Coulomb excitation

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Additional information 1.

2012Mo23 compiled for XUNDL database by B. Singh (McMaster).

- There have been numerous Coulomb excitation measurements. Those giving electric moments are: 1960Ad01, 1960El07, 1961Go09, 1963Gr04, 1964Al25, 1964Ho25, 1965Yo04, 1966Se06, 1968Ke04, 1969Fr11, 1971St24, 1972Sa42, 1973Be40, 1973Eb01, 1974Br31, 1974Sh12, 1974Wo01, 1976Co08, 1977Fi01, 1977Wo03, and 1979Ki14; magnetic moments: 1958Go72, 1967Wo06, 1968Be42, 1969Wh04, 1970Be36, 1971Ku09, 1972Ku10, 1974Ar23, and 1975Ro24; lifetime studies: 1959Bi10, 1967Wo06, 1968Ri09, 1972Di06, 1977Ke06, 1980Jo08, and 1999Kr10; levels: 1992Mo20 and 1999As05; and other studies: 1962Af01, 1964De07, 1966El07, 1968Br03, 1968Ve01, and 1970Da28.
- A number of the studies listed here report measurements of μ and Q values for several ¹⁵⁴Sm levels. These data are not listed here, but are summarized in the Adopted Levels data set for the respective level.
- Experimental methods:

1958Ch36: Natural Sm target, p beam with $E \le 3.7$ MeV. $E\gamma(82)$ measured with curved-crystal spectrometer.

- 1958Go72: p beam with E(p)=2.1 MeV. Measured perturbed $\gamma(\theta)$ with NaI detectors to determine g-factor.
- 1959Bi10: Natural Sm target, pulsed p beam with E(p)=2.8 MeV. γ measured with plastic scintillator. Report $T_{1/2}(82)$.
- 1960Ad01: Natural Sm target, ¹⁶O beam with $E(^{16}O)=36$, 39 MeV. γ measured with NaI detector, two states observed.
- 1960El07: p and d beams with E=4.5 MeV. Magnetic spectrograph. Report B(E2)(82).
- 1961Go09: p beam. Measured thick target yields, report B(E2)(82).

1962Af01: Measured yields.

1963Gr04: Enriched target, ¹⁶O beam with E(¹⁶O)=14-50 MeV. ce measured in magnetic spectrometer, report E for 4⁺ level.

1964Al25: Enriched target, ¹⁴N beam with $E(^{14}N)=37$ MeV. Report $B(E2)(2+\rightarrow 4^+)$.

1964De07: Enriched target, ¹⁶O beam with $E(^{16}O) \le 44$ MeV. Scattered ¹⁶O counted in solid-state counter and γ in NaI detector. Measured level population probabilities.

1964Ho25: ¹⁴N beam with $E(^{14}N)=11.0$ MeV. γ measured with NaI detector, report B(E2)(82).

1965Yo04: Natural and enriched (99.07%) targets, ¹⁶O beam with E(16O)=43.5 MeV. γ measured with NaI and particles with Si(Au) detectors, report B(E2)(1180,1440).

1966El07: Enriched target, d beam with E(d)=12 MeV. Magnetic spectrometer, report relative population of states.

- 1966Se06: Enriched (> 99%) target, ¹⁶O beam with E(¹⁶O)≤65 MeV. γ measured with NaI detectors in singles, $\gamma\gamma$, and γ -particle coincidence modes, report B(E3)(1012).
- 1967Wo06: Enriched (> 96%) target, pulsed p beam. Measured $T_{1/2}$ and g factor from precession of γ angular distribution.

1968Be42: Enriched target, ¹⁶O beam with E(¹⁶O)=36 MeV. Recoil-into-gas technique used to deduce g-factor(82).

1968Br03: Recoil nuclei implanted in polarized magnetic environment and measured precession of γ angular distribution.

1968Ke04: Additional analysis of data used in 1965Yo04. Report B(E3)(1012).

1968Ri09: Pulsed proton beam, E(p)=3.5 MeV. γ measured with NaI, report T_{1/2}(82).

1968Ve01: (d,d') with E(d)=12.1 MeV and (α, α') with E(α)=16.1 MeV. Measured level energies and $\gamma(\theta)$.

