¹⁰⁶Cd(⁵⁴Fe, α 2p γ) 1993Zh10,1996Zh09

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022					

Additional information 1. 1993Zh10: 106 Cd(54 Fe, $\alpha 2p\gamma$) with E(54 Fe)=4.7 MeV/A. Pulsed beam (300-ns pulses). γ 's were detected using the OSIRIS γ -detector array. A large-volume four-sector neutron detector, located at 0°, was used to identify unknown evaporation channels. Only $E\gamma$ values and a proposed level scheme are shown.

1996Zh09 report the results of a study of multiparticle yrast states involving the π h_{11/2}, ν h_{9/2} and ν f_{7/2} shell-model orbitals in the four N=84 nuclides from ¹⁵¹Ho through ¹⁵⁴Yb. The level scheme was established via coincidence, $\gamma(\theta)$, and intensity information on the γ 's measured using the 20-detector Nordball array. A diagram identifies yrast levels up through the J=(24⁺) level.

1993Zh10 and (especially) 1996Zh09 give an extensive discussion of the results of the shell-model calculations as they apply to the level scheme of 154 Yb and the other N=84 nuclides from 151 Ho to 154 Tm.

¹⁵⁴Yb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments			
0 ^{<i>a</i>}	0+‡					
821.0 ^a	$(2^+)^{\ddagger}$					
1515.4 <mark>a</mark>	$(4^+)^{\ddagger}$					
1948.8 <mark>a</mark>	$(6^+)^{\ddagger}$					
2045.6 ^a	(8 ⁺) [#]	28 ns 2	T _{1/2} : From 1993Zh10, $\gamma\gamma(t)$. Other: T _{1/2} =45 ns 10, from $\gamma\gamma(t)$ in ¹⁵⁴ Lu ε decay (1988Vi02).			
2914.1 ^a	$(10^+)^{@}$					
3227.9	(11 ⁻)		J ^{π} : Based on the nearness of the energy separation of this level and the 8 ⁺ state at 2046 to the energy of the 3 ⁻ octupole excitation built on the ν f _{7/2} state in ¹⁵³ Yb (1989Mc01), from in-beam studies of the γ 's from ¹⁰² Pd(⁵⁴ Fe,2pn), 1993Zh10 assign J ^{π} =(11 ⁻) to this level. Presumably, it is the 3 ⁻ octupole vibration built on the first 8 ⁺ state in ¹⁵⁴ Yb. Its observed decay mode (a single γ transition to the (10 ⁺) level) is consistent with an (11 ⁻) assignment.			
3695.8 ^a	$(12^{+})^{@}$					
4318.2 ^{<i>a</i>}	$(14^{+})^{@}$					
4478.5 ^a	(16 ⁺) ^{&}	18.6 ns 15	$T_{1/2}$: From 1993Zh10, $\gamma(t_{rf})$ for the 622, 782 and 869 γ 's.			
4607.6	$(16^+)^{(a)}$		J ^{π} : Maximum-aligned state of the $(\pi h_{11/2})^2_{10+}(\nu f^2_{7/2})$ configuration (1993Zh10).			
4995.5 ^a	(17 ⁺) ^{&}					
5177.3 ^a	(18 ⁺) ^{X}					
5369.5						
5516.8						
5536.6						
5737.5						
6177.5						
6282.6 ^a	(20^{+})					
6342.2	(20)					
6665.6 6705.8 <mark>0</mark>	(21^{+})					
6983.8 ^{<i>a</i>}	(21^{-}) (22^{+})					
7186.5	(22)					
7245.2						
7438.9 7609.2 <mark>.4</mark>	(24)					
	(=-)					

Continued on next page (footnotes at end of table)

¹⁰⁶Cd(⁵⁴Fe,α2pγ) **1993Zh10,1996Zh09** (continued)

¹⁵⁴Yb Levels (continued)

