098.6	$51/2^{-}$			
6942.9	$57/2^{+}$	875.4 <i>1</i>	100	6067.4	$53/2^{+}$	E2	0.00403	$B(E2)(W.u.)=1.5\times10^2 + 6-3$
								α (K)=0.00337 5; α (L)=0.000517 8; α (M)=0.0001142 16
								$\alpha(N)=2.63\times10^{-5} 4; \ \alpha(O)=3.76\times10^{-6} 6; \ \alpha(P)=1.94\times10^{-7} 3$
7241.4	57/2-	836.2 1	100	6405.2	53/2-	E2	0.00445	$\alpha(K)=0.003716; \alpha(L)=0.0005778; \alpha(M)=0.000127518$
								$\alpha(N)=2.93\times10^{-5} 5; \alpha(O)=4.19\times10^{-6} 6; \alpha(P)=2.14\times10^{-7} 3$
7265.2	57/0-	050 0 5	100	(50()	52/2-			B(E2)(W.u.)=240 + 40 - 30
7365.3	57/2 57/2-	828.9 2	100	6684.5	53/2 53/2-			
7778.0	59/2-	820 I 885 8 5	100	6892.2	55/2-			
7816.0	$59/2^{-}$	887.5.5	100	6928.5	55/2-			
7869.9	$61/2^+$	927 1	100	6942.9	$57/2^+$	[E2]	0.00357	$\alpha(K) = 0.002995; \alpha(L) = 0.0004527; \alpha(M) = 9.97 \times 10^{-5}$ 15
100515	01/2	/ 1	100		01/2	[22]	01000007	$\alpha(N) = 2.30 \times 10^{-5} 4$; $\alpha(O) = 3.29 \times 10^{-6} 5$; $\alpha(P) = 1.723 \times 10^{-7} 25$
								$B(E2)(W.u.) = 1.4 \times 10^2 + 19 - 12$
8109.7	$61/2^{-}$	868.3 1	100	7241.4	57/2-	E2	0.00410	$\alpha(K)=0.003435; \alpha(L)=0.0005278; \alpha(M)=0.000116417$
								$\alpha(N)=2.68\times10^{-5} 4$; $\alpha(O)=3.83\times10^{-6} 6$; $\alpha(P)=1.97\times10^{-7} 3$
								$B(E2)(W.u.)=2.1\times10^2+13-6$
8279.5	$61/2^{-}$	914.2 5	100	7365.3	$57/2^{-}$			
8696.4	$63/2^{-}$	918.4 5	100	7778.0	59/2-			
8756.9	63/2-	940.9 5	100	7816.0	59/2-			-
8849.1	$65/2^+$	979.2 5	100	7869.9	$61/2^+$	E2	0.00318	$\alpha(K)=0.00267$ 4; $\alpha(L)=0.000399$ 6; $\alpha(M)=8.78\times10^{-5}$ 13
								$\alpha(N)=2.02\times10^{-5}$ 3; $\alpha(O)=2.91\times10^{-6}$ 4; $\alpha(P)=1.540\times10^{-7}$ 22
								$B(E2)(W.u.) = 2.1 \times 10^2 + 21 - 18$
9008.0	$65/2^{-}$	898.3 1	100	8109.7	$61/2^{-}$	[E2]	0.00381	$\alpha(K)=0.003195; \alpha(L)=0.0004877; \alpha(M)=0.000107315$
								$\alpha(N)=2.47\times10^{-5}$ 4; $\alpha(O)=3.54\times10^{-6}$ 5; $\alpha(P)=1.84\times10^{-7}$ 3
								$B(E2)(W.u.)=1.6 \times 10^2 + 15 - 6$

