¹⁵⁴Lu ε + β ⁺ decay **1988Vi02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Parent: ¹⁵⁴Lu: E=62 12; $J^{\pi}=(9^+)$; $T_{1/2}=1.12 \text{ s } 8$; $Q(\varepsilon)=10270 \text{ syst}$; $\%\varepsilon+\%\beta^+$ decay=100

¹⁵⁴Lu-E: Additional information 1.

¹⁵⁴Lu-J^{π}: Additional information 2.

¹⁵⁴Lu-Q(ε + β ⁺): Additional information 3.

¹⁵⁴Lu-Q(ε + β ⁺): 10270 200 (2021Wa16).

¹⁵⁴Lu- $\%\varepsilon + \%\beta^+$ decay: Value ($\%\varepsilon + \%\beta^+ = 100$) assumed by evaluator from lack of reported α decays and the fact that the half-life is comparable to that calculated for the ε decay, namely 1.18 s (2019Mo01).

Additional information 4.

1988Vi02: Produced by Mo(⁶⁴Zn,x) with E=285 MeV. The studies were done on-line at the OASIS facility. The products were mass-separated and the A=154 mass fraction was transported to a counting area, collected on a tape and transported (within 65 ms) for spectroscopic study. A Δ E-E particle telescope and a variety of Ge detectors were used to record coincidences. In addition, γ singles, γ (t), K x-ray and annihilation radiation were measured.

1981Ho10: Produced by bombardment of targets with ⁵⁸Ni or ¹⁰⁷Ag ions with energies of 4.4-5.9 MeV/mass unit. Products separated in velocity selector and α measured with Si detector. ¹⁵⁴Lu identified by growth and decay characteristic of its daughter.

1984HaZD: Produced by bombardment of targets of ⁹⁶Mo and ⁹⁶Ru with 250-260 MeV ⁵⁸Ni and ⁶⁰Ni ions. γ and X rays measured with Ge detectors. Q values were determined from Kx/ β^+ ratios.

 α emission following this ε decay has been reported from levels between 3 and 6 MeV with I $_{\alpha}$ =0.03% (1988Vi02). Similarly, proton emission has been reported from levels between 6.5 and 9 MeV, with Ip=0.06% (1988Vi02).

Data are from 1988Vi02, unless otherwise noted. Others: 1984HaZD, 1981Ho10.

Since $Q(\varepsilon) \approx 10$ MeV and only a few γ' s are reported and placed, the proposed decay scheme is clearly incomplete. Thus, it is not possible to quote reliable intensities for the $\varepsilon + \beta^+$ transitions from these data.

¹⁵⁴Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0&	0+ #	0.409 s 2	T _{1/2} : From Adopted Levels.
821.3 ^{&} 2	$(2^+)^{\#}$		
1516.0 <mark>&</mark> 3	$(4^+)^{\#}$		
1949.6 <mark>&</mark> 4	$(6^+)^{\#}$		
2046.2 ^{&} 4	(8 ⁺) [@]	28 ns 2	$T_{1/2}$: From $\gamma\gamma(t)$ in ¹⁰⁶ Cd(⁵⁴ Fe, α 2p γ) (1993Zh10, using the three strongest transitions below and above it). 1988Vi02 report $T_{1/2}$ =45 ns <i>10</i> and assign that lifetime to this level.

[†] Additional information 5.

 \ddagger From the systematics of the even-even N=84 nuclides in this mass region (1988Vi02).

- [#] Configuration= $((\pi h_{11/2}^6)(\nu f_{7/2}^2)).$
- [@] Configuration= $((\pi h_{11/2}^6)(\nu h_{9/2})(\nu f_{7/2})).$

& Seq.(A): Yrast sequence of positive-parity levels.

