		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

 $Q(\beta^{-}) = -717.2 \ II; \ S(n) = 7966.8 \ 8; \ S(p) = 9097 \ 9; \ Q(\alpha) = -1200.5 \ II 2021Wa16$ $S(2n) = 13835.2 \ 8, \ S(2p) = 16884 \ 24 \ (2021Wa16).$

The data on E γ and I γ values and J^{π} assignments are primarily from the ¹⁵⁴Pm β^- decays (1.73 min and 2.68 min) (1971Da28,1974Ya07,1993GrZY) and the (n,n' γ) reaction (2006De19).

¹⁵⁴Sm Levels

In the Inelastic Scattering and $(n,n'\gamma)$ data sets, a number of levels are shown which are not included in this Adopted Levels data set. For a listing of those levels, see those source data sets.

2006De19, in $(n,n'\gamma)$, do not confirm the population of levels at 1104, 1120, 1295, 1365 and 1371 keV, if they have J \leq 5. see, also, the Inelastic Scattering Data Set.

Cross Reference (XREF) Flags

			A B C D	
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0#	0+	stable	ABCDEFGH	T _{1/2} : The T _{1/2} for two-neutrino double β ⁻ decay to the 2 ⁺ level in ¹⁵⁴ Gd is measured to be $\geq 2.3 \times 10^{18}$ y (1996De60). This is the same value listed in the tabulation of 2002Tr04. A model calculation of the T _{1/2} for double β ⁻ decay gives 1.0×10^{23} y for two-neutrino mode and $9 \times 10^{24} (m_n^2)$ y×(eV) ² . The change in the nuclear charge radius between ¹⁵² Sm and ¹⁵⁴ Sm can given by either λ or $\Delta < r^2 >$ where $\lambda = \Delta < r^2 > + c_1 \Delta < r^4 > + c_2 \Delta < r^6 > . \lambda = 0.219$ fm ² <i>10</i> with the corresponding values $\Delta < r^2 > = 0.231$ fm ² <i>11</i> , $\Delta < r^4 > = 0.00187$ fm ⁴ 9, and $\Delta < r^6 > = 0.0000126$ fm ⁶ 7 from 1990Wa25. Other values: $\lambda = 0.221$ <i>13</i> (1973Le16), 0.220 <i>11</i> (1981Ne01) and 0.222 <i>11</i> (1997Ji06) and $\Delta < r^2 > = 0.215$ <i>16</i> (1974He28), 0.250 <i>14</i> (1979Po04 as quoted in 1983La06), 0.230 <i>12</i> (1980Br15), 0.230 (1985Al06), 0.226 <i>12</i> (1987Bo58), and 0.222 (1990En01). Other: 1989GaZO, 1995Ne12, and 1996La03. $\Delta < r^2 >$ for the neutron distribution is 0.27 <i>4</i> (1983Ja06). From an analysis of proton-diffraction data using 800-MeV protons, 2004Ko34 deduce r _{BS} =5.24 fm 9 for the "Black-Sphere" radius, taken to be a measure of the matter distribution. The nuclear radius has been reported as $< r^2 > ^{1/2} = 5.113$ fm <i>11</i> (1979Po04) and 5.1143 fm 9 (1995Fr22 evaluation). From an analysis of data on nuclear rms charge radii, 2004An14 report $< r^2 > ^{1/2} = 5.111$ fm 6, while 2007Li14 recommend 5.120 fm 28. For other values, see 1976Co08 and 1977HoZF in the (γ, γ'), (e,e') Data Set.
81.981 [#] 15	2+	3.02 ns 4	ABCDEFGH	Q=-1.87 4; μ =+0.78 4 XREF: D(86) The isomer shift is $\Delta < r^2 >= 0.0008 \text{ fm}^2 5$ (1974Ka38) and 0.0012 fm ² 9 [computed from $\Delta < r^2 >/(r^2 >(0) \text{ of } 1970\text{Wh02 and } < r^2 >(0) \text{ of } 1979\text{Po04}]$]. J ^{π} : From E2 γ to 0 ⁺ ground state. T _{1/2} : Weighted average of 3.03 ns 5 (1967Wo06) and 3.00 ns 6 (1968Ri09) from Coul. ex. Other: 2.74 ns 24 (1959Bi10) from Coul. ex. From the B(E2) value of 4.32 2, T _{1/2} =3.01 ns 4, with the uncertainty primarily from the 1.5% uncertainty assigned to the theoretical α .