17

$\gamma(^{155}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	α [@]	Comments
9249.9 9624.4 9751.8 9882.1	65/2 ⁻ 67/2 ⁻ 67/2 ⁻ 69/2 ⁺	970.4 5 928 <i>1</i> 994.9 5 1033 <i>1</i>	100 100 100 100	8279.5 8696.4 8756.9 8849.1	61/2 ⁻ 63/2 ⁻ 63/2 ⁻ 65/2 ⁺	[E2]	0.00285	B(E2)(W.u.)=24 +30-13
9965.3	69/2-	957.3 1	100	9008.0	65/2-	[E2]	0.00333	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000354 \ 5; \ \alpha(M)=7.77\times10^{-5} \ 11$ $\alpha(N)=1.79\times10^{-5} \ 3; \ \alpha(O)=2.58\times10^{-6} \ 4; \ \alpha(P)=1.382\times10^{-7} \ 20$ $\alpha(K)=0.00280 \ 4; \ \alpha(L)=0.000420 \ 6; \ \alpha(M)=9.25\times10^{-5} \ 13$ $\alpha(N)=2.13\times10^{-5} \ 3; \ \alpha(O)=3.06\times10^{-6} \ 5; \ \alpha(P)=1.613\times10^{-7} \ 23$ $B(E_2)(W,u)=1.9\times10^2 \ +22-10$
10272.9	$69/2^{-}$	1023 1	100	9249.9	$65/2^{-}$			
10520.6	71/2-	896.2 5	100	9624.4	67/2-	[E2]	0.00383	α (K)=0.00321 5; α (L)=0.000489 7; α (M)=0.0001079 16 α (N)=2.48×10 ⁻⁵ 4; α (O)=3.56×10 ⁻⁶ 5; α (P)=1.85×10 ⁻⁷ 3
10802.8	$71/2^{-}$	1051 <i>1</i>	100	9751.8	$67/2^{-}$			
10969.1	$73/2^{+}$	1087 <i>1</i>	100	9882.1	$69/2^+$			
10972.3	73/2-	1007 1	100	9965.3	69/2-	[E2]	0.00300	α (K)=0.00252 4; α (L)=0.000374 6; α (M)=8.23×10 ⁻⁵ 12 α (N)=1.90×10 ⁻⁵ 3; α (O)=2.73×10 ⁻⁶ 4; α (P)=1.455×10 ⁻⁷ 21 B(E2)(W,u)=28 +9-22
11113?	$77/2^{+}$	1144 ^C 1	100	9965.3	$69/2^{-}$			
11349.9	$73/2^{-}$	1077 <i>1</i>	100	10272.9	$69/2^{-}$			
11450.6	75/2-	930 1	100	10520.6	71/2-	[E2]	0.00354	α (K)=0.00297 5; α (L)=0.000449 7; α (M)=9.89×10 ⁻⁵ 14 α (N)=2.28×10 ⁻⁵ 4; α (O)=3.27×10 ⁻⁶ 5; α (P)=1.712×10 ⁻⁷ 25
11905.8	$75/2^{-}$	1103 <i>I</i>	100	10802.8	$71/2^{-}$			
11972.0	77/2-	999.6 5	100	10972.3	73/2-	[E2]	0.00305	α (K)=0.00256 4; α (L)=0.000381 6; α (M)=8.37×10 ⁻⁵ 12 α (N)=1.93×10 ⁻⁵ 3; α (O)=2.78×10 ⁻⁶ 4; α (P)=1.477×10 ⁻⁷ 21 B(E2)(W.u.)=1.6×10 ² +19-9
12401	79/2-	950 [°] 1	100	11450.6	$75/2^{-}$			
12477?	77/2-	1128 ^C 1	100	11349.9	73/2-			
12983.0	81/2-	1011 <i>I</i>	100	11972.0	77/2-	[E2]	0.00297	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00250 \ 4; \ \alpha(\mathbf{L}) = 0.000371 \ 6; \ \alpha(\mathbf{M}) = 8.16 \times 10^{-5} \ 12 \\ &\alpha(\mathbf{N}) = 1.88 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.71 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.443 \times 10^{-7} \ 21 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 25 \ +16-9 \end{aligned}$
13067?	79/2-	1162 ^C 1	100	11905.8	75/2-			
13344?	83/2-	942.9 [°] 5	100	12401	79/2-			
14040.0	85/2-	1057 <i>1</i>	100	12983.0	$81/2^{-}$			
14469	87/2-	1125 [°] 1	100	13344?	83/2-			
15159.0	89/2-	1119 1	100	14040.0	$85/2^{-}$			
15637?	91/2-	1168 [°] 1	100	14469	87/2-			
16347?	93/2-	1186 ^c <i>I</i>	100	15159.0	89/2-			
909.6+x	J+2	909.6 9	0.28 [‡] 14	Х	J			
1862.1+x	J+4	952.5 4	0.52^{\ddagger} 12	909.6+x	J+2			
2860.2+x	J+6	998.1 <i>2</i>	0.98 [‡] 12	1862.1+x	J+4			
3905.2+x	J+8	1045.0 2	0.92 [‡] 10	2860.2+x	J+6			