- 1969Fr11: ¹⁶O beam with $E(^{16}O)=48-60$ MeV and ³²S beam with $E(^{32}S)=86.7-110$ MeV. γ measured with Ge detector in coincidence with the scattered projectiles, report B(E2)(82).
- 1969Wh04: Mossbauer measurement. Report magnetic moment.
- 1970Be36: Reevaluation of g-factor of 1968Be42.
- 1970Da28: Enriched (99.88%) target, ¹⁶O beam with $E(^{16}O)=33$ MeV. Measured ce's in magnetic spectrometer, report multipolarity of $\gamma(82,185)$.
- 1971Ku09: ¹⁶O beam with E(¹⁶O)=52 MeV. Measured perturbed $\gamma(\theta)$, report g-factors of 4⁺ and 6⁺ states.
- 1971St24: Natural Sm target, α beam with E(α)=10-12 MeV. Report E4 matrix element.
- 1972Di06: ⁴⁰Ar beam with E(⁴⁰Ar)=146 MeV. γ measured with Ge detector. T_{1/2}(4⁺,6⁺,8⁺) measured by recoil-distance Doppler-shift method.

1972Ku10: ¹⁶O beam with E(¹⁶O)=35 MeV. Measured perturbed $\gamma(\theta)$. Report g-factor(4⁺,6⁺).

- 1972Sa42: α beam with E(α)=10.5-12 MeV. α measured in Si(Au) detector and magnetic spectrometer. Report B(E2)(82) and E4 matrix element.
- 1973Be40: Enriched target, α beam with E(α)=11.0-21.0 MeV. α measured in magnetic spectrometer. Report E2 and E4 matrix elements.

²⁰¹⁴Sm02 compiled for XUNDL database by A. M. Hurst (LBNL).

- 1973Eb01: Enriched (99%) target, α beam with E(α)=12 MeV, ¹⁶O beam with E(¹⁶O)=24-30 MeV, and ³²S beam with E(³²S)=35-40 MeV. γ measured using a Ge detector. Report E4 matrix element.
- 1974Br31: Enriched (99.8%) target, α beam with E(α)=11-20 MeV. α measured with Si(Au) detectors. Report E2 and E4 matrix elements.
- 1974Sh12: α beam with E(α)=8-17 MeV. α measured in Si(Au) detector. Report B(E2)(82) and E4 matrix element.
- 1974Wo01: Enriched target, α beam with E(α)=12 MeV. α measured in Si(Au) detector. Report E2 and E4 matrix elements.
- 1975Le22: α beam with E(α)=12-19 MeV. α measured in magnetic spectrometer. See 1973Be40 for same results.
- 1975Ro24: ¹⁶O beam with E(¹⁶O)=40 MeV. Measured $\gamma\gamma(\theta)$.
- 1977Fi01: Enriched (98.69%) target, α beam with E(α)=11.23-12.00 MeV. α measured in Si(Au) detector. Report E2 and E4 matrix elements.
- 1977Ke06: Enriched target, ⁵⁶Fe and ⁸⁴Kr beams with E=4.14 MeV/nucleon. γ measured with Ge detector. $T_{1/2}(8^+, 10^+, 12^+)$ determined by Doppler-broadened lineshape method.

1977Wo03: Enriched target, α beam with E(α)=11.5-12 MeV. Si(Au) detector. Report B(E2)(82).

- 1979Ki14: Enriched (94%) target, p beam with E(p)=35 MeV. Measured p' measured in magnetic spectrometer. Report E2 and E4 moments.
- 1980Jo08: ⁴⁰Ar beam with $E(^{40}Ar)=146,153$ MeV. γ 's measured with Ge(Li) detector. $T_{1/2}(4^+,6^+,8^+,10^+)$ determined by Doppler-shift recoil-distance method.

1992Mo20: ⁵⁸Ni beam with E(⁵⁸Ni)=220 MeV. γ 's measured with array of 20 Ge detectors and recoil ⁵⁸Ni with 5 Si detectors. Measured coincidences and $\gamma(\theta)$, report 5 bands with J^{π} to 16⁺, 13⁻, 6⁺, 14⁺, and 7⁺. Report only level energies, no E γ or I γ .