¹⁵⁴Sm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments		
				 Q: From 1989Ra17 evaluation and 2005St24 compilation and based on muonic atom study (1979Po04). Others: -1.3 5 (1969Wh04), -1.5 3 (1982Cl03), and 1.42 (from ratio given by 1975Ro24 and converted to actual value by 1978LeZA). μ: From 1989Ra17 evaluation and 2005St24 compilation and based on data of 1969Wh04 in Coul. ex. For other values, see the Coul. ex. data set. 		
266.817 [#] 22	4+	172 ps 4	ABC EFGH	 μ=+1.35 15; Q=-2.2 8; B(E4)↑=0.305 18 J^π: From E2 γ to 2⁺ level and band structure. T_{1/2}: Weighted average of 173 ps 5 (1972Di06) and 169 ps 10 (1980Jo08) from Coul. ex. μ: From 1989Ra17 evaluation and 2005St24 compilation and based on data of 1972Ku10. Q: From 1982Cl03 (inel. scatt.). B(E4)↑: From Coul. ex. Other: 0.221 10, from 1976Co08, (e,e'). 		
544.10 [#] 4	6+	22.7 ps 6	A EFGH	 μ=+1.90 28 B(E6)↑=0.007 5 J^π: From γ to 4⁺ level and band structure. Coulomb-excited. T_{1/2}: Weighted average of 23.3 ps 7 (1972Di06) and 22.1 ps 7 (average of two values in 1980Jo08) from Coul. ex. μ: From 1989Ra17 evaluation and 2005St24 compilation and based on data of 1972Ku10. B(E6)↑: From 1977HoZE, (e,e'), reported as a preliminary result. 		
902.75 [#] 19	8+	5.9 ps <i>3</i>	FG	 μ=2.8 4 J^π: From γ to 6⁺ level and band structure. Coulomb-excited. T_{1/2}: Weighted average of 6.2 ps 6 (1972Di06), 6.0 ps 4 (1977Ke06), and 5.8 ps 4 (1980Jo08) from Coul. ex. μ: From graph in 1982An10. Other: see J-dependent expression given in 1989Ra17 evaluation which is based on data of 1982An10. 		
921.345 [@] 19	1-	21 fs 1	AB EFGH	J^{π} : E1 excitation in (γ, γ') . T _{1/2} : From weighted average of 20.1 fs <i>14</i> , by DSAM in $(n, n'\gamma)$ (1993Ju04) and 24 fs 3, (γ, γ') .		
1012.40 [@] 3	3-	23 fs 3	AB FGH	B(E3) \uparrow =0.10 2 J ^{π} : E3 excitation in Coul. ex. T _{1/2} : From 1993Ju04 by DSAM in (n,n' γ). B(E3) \uparrow : From Coul. ex.		
1099.26 ^{&} 5	0+	0.92 ps 18	B DEFGH	XREF: D(1117) J ^π : L=0 in (t,p). T _{1/2} : Weighted average of 0.90 ps 21 (1999Kr10, DSAM) and 0.94 ps 18 (2012Mo23, measured B(E2)(W.u.)=11.2 21), both from Coul. ex.		
1177.812 ^{&} 21	2+	4.3 ps 5	AB EFGh	J ^{π} : From γ 's to 0 ⁺ and 4 ⁺ states. E2 excitation in Coul. ex. T _{1/2} : weighted average of 4.23 ps 49, 4.25 ps 54 and 4.35 ps 55 (from Coul. ex. respective B(E2)(W.u.) \downarrow values measured by 2012Mo23 for the γ rays from this level: 1.32 <i>15</i> , 0.72 9, 0.32 4). Other values: from Coul. ex. (1999Kr10): >2.4 ps (DSAM); 1.4 ps 3 (from B(E2)=0.023 5, but 1999Kr10 argue that this value is too small).		
1181.26 [@] 4	5-		FGh	J^{π} : From γ to 4 ⁺ state and octupole-band structure.		
1202.44 ^b 6	0+		B DE GH	 XREF: D(1218) J^π: L=0 transition in (t,p) (1966Bj01). Nuclear shape is discussed by 1999Kr10 and 2001MoZT. 		
1286.29 ^b 4	2+		AB D G	XREF: D(1299) J^{π} : From γ 's to 0 ⁺ and 4 ⁺ states.		
1333.0 [#] 9	10+	2.45 ps 12	FG	μ =3.2 8 J ^{π} : From multiple Coulomb excitation and band structure.		

¹⁵⁴Sm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	Х	REF	Comments
					 T_{1/2}: Weighted average of 2.52 ps <i>16</i> (1977Ke06) and 2.37 ps <i>18</i> (1980Jo08), measured following Coulomb excitation. μ: From graph in 1982An10. Other: see J-dependent expression given in 1989Ra17 evaluation, which is based on data of 1982An10.
1337.60 5	4+	5.7 ps <i>18</i>		FGH	T _{1/2} : weighted average of 5.6 ps <i>18</i> , 5.8 ps <i>18</i> and 5.6 ps <i>19</i> (from Coul. ex. respective B(E2)(W.u.) \downarrow values measured by 2012Mo23 for the γ rays from this level: 0.66 <i>21</i> , 0.57 <i>18</i> , 0.32 ps <i>11</i>). J ^{π} : From γ 's to 2 ⁺ and 6 ⁺ states. Populated in Coul. ex.
1430.93 [@] 14 1440.04 ^a 3	7 ⁻ 2 ⁺	0.42 ps 3		FG FGH	J ^{π} : From γ 's to 6 ⁺ and 8 ⁺ levels and band structure. J ^{π} : γ 's to 0 ⁺ and 4 ⁺ states. E2 excitation in Coul. ex. T _{1/2} : Coul. ex. weighted average of 0.42 ps 3 (1999Kr10, DSAM) and 0.42 ps 4 (2012Mo23, B(E2)(W.u.) \downarrow). The latter value is the weighted average of 0.42 ps 7, 0.42 ps 4 and 0.42 ps 5 (calculated from the respective B(E2)(W.u.) \downarrow values measured by 2012Mo23 for the γ rays from this level: 0.36 5, 3.2 3, 1.9 ps 2). From Coul. ex.: other: 0.28 ps 4, computed from
b					B(E2)=0.069 10 (1999Kr10).
1472.16 ⁰ 12	(4^{+})		Α	G	J ^{π} : From γ 's to 3 ⁻ and 4 ⁺ levels; expected band structure.
1475 [‡] 1475.81 ^c 4	(6 ⁺) 1 ⁻		В	F GH	J^{π} : From γ 's to 4 ⁺ and 6 ⁺ levels. Suggested band member. J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels; angular distribution in inelastic scattering. Assigned as the bandhead of the K ^{\pi} =1 ⁻ octupole band.
1515.18 ^C 5	2-		AB	GH	XREF: $H(1522)$
1539.19 ^a 4	3+		A	FGH	XREF: H(1547) J^{π} : From γ' 's to 2 ⁺ and 4 ⁺ states. Expected band structure.
1577 ^{&}	6+			F	J^{π} : From γ' s to 4 ⁺ and 8 ⁺ states. Band assignment is from 1992Mo20 (Coul.
1584.50 [°] 5	3-		A	FGH	J^{π} : From γ to 2 ⁺ and 4 ⁺ states and angular distribution in inelastic scattering.
1014.// / 1660.65 C /	4-		Б	C	Π_{2} From α to 4^{\pm} state and hand structure
1664.82 ^{<i>a</i>} 7	4 4 ⁺		A	FGH	J^{π} : From γ' 's to 2 ⁺ and 4 ⁺ states, angular distribution in inelastic scattering, and expected band structure.
1673.90 7	2		AB	G	J^{π} : Dipole γ' s to 1 ⁻ and 3 ⁻ levels.
1706.71 5	3+		Α	FGH	J^{π} : From $\gamma(\theta)$ in $(n,n'\gamma)$, assuming that the transition to the 2 ⁺ level involves no parity change.
1741 [‡]	(8 ⁺)		۸D	F	J^{π} : From γ to 6 ⁺ level. Suggested band member.
1755 67 4	(3^{-})			FC	I^{π} : From a/s to I^{-} and 2^{-} levels and log $ft > 7.3$ from (A^{+}) parent
1750.074 $1760^{@}$	(5 ⁻) 9 ⁻		AD	F	J^{π} : From γ to 8^+ level and band structure.
1764.4 4			В		
1774.31 [°] 8	5-		Α	GH	J ^{π} : From E1 γ to 4 ⁺ level, γ to 6 ⁺ level, and band structure.
1804.99 ^a 10	5+		Α	FG	J ^{π} : From γ 's to 4 ⁺ and 6 ⁺ levels and band structure.
1815.04 5 1818 37 8	$2^+,3$ (4 ⁺ 5)		A A	FGH	J^{π} : Dipole γ to 2 ⁺ level, γ to 4 ⁺ level. I^{π} : From γ 's to 4 ⁺ and 6 ⁺ levels and log $ft \approx 7.3$ from (4 ⁺) parent
1825.9 [#] 10	(4 ,5) 12 ⁺	1.39 ps 9	п	F	J^{π} : From multiple Coulomb excitation and band structure.
1878 70 4	(2^{+})		Α	G	$I_{1/2}^{\pi}$. From γ 's to 0^+ and 4^+ levels
1890.45 11	1-		В	EG	J^{π} : E1 transitions to 0 ⁺ and 2 ⁺ levels in $(n,n'\gamma)$. Excitation via a presumptive E1 transition in (γ,γ') . See the comment in that data set.
1900 1922.05 <i>4</i>	2+		A	E E G	J ^{π} : Fed by primary γ from 1 ⁻ state populated via n-capture γ rays; γ 's to 2 ⁺
				_	and 4 ⁺ levels. E1 γ from 3 ⁻ indicates π =+.
1925.56 <i>16</i> 1945.61 <i>6</i>	(3-)		AB	G G	J [*] : 2006De19, $(n,n'\gamma)$, report J [*] =4 ⁺ . J ^{π} : From γ 's to 1 ⁻ and 3 ⁻ levels and log $ft > 7.0$ from (4 ⁺) parent.