18

From ENSDF

$\gamma(^{155}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
4996.1+x	J+10	1090.9 2	1.04 [‡] 15	3905.2+x J+8	12514.5+x	J+22	1368.6 2	1.00 [‡] 11	11145.8+x J+20
6133.4+x	J+12	1137.3 2	0.96 [‡] 11	4996.1+x J+10	13929.5+x	J+24	1415.0 2	0.81 [‡] 10	12514.5+x J+22
7317.0+x	J+14	1183.6 2	1.07 [‡] 11	6133.4+x J+12	15390.6+x	J+26	1461.1 2	0.50 [‡] 10	13929.5+x J+24
8546.7+x	J+16	1229.7 2	0.98 [‡] 11	7317.0+x J+14	16897.9+x	J+28	1507.3 <i>3</i>	0.45 [‡] 9	15390.6+x J+26
9823.0+x	J+18	1276.3 2	0.97 [‡] 10	8546.7+x J+16	18449.7+x	J+30	1551.8 6	0.16 [‡] 10	16897.9+x J+28
11145.8+x	J+20	1322.8 2	0.92 [‡] 8	9823.0+x J+18					

[†] Unless mentioned otherwise from ¹⁵⁵Ho ε decay dataset for levels \leq 1276 and from (HI,xn γ) for the levels above 1276.

[‡] Value expressed relative to the other γ 's within this SD band. This information is useful in assessing the feeding and decay pattern within this band, whereas simply listing $I\gamma=100$ for each of γ 's does not yield useful data. See the comment regarding these values in the (HI,xn γ) data set. # Assumed by 2013Pe19 (124 Sn(36 S,5n γ)).

[@] Additional information 3.

[&] Additional information 4.

^{*a*} Multiply placed.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

Intensities: Type not specified $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncerta	Level Scheme Intensities: Type not specified	$ \begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array} $
--	---	--

Legend

¹⁵⁵₆₆Dy₈₉

Level Scheme (continued)		$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
	•	$\dot{\gamma}$ Decay (Uncertain)

Legend

ê j	
$\frac{\gamma n z}{1} = \frac{124}{2}$	7 <u>7</u>
	01
	$0 < 0.14 \mathrm{pc}$
	<u>.0</u> <u>>0.14 ps</u>
	$\frac{0.6}{1.0} \ge 1.0 \text{ ps}$
	<u>.9</u>
γ_{α}^{+} 111	1 <u>3</u>
	<u>0.4 ps +14-1</u>
	<u>.1</u>
	8
	<u>$> 1.0 \text{ ps}$</u>
	9
<u>69/2</u> <u>996</u>	$\le 3.3 \le 0.15 \text{ ps}$
<u>69/2⁺</u> <u>988</u>	$\leq 0.8 \text{ ps}$
<u>67/2</u> 975	.8
<u>67/2</u> <u>962</u>	.4
<u>53/2</u> <u>51/2</u> <u>51/2} <u>51/2</u> <u>51/2</u> <u>51/2} <u>51/2</u> <u>51/2} </u> <u>51/2} <u>51/2</u> <u>51/2} </u> <u>51/2</u> <u>51/2} </u> <u>51/2} </u> <u>51/2} </u> <u>51/2</u> <u>51</u></u></u></u>	.9
65/2	0 = 0.12 ps + 7 - 10
	0.02 ps + 7 10 0.1 0.06 ps + 28 - 3
	0.00 ps 120 5
	4
\mathbf{z}	
<u>61/2</u> <u><u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	0.5
61/2 ⁻ • • • • • • • • • • • • • • • • • • •	9.7 110 fs 41
61/2 ⁺ 7860	0.12 ps + 76 - 7
59/2- 78/1	<u>io</u>
592 777	5.0
<u>5//2 </u>	
	<u></u>
	<u>.4</u> 116 fs 17
	0.15 ps 4
<u>55/2</u> <u>692</u>	.5
55/2	2
	.5
53/2-	.4
53/2 640	.2 128 fs 19
	.6
	.4 0.13 ps 5
	.8
49/2 5890	.8
49/2	.4
49/2- 5610	0.2 157 fs 24
3/2-	0.0 QQh2
	2.2 11 2