- 1999As05: ¹⁷⁶Yb and ²⁰⁸Pb beams, measured γ 's with GAMMASPHERE array of 55 Compton-suppressed Ge detectors. Report levels in ground-state band up to 22⁺.
- 1999Kr10: ¹⁶O beam with $E(^{16}O)=65$ MeV. Measured γ 's in YRAST Ball array of 3 Clover detectors, 19 Compton-shielded Ge detectors and particles with 8 photoelectric cells. Measured $T_{1/2}$ by Doppler-shifted Attenuation Method (DSAM) for 3 levels.

2000KuZT: ⁹⁰Zr beam, $E({}^{90}$ Zr)=380 MeV. Enriched target, γ 's detected in the GEMINI Ge-detector array. Show only two gated γ -ray spectra. Present only γ 's within the g.s. band. g.s. band mentioned only up to the 16⁺ member.

- 2001MoZT: ⁹⁰Zr beam, E(⁹⁰Zr)=340 MeV. Discuss relative population in Coul. ex. of the members of the first two excited $K^{\pi}=0^+$ bands. Many of the same authors as 2000KuZT.
- 2009WiZU: ¹⁵⁴Sm(¹⁶O,¹⁶O'), E=55, 60, 65 MeV; measured conversion electrons Ee, Ie after Coulomb excitation; deduced monopole strength, β-band.
- 2012Mo23: E=570 MeV ¹⁵⁴Sm beam from Atlas accelerator at ANL on 0.63 mg/cm² ¹²C target. Gamma rays detected by Gammasphere array of 99 HPGe detectors. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$. Deduced E2 matrix elements from analysis of relative Coul. ex. yields with a multiple Coulomb excitation code based on Winther-de Boer theory. Matrix elements were constrained by the experimental branching ratios and multipole mixing ratios. Known B(E2) values for g.s. band transitions and known static quadrupole moments for the first 2⁺ and 4⁺ states were included in the analysis. Relative sign of E2 matrix elements were derived from Alaga rule. Comparison with X(5) and CBS model calculations.
- 2014Sm02: E=65 MeV ¹⁶O beam on 1.5 mg/cm² thick 99% enriched ¹⁵⁴Sm target. Measured γ rays and ce due to Coulomb excitation of ¹⁵⁴Sm using Silicon And GErmanium (SAGE) spectrometer at the University of Jyväskylä composed of 34 High-Purity Germanium (HPGe) detectors (24 clovers and 10 EUROGAM Phase I detectors) from the JUROGAMII array coupled to a 1-mm thick 90-segment single-sided annular silicon strip detector. Data collected for 65 h using with average beam current of 20 pnA. Measured γ - γ and γ -ce coincidences. Deduced levels, E_{γ} , K-conversion coefficient and multipolarities. Electric monopole transition strengths determined and compared to Bohr and Mottelson β -vibrational model, the Interacting Boson Model (IBA), and two-state mixing calculations. Low values for measured monopole strength inconsistent with a β -vibrational mode.

¹⁵⁴Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0 ^c	0+	stable	 B(E2)↑=4.32 2; μ=+0.78 4 T_{1/2}: Weighted average of 3.03 ns 5 (1967Wo06) and 3.00 ns 6 (1968Ri09). Other: 2.74 ns 24 (1959Bi10). B(E2)↑: Weighted average of 4.30 3 (1972Sa42), 4.26 6 (1973Be40), 4.39 9 (1974Br31), 4.37 6 (average of two values in 1974Sh12), 4.266 41 (average of three values in in 1974Wo01), 4.40 9 (1976Co08), 4.490 63 (1977Fi01, but with the uncertainty increased by a factor of 3),
81.99 ^c 2	2+	3.02 ns 4	

Continued on next page (footnotes at end of table)