¹⁵⁴Sm Levels (continued)

E(level) [†]	J^{π}	Х	REF	Comments				
1973.76 5	1-,2+	В	E GH	J^{π} : From γ 's to 0 ⁺ and 3 ⁻ levels. Proposed to be excited via M1 in (γ, γ') , indicating $J^{\pi}=1^+$, but this leads to a violation of RUL for the 961.3 γ (which would then be M2) deexciting this level				
1974 ^{<i>a</i>}	(6 ⁺)		F	J^{π} : From γ' 's to 4 ⁺ and 6 ⁺ levels. Assigned as the 6 ⁺ member of the γ -vibrational band by				
1986.59 4	3-	A	EG	J^{π} : γ' s to $2^+, 2^-$ and 4^+ levels indicate $J^{\pi}=2^+, 3$. E1 γ' s to positive-parity states indicate $\pi=-$, and hence J=3. (See the comment on the decay modes of this level in the $(n,n'\gamma)$ data set).				
2013.4 6			GH	XREF: H(2012)				
2015.40 6	$(1^{-},2^{+})$	В	G	XREF: G(?) J^{π} : From γ 's to 0 ⁺ and 3 ⁻ levels.				
2062 4	(3.1^{+})	٨	Н	\mathbb{I}_{+} From a/a to 2^{+} and 4^{+} levels and log $f \sim 6.4$ from (4^{+}) parent				
2003.90 8	(3,4)	A	-	J. From γ s to 2 and 4 revers and rog $\mu \approx 0.4$ from (4) parent.				
2069* 2069.07 4	(10^{+}) (2^{+})	В	г G	γ From γ to 8° level and band structure. XREF: G(?)				
				J^{π} : From γ' s to 0 ⁺ and 4 ⁺ levels.				
2130 4	(2+)	_	Н					
2131.82 6	(2^{+}) $(1,2^{+})$	В	G	$J^{\prime\prime}$: From γ 's to 0^{+} and 4^{+} levels.				
2139.02 4	(1,2)	Б	G	$I^{\pi_1} \gamma'_{s}$ to 0^+ and 2^+ levels				
2154.3? ^a	7+		F	J^{π} : From γ to 6 ⁺ state and band structure.				
2163 [@]	11-		F	I^{π} : From γ' s to 9 ⁻ and 10 ⁺ and band structure.				
2196.2? 5	$(1,2^+)$	В	-	J^{π} : From γ to 0^+ level.				
2232.8 4	(3,4 ⁺)	A	G	XREF: G(?) I^{π} . From γ' s to 2 ⁺ and 3 ⁺ levels and log $f_t \approx 6.8$ from (4 ⁺) parent				
2275 4			Н	3 . From f 5 to 2 and 5 foreigned to g_{f} to to from (f) patent.				
2288 4			Н					
2293.85 12	$(3,4^{+})$	Α	G	J^{π} : From γ 's to 2 ⁺ and 4 ⁺ levels and log $ft \approx 6.4$ from (4 ⁺) parent.				
2368.81 14	$(1,2^{+})$	В	G	J^{π} : From γ 's to 0 ⁺ and 2 ⁺ levels.				
2373.0#	14+	_	F	J^{π} : From γ to 12 ⁺ level and band structure.				
2421.4?	$(1,2^{+})$	B		J^{n} : From γ 's to 0^{+} and 2^{+} levels.				
2428.48 11	(1 a ±)	В	_					
2439*	(12')		F	J [*] : From γ to 10 ⁺ level and band structure.				
2445.5 4 24862 3	1		EG	J : Exclude via an W1 transition in (γ, γ) .				
2556.56 22	1-	В	ĒG	J^{π} : γ' s to 0 ⁺ and 2 ⁺ levels: E1 excitation in (γ, γ') .				
2591.32 10		В	G	· · / · · · · · · · · · · · · · · · · ·				
2618.03 12	1-	В	EG	J^{π} : From E1 excitation in (γ, γ') .				
2636 [@]	13-		F	J^{π} : From γ 's to 11^{-} and 12^{+} levels and band structure.				
2721.28 24	$(1,2^{+})$	В	G	J^{π} : From γ 's to 0^+ and 2^+ levels.				
2743.7 4	1-		EG	J^{n} : From El excitation in (γ, γ') .				
2//8.63 1/		В	E G	J [*] : From γ s to 0° and 2° levels, $J^*=1,2°$. Dipole excitation in (γ, γ) rules out 2°.				
2793?*	(14')		F	J [*] : From γ to 12 ⁺ level and band structure.				
2823.3 3	1 1 ⁻	R	F	J. FIOIR ET excitation in (γ, γ) . I^{π} : From E1 excitation in (γ, γ')				
2882.0 5	1-	Ъ	E	J^{π} : From E1 excitation in (γ, γ') .				
2907.3 5	1+		Е	J^{π} : From M1 excitation in (γ, γ') .				
2968.2 [#]	16+		F	J^{π} : From γ to 14 ⁺ level and band structure.				
3051.23 15		В						
3091.5 5	1+		E	J^{π} : From M1 excitation in (γ, γ') .				
3117.0 5	1+	_	E	J^{π} : From M1 excitation in (γ, γ') .				
3193.42 17	1' 1	В	E H	J': From M1 excitation in (γ, γ') .				
3365 9 5	1		E	J. From the excitation in (γ, γ) . I^{π} . From dipole excitation in (γ, γ') .				
3371.1 5	1+		Ē	J^{π} : From M1 excitation in (γ, γ') .				