- [†] 1993Zh10 state that their reported J^{π} values are strongly supported by the systematics of the yrast levels in the N=84 nuclides. 1996Zh09, by the same authors, state that the results of their measurements confirm the assignments of 1993Zh10 up through the 18⁺ level. Both articles state that the results of multiparticle shell-model calculations lend support to the proposed J^{π} and configuration assignments for the members of the positive-parity yrast level sequence.
- [‡] Configuration= $((\pi h_{11/2}^6)(\nu f_{7/2}^2)).$
- [#] Configuration= $((\pi h_{11/2+6})(\nu h_{9/2})(\nu f_{7/2}))$.
- [@] Configuration= $((\pi h_{11/2}^4)_{0+}(\pi h_{11/2}^2)_{10+}(\nu f_{7/2}^2)).$
- & Configuration= $((\pi h_{11/2}^4)_{0+}(\pi h_{11/2}^2)_{10+}(\nu h_{9/2})(\nu f_{7/2})).$
- ^{*a*} Seq.(A): Level sequence based on 0^+ ground state.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.
96.8	2045.6	(8^{+})	1948.8	(6^{+})	E2
		(-)		(-)	
129.1	4607.6	(16^{+})	4478.5	(16^{+})	
139.9	5877.4		5737.5		
160.3	4478.5	(16^{+})	4318.2	(14^{+})	(E2)
181.8	5177.3	(18 ⁺)	4995.5	(17^{+})	(M1)
188.0	6983.8	(22^{+})	6795.8	(21^{+})	
300.1	6177.5		5877.4		
313.8	3227.9	(11^{-})	2914.1	(10^{+})	
318.3	6983.8	(22^{+})	6665.6		
323.4	6665.6		6342.2	(20)	
339.5	5516.8		5177.3	(18^{+})	
374.0	5369.5		4995.5	(17^{+})	
383.0	6665.6		6282.6	(20^{+})	
390.7	7186.5	(22)	6795.8	(21^{+})	
433.4	1948.8	(6^{+})	1515.4	(4^{+})	
513.2	6795.8	(21^{+})	6282.6	(20^{+})	
517.0	4995.5	(17^{+})	4478.5	(16^{+})	
545.1	6282.6	(20^{+})	5737.5		
560.2	5737.5		5177.3	(18^{+})	
579.6	7245.2		6665.6		
604.7	6342.2	(20)	5737.5		
622.4	4318.2	(14^{+})	3695.8	(12^{+})	
625.4	7609.2	(24)	6983.8	(22^{+})	
694.4	1515.4	(4^{+})	821.0	(2^{+})	
698.9	5177.3	(18^{+})	4478.5	(16^{+})	
781.7	3695.8	(12^{+})	2914.1	(10^{+})	
821.0	821.0	(2^{+})	0	0^{+}	
868.5	2914.1	(10^{+})	2045.6	(8^{+})	
903.7	5382.2		4478.5	(16^{+})	
1058.1	5536.6		4478.5	(16^{+})	
1156.3	7438.9		6282.6	(20^{+})	

 $\gamma(^{154}\text{Yb})$

3.64

0.571

0.620

Mult.: From $\alpha_{\rm K}(\exp)=1.3$ *3*, from intensity of Yb K x rays relative to I $\gamma(96.8)$ measured in coincidence with positrons in the ¹⁵⁴Lu ε decay (1988Vi02).

Comments

Mult.: From intensity balance and level $T_{1/2}$ (1993Zh10).

Mult.: 1993Zh10 indicate that mult=M1 is measured for this γ , but do not present the data from which this conclusion is drawn.

 † Values shown by 1993Zh10.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁰⁶Cd(⁵⁴Fe,α2pγ) 1993Zh10,1996Zh09

Level Scheme

 $^{154}_{70} \rm{Yb}_{84}$

¹⁰⁶Cd(⁵⁴Fe,α2pγ) 1993Zh10,1996Zh09