¹⁵⁴Sm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
266.67 ^c 8	4+	172 ps 4	and 4.34 <i>6</i> (average of two values in 1979Po04). For a weighted average of the published values, the reduced χ^2 =6.6 and the value of 1977Fi01 is 5 σ high; therefore, the uncertainty of this value was increased. With the uncertainty assigned by the evaluator, the reduced χ^2 =1.80. Several of these values were derived from reported E2 matrix elements. B(E2)↑: Other B(E2) values: 4.61 20 (1960E107), 4.1 4 (1961Go09), 4.38 30 and 4.53 35 (1963Gr04), 5.1 4 (1964Ho25), 4.2 6 (1968Ve01), 4.268 33 (1973GrXL, see 1974Sh12), 4.26 6 (1975Le22, same value as in 1973Be40), 4.45 39 (1977HoZF, preliminary result), 4.24 12 (1979Ki14). μ : From 1989Ra17 evaluation and 2005St24 compilation and based on data of 1969Wh04. Others: +0.53 12 (1958Go72, as revised in 1976Fu06), 0.58 6 (1967Wo06, as revised in 1978LeZA), 0.37 8 (1968Be42), 0.63 5 (1970Be36), and 0.76 8 (1974Ar23). B(E4)↑= 0.305 18; μ =+1.35 15 T _{1/2} : Weighted average of 173 ps 5 (1972Di06) and 169 ps 10 (1980Jo08). B(E2)↑: B(E2,2+→4 ⁺)↑=2.5 4; weighted average of 2.32 46 (1964Al25) and 2.7 6 (1968Ve01). This value corresponds to a lifetime of 149 ps 24 for the 4 ⁺ level, which compares well to the directly measured value of 172 ps 4. B(E4)↑: Computed from the square of the E4 matrix element 0.552 16, which is the weighted average of +0.67 8 (1971St24), 0.43 8 (1972Sa42), +0.58 14 (1973Be40), +0.50 +9-12 (1973Eb01), 0.54 12 (1974Br31), 0.56 7 (average of two values in 1974Sh12), 0.53 9 (average of three values in 1974Wo01), 0.63 5 (1977Fi01), 0.54 2 (1979Ki14). Others: 0.65 5 (1973GrXL, see 1974Sh12); 0.58 14 (1975Le22, see 1973Be40); and B(E4)=0.221 10 (1976Co08, from inelastic electron scattering). μ : From 1972Ku10, given as g=0.337 36. Value is also given in the evaluation of 1989Ra17
543.9 ^c 5	6+	22.7 ps 6	 and the evaluation of 2005St24. μ=+1.90 28 T_{1/2}: Weighted average of 23.3 ps 7 (1972Di06) and 22.7 ps 6 (average of two values in 1980Jo08). Other: 23.8 ps (2001KuZU, preliminary result). μ: From 1972Ku10, given as g=0.317 46. Value is also given in the evaluation of 1989Ra17 and the compilation of 2005St24.
902.8 ^c 7	8+	5.93 ps 25	$T_{1/2}$: Weighted average of 6.2 ps 6 (1972Di06), 6.0 ps 4 (1977Ke06), and 5.8 ps 4 (1980Jo08). Other: 6.8 ps (2001KuZU, preliminary result).
921.6 ^{&d}	1-		
1012.6 ^d	3-		$B(E3)\uparrow=0.10\ 2$ E(level): value shown on the level scheme of 1992Mo20. $B(E3)\uparrow$: Weighted average of 0.11 3 (1968Ke04) and 0.09 2 (1968Ve01). Other: 1966Se06.
1099.9 <mark>&e</mark>	0^+	0.90 ps 21	T _{1/2} : From 1999Kr10.
1177.9 ^{&e}	2+	>2.4 ps	 B(E2)⁺=0.023 5 T_{1/2}: From 1999Kr10. Other: 1.4 ps 3 computed from B(E2) value, but 1999Kr10 argue that this value is not correct. B(E2)⁺: Weighted average of 0.030 7 (1965Y004) and 0.020 5 (1968Ve01).
1180.9 ^{&d}	5-		
1333.0 [°] 9	10+	2.45 ps 12	$T_{1/2}$: Weighted average of 2.52 ps <i>16</i> (1977Ke06) and 2.37 ps <i>18</i> (1980Jo08). Other: 2.45 ps (2001KuZU, preliminary result).
1338 ^{&} e	4+		
1371? ^{@&}	(4 ⁺)		E(level): Existence of this level is not confirmed in $(n,n'\gamma)$. IT is not included in the Adopted Levels.
1431 ^{&d}	7-		
1440.4 ^{<i>f</i>}	2+	0.42 ps 3	B(E2) \uparrow =0.069 <i>10</i> T _{1/2} : From 1999Kr10. Other: 0.28 ps <i>4</i> computed from B(E2) value. B(E2) \uparrow : From 1968Ve01; note conflict with T _{1/2} measurement.
$1475^{\textcircled{0}}$	(6^+)		
1539.900	5'		