¹⁵⁴Sm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
3426.4 5	1		Е	J^{π} : From dipole excitation in (γ, γ') .
3492.4 5	1^{+}		Е	J^{π} : From M1 excitation in (γ, γ') .
3609.3 [#]	18^{+}		F	J^{π} : γ to 16 ⁺ , and band structure.
3621.7 5	1^{+}		Е	J^{π} : From M1 excitation in (γ, γ') .
3745.8 5	1		Е	J^{π} : From dipole excitation in (γ, γ') .
3759.8 <i>5</i>	1		Е	J ^{π} : From dipole excitation in (γ, γ') .
3801.3 5	1		Е	J ^{π} : From dipole excitation in (γ, γ') .
3826.7 5	1-		Е	J^{π} : From E1 excitation in (γ, γ') .
3836.7 5	1		Е	J ^{π} : From dipole excitation in (γ, γ') .
3844.0 5	1		Е	J ^{π} : From dipole excitation in (γ, γ') .
4020 10			E	
4240 10			E	
4295.7 [#]	20^{+}		F	J^{π} : γ to 18 ⁺ and band structure.
4300 10			Е	
5027.9 [#]	22^{+}		F	J^{π} : γ to 20 ⁺ and band structure.
6465.2 10	1-	4.3 fs 21	E	J ^{π} : From E1 excitation in (γ , γ'). T _{1/2} : Calculated from level width of 0.105 eV 50 (1977Be05).

[†] From least-squares fit to γ energies, except omitted are those γ 's with questionable placements and $E\gamma$'s that do not have uncertainties.

[‡] Proposed as a member of a band by 1992Mo20 in Coul. ex., but the existence of the suggested bandhead (at 1371 keV) is questionable, and the band characteristics are not otherwise clear.

[#] Band(A): $K^{\pi}=0^+$ ground-state band. A=13.80 keV, B=-23.0 eV, computed from the energies of the 0^+ , 2^+ and 4^+ levels.

^(a) Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band. A=8.97 keV, B=+9.8 eV, computed from the energies of the 1⁻, 3⁻ and 5⁻ levels.

[&] Band(C): First excited $K^{\pi}=0^+$ band. $\alpha=13.60$ keV, $\beta=-84$ eV, computed from the energies of the 0^+ , 2^+ and 4^+ levels. 2001Ga02 suggest that this is probably not a pure β vibration.

^{*a*} Band(D): $K^{\pi}=2^+ \gamma$ -vibrational band. A=17.30 keV, B=-72 eV, A₄=+2.2 eV, computed from the energies of the 2⁺ through 5⁺ levels.

^b Band(E): Second excited $K^{\pi}=0^+$ band. $\alpha=14.18$ keV, $\beta=-35$ eV, computed from the energies of the 0^+ , 2^+ and 4^+ levels.

^{*c*} Band(F): $K^{\pi}=1^{-}$ octupole-vibrational band. A=10.40 keV, B=+13 eV, A₂=+0.316 keV, computed from the energies of the 1⁻ through 4⁻ levels.

 $\gamma(^{154}\text{Sm})$

The unplaced γ 's are not given here, see ¹⁵⁴Pm γ - decay (1.73 m and 2.68 m) and ¹⁵⁴Sm(n,n' γ). Above 2430 the B(E1)(W.u.) and B(M1)(W.u.) values are deduced by the evaluator from the B(E1) \uparrow and B(M1) \uparrow values in the ¹⁵⁴Sm(γ , γ'),(e,e') dataset.

