Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

 $Q(\beta^{-}) = -10270 \text{ syst}; S(n) = 10840 \text{ syst}; S(p) = 3248 21; Q(\alpha) = 5474.3 17$ 2021Wa16

 $\Delta Q(\beta^{-})=200, \ \Delta S(n)=200 \ (syst, 2021Wa16).$

S(2n)=19800 150, S(2p)=4010 19, Q(\varepsilon p)=3246 20 (2021Wa16).

Additional information 1. The information on 154 Yb comes primarily from the study of the 154 Lu ε decay (1988Vi02) and the in-beam studies (1993Zh10 and 1996Zh09). These latter studies make extensive use of multiparticle shell-model calculations to elucidate the properties of the ¹⁵⁴Yb levels.

¹⁵⁴Yb Levels

 α -particle emission from excited levels between 3 and 6 MeV in ¹⁵⁴Yb populated in the ¹⁵⁴Lu ε decay has been reported by 1988Vi02. In addition, these authors report proton emission from ¹⁵⁴Yb states between 6.5 and 9 MeV excitation energy. They measure $I_{\alpha}=0.03\%$ and $I_{p}=0.06\%$. These values were determined from the measured α and proton intensities, respectively, relative to $I_{\gamma}(821.3)(1+\alpha)$, which they assume represents 100% of the ¹⁵⁴Lu decays.

Cross Reference (XREF) Flags

- В
- ¹⁵⁸Hf α decay ¹⁰⁶Cd(⁵⁴Fe, α 2p γ) С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	0+#@	0.409 s 2	ABC	%ε+%β ⁺ =7.4 <i>I2</i> ; %α=92.6 <i>I2</i> Δ <r<sup>2>(¹⁵²Yb-¹⁵⁴Yb)=0.357 fm² 67 and Δ<r<sup>2>(¹⁵⁴Yb-¹⁵⁶Yb)=0.274 fm² 60 (from tabulation in 1994Ma57 and based on data of 1989Sp04 which is only reported in plots); others: see graphs of 1989Sp04 and 1991Ho22. From an evaluation of data on nuclear rms charge radii, 2013An02 report <r<sup>2>^{1/2}=5.088 fm <i>I1</i>. T_{1/2}: From 1996Pa01, α(t). Others: 0.39 s 4 (1964Ma45), 0.42 s 2 (1977Ha48), 0.33 s 4 (1978AfZZ), and 0.41 s 3 (1979Ho10) all from α(t); and 0.42 s 5 (1988Vi02) from γ(t) in ¹⁵⁴Yb ε decay. Note that a weighted average of all six values gives 0.409 s 2 with a reduced-χ^2 value of 0.92, the same result for T_{1/2}. %α: Weighted average of: 92 2 (1996Pa01); 92.8 20 (1988Vi02) (from ¹⁵⁴Lu ε decay); and 93 2 (1979Ho10). Other: 91 <i>I8</i> (1989Wo02). Fα=5330.9 <i>I7</i> (from 2013Ba31 evaluation recommended by 1991By01)</r<sup></r<sup></r<sup>
821.3 2	(2 ⁺) ^{#@}		AC	Eu-5550.5 17 (Hom 2015Bas1 evaluation recommended by 1991Ryo1).
1516.0 <i>3</i>	(4 ⁺) ^{#@}		AC	
1949.6 4	$(6^+)^{\#@}$		A C	
2046.2 4	(8 ⁺) ^{#&}	28 ns 2	A C	T _{1/2} : From $\gamma\gamma$ (t) in ¹⁰⁶ Cd(⁵⁴ Fe, α 2p γ) (1993Zh10). 1988Vi02 report 45 ns <i>10</i> , from $\gamma\gamma$ (t) in ¹⁵⁴ Lu ε decay.
2914.7	$(10^+)^{\#a}$		С	
3228.5	(11 ⁻)		C	J ^{π} : The observed decay mode (a single γ transition to the (10 ⁺) level) is consistent with J^{π} =(11 ⁻). Possible octupole vibration built on the (8 ⁺) level (1993Zh10).
3696.4	(12 ⁺) ^{#a}		С	
4318.8	(14 ⁺) ^{#a}		С	
4479.1	(16 ⁺) ^{#b}	18.6 ns 15	C	T _{1/2} : From $\gamma(t_{rf})$ for the 622, 782 and 869 γ 's in ¹⁰⁶ Cd(⁵⁴ Fe, α 2p γ).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁵⁴Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4608.2	(16 ⁺) ^{<i>a</i>}	С	J^{π} : Maximum-aligned state of the $(\pi h_{11/2})^2_{10+}(\nu f_{7/2})^2$ configuration (1993Zh10).
4996.1	(17 ⁺) ^{#b}	С	
5178.0	(18 ⁺) ^{#b}	С	
5370.1		С	
5382.8		С	
5517.5		С	
5537.2		С	
5738.2		С	
5878.1		С	
6178.2		С	
6283.3	$(20^+)^{\#}$	С	
6342.9	(20)	С	
6666.3		С	
6796.5	$(21^+)^{\#}$	С	
6984.5	$(22^+)^{\#}$	С	
7187.2	(22)	С	
7245.9		С	
7439.6		С	
7609.9	(24) [#]	С	

[†] Computed from the listed γ -ray energies.