¹⁵⁴Sm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		Comments	
1577 ^{&e}	6+				
1584 <mark>b</mark>	3-				
1665.1 ^{&} f	4+				
1706 ^b	3+				
1741 ^{@&}	(8 ⁺)				
1760 ^{&d}	9-				
1805 <i>af</i>	5+				
1815 ^b	2+,3				
1825.9 [°] 10	12^{+}	1.39 ps 9	$T_{1/2}$: From 1980Jo08.		
1974 ^{& f}	(6^{+})				
2069 ^{@&}	(10^{+})				
2154.3 <i>af</i>	7+				
2163 ^{&d}	11-				
2373.0 ^c	14+				
2439 a	(12^{+})				
2636 ^{<i>&d</i>}	13-				
2793? ^{@&}	(14+)				
2968.2°	16 ⁺				
4295 7 ^C	20^{+}				
5027.9 ^c	22^{+}				

[†] From γ energies, unless otherwise noted.

[‡] From adopted values.

[#] From Coulomb-excitation studies only; see Adopted Levels for values from other measurements.

[@] Proposed as a member of a band by 1992Mo20, but the existence of the suggested bandhead (at 1371 keV) is questionable and the band characteristics are not otherwise discussed.

[&] From 1992Mo20.

^{*a*} Level shown by 1992Mo20, but no γ transitions indicated.

^b From 2012Mo23. ^c Band(A): $K^{\pi}=0^{+}$ ground-state band.

^{*d*} Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band.

^e Band(C): First excited $K^{\pi}=0^+$ band. According to 2014Sm02 low values for measured monopole strength are inconsistent with β -vibrational mode. However 2009WiZU state that the large monopole strength for the 0⁺ -> 0⁺ transition confirms the interpretation of the first excited 0^+ state as collective β -vibrational excitation of the g.s.

^{*f*} Band(D): γ -vibrational band.

Coulomb excitation (continued)								
							$\gamma(^{154}$	⁴ Sm)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^d	Comments
81.99 [@] 2		81.99	2^{+}	0.0	0^{+}	E2	4.86	
184.68 <mark>&</mark> 8		266.67	4+	81.99	2+	E2	0.273	
277.2 5	310 20	543.9	6+	266.67	4+			
358.9 5	14.4 8	902.8	8+	543.9	6+			
375 [°]	4.6 3	1815	2+,3	1440.4	2+			
403 ^{ae}		2163	11-	1760	9 ⁻			
430.2 5		1333.0	10	902.8	8'			
4/300		2030	13	2103	11 10+			
528 ^a		1623.9	12 7-	902.8	8+			
547 1b		2373.0	, 14+	1825.0	12+			
505 ab		2373.0	14	2272.0	14+			
595.2^{a}		2908.2	5-	2575.0 543.0	14 · 6 ⁺			
637.0		2600.2	J 10+	2068.2	16+			
674^{a}		5009.5 1577	18 6 ⁺	2908.2	Q+			
coc h		1377	$\frac{0}{20^{+}}$	2600.2	0 10+			
$\frac{080.4^{2}}{722}$		4293.7	20*	3009.5	10			
732.20		5027.9	221	4295.7	201			
743.9^{-1}	3/3	1012.0	5 1+	200.07 543.0	4 · 6+	E2		$R(E2)(W_{H}) = 0.66.21(2012M_{0}23)$
794	5.4 5	1338	4	545.9	0	E2		B(E2)(W.u.)=0.00 27 (2012W023) Mult.: Adopted value. Relative sign of E2 matrix element=+ (2012Mo23)
810 ^a		2636	13-	1825.9	12^{+}			
830 ^a		2163	11-	1333.0	10^{+}			
839.7 <mark>a</mark>		921.6	1-	81.99	2^{+}			
857 <mark>a</mark>		1760	9-	902.8	8+			
887 ^a		1431	7-	543.9	6+			
911.2 ^{<i>a</i>}	62.7 16	1177.9	2+	266.67	4+	E2		$\alpha(K)\exp=0.0034 \ 16 \ (2014Sm02)$ B(E2)(W.u.)=1.32 \ 15 \ (2012Mo23) Relative sign of E2 matrix element=+ (2012Mo23). Additional information 2. Mult : Adopted value.
914.2 ^{<i>a</i>}		1180.9	5-	266.67	4+			
921.6 ^a		921.6	1^{-}	0.0	0^+			
930.7 ^a		1012.6	3-	81.99	2^{+}			
931 ^a		1475	(6+)	543.9	6+			
967 ^{ae}		2793?	(14+)	1825.9	12+			
1018.0 ^{<i>ci</i>}	91.1 <i>15</i>	1099.9	0^{+}	81.99	2+	E2	0.00240 4	$B(E2)(W.u.)=11.2 \ 21 \ (2012Mo23)$