6

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
81.981	2+	81.990 18	100	0.0	0+	E2	4.86 7	B(E2)(W.u.)=176 3 α (K)=1.989 28; α (L)=2.228 31; α (M)=0.518 7 α (N)=0.1134 16; α (O)=0.01414 20; α (P)=8.30×10 ⁻⁵ 12
266.817	4+	184.810 25	100	81.981	2+	E2	0.272 4	B(E2)(W.u.) value computed directly from B(E2) \uparrow . B(E2)(W.u.)=245 6 α (K)=0.1915 27; α (L)=0.0628 9; α (M)=0.01427 20
544.10	6+	277.34 4	100	266.817	4+	E2	0.0719 10	$\begin{aligned} &\alpha(N) = 0.00315 \ 4; \ \alpha(O) = 0.000416 \ 6; \ \alpha(P) = 9.32 \times 10^{-6} \ 13 \\ &B(E2)(W.u.) = 289 \ 8 \\ &\alpha(K) = 0.0553 \ 8; \ \alpha(L) = 0.01294 \ 18; \ \alpha(M) = 0.00289 \ 4 \end{aligned}$
902.75	8+	358.8 2	100	544.10	6+	E2	0.0327 5	α (N)=0.000643 9; α (O)=8.79×10 ⁻⁵ 12; α (P)=2.93×10 ⁻⁶ 4 B(E2)(W.u.)=319 16 α (K)=0.0260 4; α (L)=0.00520 7; α (M)=0.001150 16
921.345	1-	839.36 2	100 <i>3</i>	81.981	2+	E1	1.44×10 ⁻³ 2	$\alpha(N)=0.000257 \ 4; \ \alpha(O)=3.58\times10^{-5} \ 5; \ \alpha(P)=1.439\times10^{-6} \ 20$ $\alpha(K)=0.001240 \ 17; \ \alpha(L)=0.0001605 \ 22; \ \alpha(M)=3.41\times10^{-5} \ 5$ $\alpha(N)=7.72\times10^{-6} \ 11; \ \alpha(O)=1.153\times10^{-6} \ 16; \ \alpha(P)=7.16\times10^{-8} \ 10$
		921.33 <i>3</i>	68 2	0.0	0+	E1	1.20×10 ⁻³ 2	B(E1)(W.u.)=0.0113 6 exceeds RUL=0.01. B(E1)(W.u.)=0.0058 3 $\alpha(K)=0.001036 14; \alpha(L)=0.0001335 19; \alpha(M)=2.84\times10^{-5} 4$ $\alpha(K)=6.42\times10^{-6} 9; \alpha(Q)=0.60\times10^{-7} 13; \alpha(R)=5.00\times10^{-8} 8$
								Mult.: From $\gamma(\theta)$ and linear polarization measurements in (γ, γ') (1976Me17).
1012.40	3-	745.50 4	59.0 18	266.817	4+	E1	1.83×10 ⁻³ 3	B(E1)(W.u.)=0.0092 +14-11 α (K)=0.001571 22; α (L)=0.0002044 29; α (M)=4.35×10 ⁻⁵ 6 α (N)=9.82×10 ⁻⁶ 14; α (O)=1.466×10 ⁻⁶ 21; α (P)=9.04×10 ⁻⁸ 13 D(T1)(W.) = 0.0002 +14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -
		930.37 <i>3</i>	100 1	81.981	2+	E1	1.18×10 ⁻³ 2	B(E1)(W.u.)=0.0092 +14-11 upper bound exceeds RUL=0.01. B(E1)(W.u.)=0.0080 +12-9 α (K)=0.001016 14; α (L)=0.0001310 18; α (M)=2.78×10 ⁻⁵ 4
1099.26	0+	1017.23 10	100.0 16	81.981	2+	[E2]	2.40×10 ⁻³ 3	$\begin{aligned} \alpha(N) &= 6.50 \times 10^{-5} \ 9; \ \alpha(O) &= 9.42 \times 10^{-7} \ 13; \ \alpha(P) &= 5.88 \times 10^{-5} \ 8 \\ B(E2)(W.u.) &= 11.4 \ +28 - 19 \\ \alpha(K) &= 0.002035 \ 28; \ \alpha(L) &= 0.000286 \ 4; \ \alpha(M) &= 6.14 \times 10^{-5} \ 9 \\ \alpha(N) &= 1.387 \times 10^{-5} \ 19; \ \alpha(O) &= 2.056 \times 10^{-6} \ 29; \ \alpha(P) &= 1.209 \times 10^{-7} \ 17 \end{aligned}$