¹⁵⁵₆₆Dy₈₉

¹⁵⁵₆₆Dy₈₉

¹⁵⁵₆₆Dy₈₉

¹⁵⁵₆₆Dy₈₉

Band(I): SD band					
J+30	18449.7+x				
J+28	1552 16897.9+x				
J+26	1507 15390.6+x				
J+24	1461 13929.5+x				
J+22	1415 12514.5+x				
J+20	1369 11145.8+x				
J+18	¹³²³ 9823.0+x				
J+16	1276 8546.7+x				
J+14	¹²³⁰ 7317.0+x				
J+12	¹¹⁸⁴ 6133.4+x				
J+10	¹¹³⁷ 4996.1+x				
J+8	¹⁰⁹¹ 3905.2+x				
J+6	1045 2860.2+x				
<u>J+4</u>	998 1862.1+x				
<u>J+2</u> J	910 x				

		Band(F)		
		:	Band(G)	
		Three-neutron-quasipartic	21 :	
		e negative-parity band,	Three-neutron-quasipartic	l
		signature=+1/2	e negative-parity band,	
			signature=-1/2	
		$93/2^{-} - 16347$		
		1186	<u>91/2</u> <u>15637</u>	
		89/2- 15159.0	1168	
		85/2- 1119 14040 0	87/2 14469	
Band(D): Strongly mixed		05/2 14040.0	1125	
i13/2-related band,		$81/2^{-1057}$ 12983.0	$\frac{83/2^{-}}{4}$ <u>13344</u>	
signature=+1/2		1011	79/2 ^{- 943} 12401	
		77/2 1011 11972.0	950	
<u>77/2</u> ⁺ <u>11113</u>		Taya 1000 10072 2	75/2 75/2 11450.6	
73/2+		73/2 109/2.3	$71/2^{-}$ 930 10520 6	
69/2 ⁺ ¹⁰⁸⁷ 9882 1		69/2 ^{- 1007} 9965.3	11/2 1002010	
09/2 9002.1		057	<u>67/2⁻ 896 9624.4</u>	
65/2 ⁺ ¹⁰³³ 8849.1	Band(E). Strongly mixed	<u>65/2 957</u> 9008.0	$63/2^{-}$ 928 8696.4	
979	i1220-related band.	61/2 ^{- 898} 8109.7	010	
<u>61/2+ 7869.9</u>	signature=-1/2	969	<u>59/2- 918 7778.0</u>	
57/2 ⁺ 927 6942.9		57/2- 000 7241.4	55/2 ^{- 886} 6892.2	Band(H): Positive-parity
53/2+ 6067.4	51/2+ 6272.4	53/2 ⁻ ⁸³⁶ 6405.2	830 (0(1.0)	band, signature=+1/2
49/2+ 5238.1	47/0+ 813 5450 4	49/2- 795 5610.2	51/2 6061.8	
45/2 ⁺ 4453.6	$\frac{47/2^+}{42/2^+}$	45/2 744 4865 8	47/2 772 5289.7	45/2+ 5011.1
<u>41/2+</u> 784 / <u>3710.84</u>	43/2 774 4085.9	$\frac{43/2}{41/2}$ (86 4180.2	43/2 716 4573.9	41/2+ 4228.2
37/2+ 3012.04	$\frac{39/2}{25/2^+}$ $\frac{735}{735}$ $\frac{3951.2}{2256.2}$	$\frac{41/2}{37/2}$ $\frac{686}{3556}$ $\frac{4100.2}{3556}$	39/2- 662 3912.1	37/2+ 3481.5
33/2+ 2357.74	$\frac{35/2}{31/2^+}$ 695 3250.2	$\frac{31/2}{33/2}$ $\frac{624}{2990.23}$	35/2- 607 3304.4	33/2+ 747 2784.5
29/2+ 1752.74	$\frac{31/2}{27/2+}$ 654 /1008 85	$\frac{566}{29/2}$ $\frac{566}{515}$ 2475.63	•	29/2+ 697 2169.4
	$\frac{2112}{23/2+}$ 603 /1461 86			25/2+ 615 1649.96
	$>\frac{23/2}{19/2^+}$ $\frac{1401.80}{537}$	···· ·		$21/2^{+}$ 520 1225.08
				$17/2^{+}$ 425 892.19
	<u>359</u> 043.2			
912 132.195				

¹⁵⁵₆₆Dy₈₉

¹⁵⁵₆₆Dy₈₉