 $^{154}_{62}\mathrm{Sm}_{92}$ -5

I.

						C	oulomb ex	citation (c	ontinued)
	γ ⁽¹⁵⁴ Sm) (continued)								
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	$I_{(\gamma+ce)}$	Comments
									Relative sign of E2 matrix element=+ (2012Mo23).
1033 <mark>a</mark>		1577	6+	543.9	6+				Munt.: Adopted value.
1071 ^a	13.1 9	1338	4+	266.67	4 ⁺	E0+M1+E2	>50		α (K)exp=0.0079 +87-73 (2014Sm02,2022Ki03) B(E2)(W.u.)=0.57 <i>18</i> (2012Mo23) Additional information 4. ρ^{2} (E0) _{exp} =0.0082 + <i>120</i> -82 (2014Sm02) 2022Ki03 evaluation results: ρ^{2} (E0) _{exp} =0.012 9, q_{K}^{2}=4.9 <i>34</i> , X(E0/E2)=0.8 <i>5</i> , α (K)exp=0.0079 +87-73, δ >50, T _{1/2} =43 ps + <i>10</i> - <i>16</i> (original reference not found).
									Mult., δ : Adopted value.
1096.0 ^{<i>a</i>}	87.0 <i>16</i>	1177.9	2+	81.99	2+	E0+M1+E2	-30 21		Relative sign of E2 matrix element=- (2012Mo23). α (K)exp \leq 0.0067 6 (2014Sm02,2022Ki03) B(E2)(W.u.)=0.72 9 (2012Mo23) Additional information 3. ρ^{2} (E0) _{exp} \leq 0.0094 15 (2014Sm02) using α (K)=0.00257 4 for 911 γ (theory from BrIcc code), and α (K)exp \leq 0.0067 6 for 1096 γ from current experiment. Other value: <0.0063 (2009WiZU). 2022Ki03 evaluation results: ρ^{2} (E0) _{exp} \leq 0.009, $q_{K}^{2}\leq$ 3.1, X(E0/E2) \leq 0.45, α (K)exp \leq 0.0067 6 , δ =-30 21. Tup 2.4 ps.
1099.3 ^e		1099.9	0+	0.0	0+	EO		0.50 18	 B(E2)(W.u.)=0.72 9 is for δ=-30 21. The other calculated value, B(E2)(W.u.)=0.15 2 for δ=-0.48 2, is rejected by 2012Mo23 from Alaga Rule. Relative sign of E2 matrix element=- (2012Mo23). Mult.: Adopted value. δ: from γ(θ) data (2012Mo23). The other solution of δ=-0.48 2 is rejected by 2012Mo23 on the basis of comparison of experimental and predicted (by Alaga rule) B(E2) ratios. Conversion electrons corresponding to 1099γ found in spectrum measured only by 2009WiZU. ρ²(E0)_{exp}=0.096 42 (2009WiZU) 2022Ki03 evaluation results for E0, 1099.3 transition and E2, 1017.2γ: ρ²(E0)_{exp}≠0.110 40, q²_K=2.3 8, X(E0/E2)=0.31 10 for T_{1/2}=0.90 ps 21. I_(γ+ce): From I(1018γ)=91.1 15 and α(K)=0.00203 3 one can get the corresponding relative intensity of the K-shell conversion electrons Ice(K)(1018γ)=0.185 4; this multiplied by q²_K = Ice(K)(1099γ)/Ice(K)(1018γ) = 2.3 8 gives Ice(K)(1099γ)=0.43 15. Using the ratio of the electronic factors Ω_K(E0)/Ω_{Tot}(E0) = 0.85 6 calculated by the code BrIcc, one finally gets Ice(K)(1099γ)=0.50 18.
1104 ^{ae} 1106 ^a 1121.3 ^a		1371? 2439 1665.1	(4 ⁺) (12 ⁺) 4 ⁺	266.67 1333.0 543.9	4+ 10+ 6 ⁺				