					Ado	pted Level	ls, Gammas (con	tinued)	
						$\gamma(^{154}S)$	Sm) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α^{d}	$I_{(\gamma+ce)}$	Comments
1099.26	0+	1099.3 ^g		0.0 0+	EO			0.55 20	Conversion electrons corresponding to 1099 γ found only by 2009WiZU (Coul. ex.). $\rho^2(E0)_{exp}=0.096\ 42\ (2009WiZU)\ 2022Ki03$ evaluation results for E0, 1099.3 transition and E2, 1017.2 γ : $\rho^2(E0)_{exp}\neq 0.110\ 40$, $q_K^2=2.3\ 8$, $X(E0/E2)=0.31\ 10$ for $T_{1/2}=0.90$ ps 21.
1177.812	2+	910.96 <i>3</i>	72.4 19	266.817 4+	E2		0.00304 4		I _(γ+ce) : see corresponding comment in Coul. Ex. B(E2)(W.u.)=1.30 +17-14 α (K)=0.00257 4; α (L)=0.000368 5; α (M)=7.92×10 ⁻⁵ 11 α (N)=1.789×10 ⁻⁵ 25; α (O)=2.64×10 ⁻⁶ 4; α (P)=1.523×10 ⁻⁷ 21 I _γ : weighted average of 75 6 from (n,n'γ) and 72.1 19 from Coulomb excitation.
		1095.86 3	100.0 19	81.981 2+	E0+M1+E2	-30 21	0.0052@ 32		B(E2)(W.u.)=0.71 9 α(K)=0.001747 27; α(L)=0.000243 4; α(M)=5.20×10 ⁻⁵ 8 α(N)=1.175×10 ⁻⁵ 18; α(O)=1.746×10 ⁻⁶ 26; α(P)=1.040×10 ⁻⁷ 16 Additional information 1. α: α(M1+E2)=0.00206 4. I _γ : weighted average of 100.0 19 from (n,n'γ) and 100.0 19 from Coulomb excitation. δ: from 2012Mo23, with the other value, δ=-0.48 2, rejected by 2012Mo23 due to the Alaga rule. Others: δ =+56 +130-25 or δ =-42 2 in (n,n'γ), 2006De19. ρ^2 (E0) _{exp} ≤0.0094 15 (2014Sm02, Coul. Ex.) using α(K)=0.00257 4 for 911γ (theory from BrIcc code), and α(K)exp≤0.0067 6 for 1096γ from current experiment. Other value: <0.0063 (2009WiZU). 2022Ki03 evaluation results: ρ^2 (E0) _{exp} ≤0.009, q ² _K ≤3.1, X(E0/E2)≤0.45, α(K)exp≤0.0067 6, δ =-30 21. The other calculated value, B(E2)(W.u.)=0.15 2 for δ =-0.48 2, is rejected by 2012Mo23 from Alaga Rule.
		1177.79 4	65.2 <i>14</i>	0.0 0+	E2		1.78×10 ⁻³ 3		B(E2)(W.u.)=0.32 4 α (K)=0.001510 21; α (L)=0.0002074 29; α (M)=4.44×10 ⁻⁵ 6

From ENSDF

						Ado	opted Levels, G	ammas (continu	ued)
							$\gamma(^{154}\text{Sm})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J	J_f^{π}	Mult. [#]	δ	α^{d}	Comments
									$\begin{aligned} &\alpha(\text{N})=1.004\times10^{-5} \ 14; \ \alpha(\text{O})=1.494\times10^{-6} \ 21; \\ &\alpha(\text{P})=8.99\times10^{-8} \ 13; \ \alpha(\text{IPF})=3.58\times10^{-6} \ 5 \\ \text{I}_{\gamma}: \text{ weighted average of } 65.8 \ 14 \ \text{from } (n,n'\gamma) \ \text{and } 64.0 \ 19 \\ &\text{from Coulomb excitation. Other value: } 74 \ 4 \ (\beta^- \ \text{decay} \\ (1.73 \ \text{m})). \end{aligned}$
1181.26	5-	637.14 ^{<i>f</i>} 6	35 <i>.</i> f	544.10 6	5+	E1		2.54×10 ⁻³ 4	α (K)=0.002174 30; α (L)=0.000285 4; α (M)=6.06×10 ⁻⁵ 8 α (N)=1.369×10 ⁻⁵ 19; α (O)=2.039×10 ⁻⁶ 29; α (P)=1.245×10 ⁻⁷ 17
		914.44 <i>3</i>	100 2	266.817 4	4+	E1		$1.22 \times 10^{-3} 2$	$\alpha(K)=0.001051 \ 15; \ \alpha(L)=0.0001355 \ 19; \ \alpha(M)=2.88\times 10^{-5} \ 4$
1000.44	0+	201.01.0	100 01	001 045 1	. –				α (N)=6.51×10 ⁻⁶ 9; α (O)=9.74×10 ⁻⁷ 14; α (P)=6.07×10 ⁻⁸ 9
1202.44	0.	281.01 9 1120.51 8	100 <i>21</i> 79 <i>2</i>	921.345 1 81.981 2	1 2 ⁺	E2		1.96×10 ⁻³ 3	α (K)=0.001669 23; α (L)=0.0002310 32; α (M)=4.95×10 ⁻⁵
									α (N)=1.119×10 ⁻⁵ <i>16</i> ; α (O)=1.663×10 ⁻⁶ <i>23</i> ; α (P)=9.93×10 ⁻⁸ <i>14</i> ; α (IPF)=6.80×10 ⁻⁷ <i>10</i>
1286.29	2+	274.0 10	34 1	1012.40 3	3-				
		364.91 6	52 6	921.345 1	[= 	E1		0.00905 13	α (K)=0.00773 <i>11</i> ; α (L)=0.001039 <i>15</i> ; α (M)=0.0002216 <i>31</i> α (N)=5.00×10 ⁻⁵ <i>7</i> ; α (O)=7.37×10 ⁻⁶ <i>10</i> ; α (P)=4.31×10 ⁻⁷ <i>6</i>
		1019.40 <i>20</i> 1204.30 <i>4</i>	54.1 <i>17</i> 100 <i>10</i>	266.817 4 81.981 2	1+ 2+	M1+E2	+0.8 +15-6	0.0022 4	$\alpha(K)=0.00189 \ 33; \ \alpha(L)=0.00025 \ 4; \ \alpha(M)=5.4\times10^{-5} \ 9$
									$\alpha(N)=1.22\times10^{-3}\ 20;\ \alpha(O)=1.84\times10^{-6}\ 30;\ \alpha(P)=1.15\times10^{-7}\ 22;\ \alpha(IPF)=6.44\times10^{-6}\ 21$
1333.0	10+	1286.8 5 430.2 5	6.9 <i>10</i> 100	0.0 0 902.75 8)+ 3+	[E2]		0.01935 28	B(E2)(W.u.)=314 <i>16</i> α (K)=0.01569 <i>23</i> ; α (L)=0.00286 <i>4</i> ; α (M)=0.000629 <i>9</i> α (N)=0.0001408 <i>20</i> ; α (O)=1.995×10 ⁻⁵ <i>29</i> ; α (P)=8 89×10 ⁻⁷ <i>13</i>
1337.60	4+	794.9 2	20.7 18	544.10 6	5+	[E2]		0.00411 6	B(E2)(W.u.)=0.64 +30-16 α(K)=0.00346 5; α(L)=0.000511 7; α(M)=0.0001102 15 α(N)=2.486×10 ⁻⁵ 35; α(O)=3.65×10 ⁻⁶ 5; α(P)=2.043×10 ⁻⁷ 29 I _γ : 20.7 18 from Coulomb excitation. Other value: 31.9 21 from (n,n'γ). Value from Coulomb excitation preferred because the branching ratios (and B(E2)(W.u.)↓ values) measured by 2012Mo23 for the γ's decaying this level

 ∞

I.