ε, β^+ radiations

E(decay)	E(level)	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$
(8286 syst)	2046.2	≥4.4	≤56 [‡]
(8382 [@] syst)	1949.6	≥4.7	≤29 [‡]

[†] 1988Vi02 show these values as upper limits only, since the decay scheme is only fragmentary and, as a result, much of the strength of the observed deexciting γ 's may be from the feeding of their parent levels by the γ decay of higher-lying, but

¹⁵⁴Lu ε + β ⁺ decay **1988Vi02** (continued)

ε, β^+ radiations (continued)

unreported, excited states.

[‡] 1988Vi02 report significant $\varepsilon + \beta^+$ feeding from ¹⁵⁴Lu to these two levels and from this conclude that J^{π} for the ¹⁵⁴Lu parent is (7⁺). They also indicate that this $\varepsilon + \beta^+$ feeding pattern suggests a similar structure for these two final states. The odd proton and odd neutron in the ¹⁵⁴Lu parent state are in the π h_{11/2} and ν f_{7/2} orbitals, respectively. The implied low log*ft* values indicate strong Gamow-Teller transitions, which in this case would be π h_{11/2} $\rightarrow \nu$ h_{9/2}. It is now believed, however, that the configurations of the two ¹⁵⁴Yb final states are quite different (see the discussion in the ¹⁰⁶Cd(⁵⁴Fe, α 2p γ) data set, as well as those in the original studies (1993Zh10 and 1996Zh09)). Only one of these states, the (8⁺) level, can be fed by a strong Gamow-Teller transition. The transition to the (6⁺) level would be π h_{11/2} $\rightarrow \nu$ f_{7/2}. It will be much weaker (and, possibly, may not take place).

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

 $\gamma(^{154}\text{Yb})$

I γ normalization: Normalized to give 99.91% feeding to ground state from 821 γ alone; however due to the incompleteness of the level scheme it is likely to have other γ branches to the g.s., which in fact rather makes the normalization factor an upper limit. The value 99.91% allows for 0.06% proton emission and 0.03% α emission from high-energy (3 to 9 MeV) levels (1988Vi02).

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
96.6 2	12 3	2046.2	(8 ⁺)	1949.6	(6 ⁺)	E2	3.67 6	α(K)=1.096 16; α(L)=1.964 33; α(M)=0.484 8 α(N)=0.1104 19; α(O)=0.01267 22; α(P)=4.69×10-5 7 %Iγ≤12 Mult.: From αK(exp)=1.3 3. Value determined from the intensity of the Yb K x rays relative to Iγ(96.8) measured in coincidence with positrons in the 154Lu ε decay
433.6 2	83 2	1949.6	(6+)	1516.0	(4+)	[E2]	0.0259 4	$\alpha(K) = 0.01994 \ 28; \ \alpha(L) = 0.00459 \ 6; \ \alpha(M) = 0.001069 \ 15 \ \alpha(N) = 0.0002477 \ 35; \ \alpha(O) = 3.24 \times 10^{-5} \ 5; \ \alpha(P) = 1.078 \times 10^{-6} \ 15 \ \% I_V < 83$
694.7 2	97 2	1516.0	(4+)	821.3	(2+)	[E2]	0.00810 11	$\alpha(K) = 0.00659 \ 9; \ \alpha(L) = 0.001173 \ 16; \ \alpha(M) = 0.000267 4 \alpha(N) = 6.23 \times 10^{-5} \ 9; \ \alpha(O) = 8.51 \times 10^{-6} \ 12; \alpha(P) = 3.68 \times 10^{-7} \ 5 \% I\gamma < 96$
821.3 2	100	821.3	(2+)	0	0+	[E2]	0.00560 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00461 \ 6; \ \alpha(\mathbf{L}) = 0.000770 \ 11; \\ &\alpha(\mathbf{M}) = 0.0001743 \ 24 \\ &\alpha(\mathbf{N}) = 4.07 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 5.63 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{P}) = 2.59 \times 10^{-7} \ 4 \\ &\% I\gamma < 99.4 \end{aligned}$

[†] Additional information 6.

[‡] For absolute intensity per 100 decays, multiply by ≤ 0.9935 .

¹⁵⁴Lu ε + β ⁺ decay 1988Vi02

Decay Scheme