[‡] From systematics of the yrast levels in the N=84 nuclides and theoretical calculations in 106 Cd(54 Fe, $\alpha 2p\gamma$) dataset (1996Zh09, 1993Zh10). There are only three multipolarity values measured in this dataset, therefore the proposed J^{π} values are highly tentative. # yrast sequence of positive-parity levels. @ Configuration= $((\pi h_{11/2}^6)(\nu f_{7/2}^2)).$

[&] Configuration= $((\pi h_{11/2}^{4})(vh_{9/2})(vf_{7/2})).$ ^{*a*} Configuration= $((\pi h_{11/2}^{4})_{0+}(\pi h_{11/2}^{2})_{10+}(vf_{7/2}^{2})).$ ^{*b*} Configuration= $((\pi h_{11/2}^{4})_{0+}(\pi h_{11/2}^{2})_{10+}(vh_{9/2})(vf_{7/2})).$

	$\alpha^{\prime\prime}$	Comments
[E2]		
) [E2]		
) [E2]	0.0259	
) E2	3.67	B(E2)(W.u.)=10.5 +8-7 Mult.: From $\alpha_{\rm K}(\exp)$ =1.3 3 in ¹⁵⁴ Lu ε decay (1988Vi02).
)		(-,,,,,
+) +)		
+) (E2)	0.571	B(E2)(W.u.)= $3.73 + 34 - 29$ Mult.: From intensity balance and level T _{1/2} in ¹⁰⁶ Cd(⁵⁴ Fe. α 2p γ).
+)		
⁺) ⁺) (M1)	0.620	Mult.: From 106 Cd(54 Fe, $\alpha 2p\gamma$).
	[E2]) [E2]) [E2]) E2) E2) E2) () (E2) () (E2) () (E2) () (H1)	$[E2] \\) [E2] \\) [E2] \\ 0.0259 \\) E2 \\ 3.67 \\ (E2) \\ (E2) \\ 0.571 \\ (E2) \\ (E2) \\ 0.571 \\ (H1) \\ (M1) \\ 0.620 \\ (E2) \\ (M1) \\ (M1) \\ (E2) \\ (E3) $

 $\gamma(^{154}\text{Yb})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

					$\gamma(134 \text{ YB})$ (continued)						
E _i (level)	J_i^π	E_{γ}^{\dagger}	Iγ	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	\mathbf{E}_{f}	\mathbf{J}_f^π
5178.0	(18^{+})	698.9	_	4479.1 ((16^{+})	6666.3		323.4		6342.9	(20)
5370.1		374.0	100	4996.1 ((17^{+})			383.0		6283.3	(20^{+})
5382.8		903.7	100	4479.1 ((16^{+})	6796.5	(21^{+})	513.2	100	6283.3	(20^{+})
5517.5		339.5	100	5178.0 ((18^{+})	6984.5	(22^{+})	188.0		6796.5	(21^{+})
5537.2		1058.1	100	4479.1 ((16^{+})			318.3		6666.3	
5738.2		560.2	100	5178.0 ((18^{+})	7187.2	(22)	390.7	100	6796.5	(21^{+})
5878.1		139.9	100	5738.2		7245.9		579.6	100	6666.3	
6178.2		300.1	100	5878.1		7439.6		1156.3	100	6283.3	(20^{+})
6283.3	(20^{+})	545.1	100	5738.2		7609.9	(24)	625.4	100	6984.5	(22^{+})
6342.9	(20)	604.7	100	5738.2							

(154 Vb) (contin d)

[†] From 1993Zh10 in ¹⁰⁶Cd(⁵⁴Fe, α 2p γ), unless noted otherwise. [‡] From ¹⁵⁴Lu ε decay (1988Vi02).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

	3 7 8		
(24)	<u> </u>	7609.9	
	<u> </u>	7439.6	
		7245.9	
(22)		7187.2	
(22 ⁺)		6984.5	
(21^{+})		6796 5	
		6666.3	
(20)		6342.9	
(20+)		6283.3	
		6178.2	
		5878 1	
		5738.2	
		5537.2	
		5517.5	
		5382.8	
(18^+)		5370.1	
$\frac{(10^{-})}{(17^{+})}$		4996.1	
<u> </u>			
(16 ⁺)		4608.2	
(16 ⁺)		4479.1	18.6 ns 15
(14^{+})	↓ ê ^y	4318.8	
(12+)		3696.4	
(11 ⁻)		3228.5	
(10 ⁺)	v v v	2914.7	
(8 ⁺)	v v v v v v v v v v v v v v v v v v v	2046.2	28 ns 2
(6 ⁺)		1949.6	
(4+)	le la constante de la constante		
(4*)		1516.0_	
(2 ⁺)		821.3	
0+		0	0.409 s 2
	$^{154}_{70}{ m Yb}_{84}$		