						Adop	oted Levels	, Gammas (con	tinued)
							<u>γ(¹⁵⁴Si</u>	m) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{d}	Comments
	-								give consistent $T_{1/2}$ values indicating that the branching ratio from $(n,n'\gamma)$ is discrepant.
1337.60	4^{+}	1070.68 7	83.0 28	266.817	4^{+}	E0+M1+E2	>50	0.013 [@] 7	B(E2)(W.u.)=0.58 + 31 - 16
									$\alpha(\mathbf{K})=0.001831\ 26;\ \alpha(\mathbf{L})=0.000255\ 4;\ \alpha(\mathbf{M})=5.47\times10^{-5}\ 8$ $\alpha(\mathbf{N})=1.237\times10^{-5}\ 17;\ \alpha(\mathbf{O})=1.836\times10^{-6}\ 26;\ \alpha(\mathbf{P})=1.089\times10^{-7}$ 15
									Additional information 2. α : α (M1+E2)=0.00216 3.
									I_{γ} : weighted average of 83.7 28 from $(n,n'\gamma)$ and 80 6 from Coulomb excitation.
									δ : from 2006De19 in (n,n' γ), which also report δ =-1.1 3.
									$\rho^{2}(\text{E0})_{\text{exp}}=0.0082 + 120-82$ (2014Sm02) 2022Ki03 evaluation results: $\rho^{2}(\text{E0})_{\text{exp}}=0.012$ 9, $q_{\text{K}}^{2}=4.9$ 34, X(E0/E2)=0.8 5, $\alpha(\text{K})\text{exp}=0.0079 + 87-73$, δ >50, $\text{T}_{1/2}=43$ ps +10-16 (original reference not found).
		1255.55 7	100.0 21	81.981	2^{+}	E2		$1.57 \times 10^{-3} 2$	B(E2)(W.u.)=0.32 +14-8
									$\alpha(K)=0.001330 \ I9; \ \alpha(L)=0.0001811 \ 25; \ \alpha(M)=3.87\times10^{-5} \ 5 \ \alpha(N)=8.76\times10^{-6} \ I2; \ \alpha(O)=1.306\times10^{-6} \ I8; \ \alpha(P)=7.92\times10^{-8} \ II; \ \alpha(IPF)=1.306\times10^{-5} \ I8 \ L_{\odot}$ weighted average of 100 0 21 from (n n' γ) and 100 4 from
									Coulomb excitation.
1430.93	7-	528.8 ^{<i>f</i>} 4 886.75 14	30 <i>f</i> 4 100 6	902.75 544.10	8+ 6+				
1440.04	2^{+}	1173.1 4	5.4 4	266.817	4^{+}	E2		1.79×10 ⁻³ 3	B(E2)(W.u.)=0.36 4
									$\alpha(K)=0.001522\ 21;\ \alpha(L)=0.0002092\ 29;\ \alpha(M)=4.48\times10^{-5}\ 6$
									$\alpha(N)=1.013 \times 10^{-5} \ 14; \ \alpha(O)=1.507 \times 10^{-6} \ 21; \ \alpha(P)=9.06 \times 10^{-8} \ 13; \ \alpha(IPF)=3.20 \times 10^{-6} \ 5$
									I_{γ} : 5.4 4 from Coulomb excitation. Other value: 8.0 9 from (n,n'γ). Value from Coulomb excitation preferred because the branching ratios (and B(E2)(W.u.)↓ values) measured by 2012Mo23 for the γ's decaying this level give consistent $T_{1/2}$ values indicating that the branching ratio from (n,n'γ) is discrepant.
		1358.09 <i>3</i>	100.0 22	81.981	2+	M1+E2	-19 10	1.37×10 ⁻³ 2	B(E2)(W.u.)=3.19 +23-27 α (K)=0.001142 17; α (L)=0.0001540 22; α (M)=3.29×10 ⁻⁵ 5 α (N)=7.44×10 ⁻⁶ 11; α (O)=1.111×10 ⁻⁶ 16; α (P)=6.80×10 ⁻⁸ 10; α (IPF)=3.31×10 ⁻⁵ 5