6

Т

							Coulor	mb excitation (continued)
							2	v ⁽¹⁵⁴ Sm) (continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	Comments
1166 ^a 1173.7 ^a	13.9 10	2069 1440.4	(10 ⁺) 2 ⁺	902.8 266.67	8+ 4+	E2		B(E2)(W.u.)=0.36 5 (2012Mo23) Relative sign of E2 matrix element=+ (2012Mo23). Mult : Adopted value
1177.9 ^a	55.7 16	1177.9	2+	0.0	0+	E2		B(E2)(W.u.)= $0.32 4$ (2012Mo23) Relative sign of E2 matrix element=+ (2012Mo23). Mult.: Adopted value.
1197 ^a 1208 ^a 1256 ^a	16.4 <i>6</i>	1741 1475 1338	(8 ⁺) (6 ⁺) 4 ⁺	543.9 266.67 81.99	6+ 4+ 2+	E2		B(E2)(W.u.)=0.32 <i>11</i> (2012Mo23) Relative sign of E2 matrix element=+ (2012Mo23).
1273.2 ^a 1289 ^{ae} 1310 ^a 1317 ^c		1539.9 1371? 1577 1584	3^+ (4 ⁺) 6^+ 3^-	266.67 81.99 266.67 266.67	4 ⁺ 2 ⁺ 4 ⁺ 4 ⁺			Mult.: Adopted value.
1358.5 ^a	258.2 61	1440.4	2+	81.99	2+	M1+E2	-19 10	B(E2)(W.u.)=3.2 3 (2012Mo23) A ₂ =-0.073 16; A ₄ =+0.005 18 B(E2)(W.u.)=3.2 3 is for δ =-19 10. The other calculated value, B(E2)(W.u.)=0.65 6 for δ =-0.51 7, is rejected by 2012Mo23 from Alaga Rule. Relative sign of E2 matrix element=+ (2012Mo23). Mult.: Adopted value. δ : from $\gamma(\theta)$ data. Other solution of δ =-0.51 7 is rejected on the basis of comparison of experimental and predicted (by Alaga rule) B(E2) ratios.
1398.4 ^a 1430 ^a 1440 ^c	4.2 4	1665.1 1974 1706	4+ (6+) 3+	266.67 543.9 266.67	4+ 6+ 4+			experimental and predicted (by Fulga fulle) $D(D2)$ failes.
1440.4 ^{<i>a</i>}	207.6 53	1440.4	2+	0.0	0+	E2		B(E2)(W.u.)=1.9 2 (2012Mo23) A ₂ =+0.229 18; A ₄ =-0.029 21 Relative sign of E2 matrix element=+ (2012Mo23). Mult : Adopted value
1458.0 ^a 1502 ^c 1583.2 ^a 1707 ^a		1539.9 1584 1665.1 1974	3 ⁺ 3 ⁻ 4 ⁺ (6 ⁺)	81.99 81.99 81.99 266.67	2+ 2+ 2+ 4+			

[†] From unweighted average of data of 1972Di06, 1977Ke06, and 1980Jo08, unless otherwise noted. Uncertainty assumed to be 0.5 keV, as quoted by 1977Ke06.
 [‡] Relative intensities from 2012Mo23.
 [#] From conversion-electron study (1970Da28) unless otherwise specified.

-

$\gamma(^{154}\text{Sm})$ (continued)

^{*@*} From 1958Ch36. ^{*&*} From ¹⁵⁴Pm β^- decay.

^{*a*} Deduced from level energies of 1992Mo20.

^b From 1999As05. ^c From 2012Mo23.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

 $^{154}_{62}Sm_{92}$

 $^{154}_{\ 62}Sm_{92}$

Coulomb excitation

Coulomb excitation

 $^{^{154}}_{62}Sm_{92}$