						Adopt	ed Levels,	Gammas (contin	ued)	
							$\gamma(^{154}\text{Sm})$	(continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α^d	$I_{(\gamma+ce)}$	Comments
					-					I _γ : weighted average of 100.0 22 from (n,n'γ) and 100.0 24 from Coulomb excitation. δ: from 2012Mo23, with the other value, δ =-0.51 7, rejected by 2012Mo23 due to the Alaga rule. In 2006De19, (n,n'γ), report δ =-0.59 3 or -8.5 15. B(E2)(W.u.)=3.2 3 is for δ =-19 10. Additional information 3.
1440.04	2+	1440.05 [†] 10	80.4 ^{<i>†</i>} 21	0.0	0+	E2		1.25×10 ⁻³ 2		B(E2)(W.u.)=1.93 <i>14</i> α (K)=0.001018 <i>14</i> ; α (L)=0.0001365 <i>19</i> ; α (M)=2.91×10 ⁻⁵ <i>4</i> α (N)=6.59×10 ⁻⁶ <i>9</i> ; α (O)=9.86×10 ⁻⁷ <i>14</i> ; α (P)=6.07×10 ⁻⁸ <i>8</i> ; α (IPF)=5.59×10 ⁻⁵ <i>8</i> I _Y : from Coulomb excitation.
1472.16	(4+)	460.0 <i>3</i> 1205.4 <i>2</i>	34 100 <i>18</i>	1012.40 266.817	3- 4 ⁺					,
1475	(6 ⁺)	931 1208		544.10 266.817	6+ 4+					
1475.81	1-	554.3 <i>4</i> 1393.83 <i>f 3</i> 1476.0 <i>6</i>	5.6 <i>11</i> 100 ^{<i>f</i>} 2.5 <i>7</i>	921.345 81.981 0.0	1^{-} 2^{+} 0^{+}					
1515.18	2-	1433.19 5	100 3	81.981	2+	E1		7.01×10 ⁻⁴ 10		$\begin{aligned} &\alpha(\mathbf{K}) = 0.000466 \ 7; \ \alpha(\mathbf{L}) = 5.92 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{M}) = 1.255 \times 10^{-5} \ 18 \\ &\alpha(\mathbf{N}) = 2.84 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 4.27 \times 10^{-7} \ 6; \\ &\alpha(\mathbf{P}) = 2.71 \times 10^{-8} \ 4; \ \alpha(\mathbf{IPF}) = 0.0001601 \ 22 \end{aligned}$
1539.19	3*	12/2.34 7 1457.23 <i>4</i>	38.0 <i>17</i> 100 <i>3</i>	266.817 81.981	4 ⁺ 2 ⁺	E2+M1	-7.5 10	1.23×10 ⁻³ 2		$\alpha(K)=0.001003 \ 14; \ \alpha(L)=0.0001341 \ 19;$ $\alpha(M)=2.86\times10^{-5} \ 4$ $\alpha(N)=6.48\times10^{-6} \ 9; \ \alpha(O)=9.69\times10^{-7} \ 14;$ $\alpha(P)=5.98\times10^{-8} \ 9; \ \alpha(IPF)=6.14\times10^{-5} \ 9$ δ ; from 2006De19.
1577	6+	674 1033 1310		902.75 544.10 266.817	8+ 6+ 4+					
1584.50	3-	45.5 1317.68 <i>4</i>	100 3	1539.19 266.817	3+ 4+	E1		7.10×10 ⁻⁴ 10	55	E _γ ,I _(γ+ce) : From ¹⁵⁴ Pm β ⁻ decay (2.68 min). α(K)=0.000539 8; α(L)=6.86×10 ⁻⁵ 10; α(M)=1.455×10 ⁻⁵ 20 α(N)=3.29×10 ⁻⁶ 5; α(O)=4.94×10 ⁻⁷ 7; α(D)=2.12×10 ⁻⁸ 4, α(DE)=8.42×10 ⁻⁵ 12
		1502.6 2	20.0 16	81.981	2+	E1		7.10×10 ⁻⁴ 10		$\alpha(\mathbf{r})=5.15\times10^{-4}$; $\alpha(\mathbf{Irr})=8.45\times10^{-5}$ <i>I</i> 2 $\alpha(\mathbf{K})=0.000430$ <i>6</i> ; $\alpha(\mathbf{L})=5.45\times10^{-5}$ <i>8</i> ;

From ENSDF

L

154 62
Sm
92-
11

$\gamma(^{154}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α^{d}	Comments
1614.77		693.39 6	100	921.345 1-				$\alpha(M)=1.157\times10^{-5} \ 16$ $\alpha(N)=2.62\times10^{-6} \ 4; \ \alpha(O)=3.93\times10^{-7} \ 6;$ $\alpha(P)=2.502\times10^{-8} \ 35; \ \alpha(IPF)=0.0002101 \ 29$
1660.65	4-	1393.83 ^J 3	100 ^J	266.817 4+				
1664.82	4+	1398.00 6	100 3	266.817 4+	M1(+E2)	-2.5 +10-25	0.00138 9	$\alpha(K)=0.00114 \ 8; \ \alpha(L)=0.000153 \ 10; \\ \alpha(M)=3.26\times10^{-5} \ 21 \\ \alpha(N)=7.4\times10^{-6} \ 5; \ \alpha(O)=1.11\times10^{-6} \ 8; \\ \alpha(P)=6.8\times10^{-8} \ 5; \ \alpha(IPF)=4.41\times10^{-5} \ 9 \\ \delta: \ from \ 2006De 19. $
		1582.8 <i>3</i>	33.0 18	81.981 2+	E2		1.10×10 ⁻³ 2	$\alpha(K)=0.000851 \ 12; \ \alpha(L)=0.0001130 \ 16; \\ \alpha(M)=2.409\times10^{-5} \ 34 \\ \alpha(N)=5.45\times10^{-6} \ 8; \ \alpha(O)=8.17\times10^{-7} \ 11; \\ \alpha(P)=5.07\times10^{-8} \ 7; \ \alpha(PF)=0.0001051 \ 15$
1673.90	2	661.47 9	100 2	1012.40 3-	E1,M1		0.007 4	$\alpha(K)=0.006 \ 4; \ \alpha(L)=7; \ \alpha(M)=1.6\times10^{-4} \ 10$ $\alpha(N)=3.6\times10^{-5} \ 24; \ \alpha(O)=5; \ \alpha(P)=3.4\times10^{-7} \ 23$
		752.57 10	82 3	921.345 1-	E1,M1		0.0048 <i>30</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0041 \ 26; \ \alpha(\mathbf{L}) = 5.5 \times 10^{-4} \ 35; \\ &\alpha(\mathbf{M}) = 1.2 \times 10^{-4} \ 7 \\ &\alpha(\mathbf{N}) = 2.6 \times 10^{-5} \ 17; \ \alpha(\mathbf{O}) = 4.0 \times 10^{-6} \ 25; \\ &\alpha(\mathbf{P}) = 2.5 \times 10^{-7} \ 16 \\ \mathbf{I}_{\gamma}: \ \text{From } (\mathbf{n}, \mathbf{n}' \gamma); \ \mathbf{I}_{\gamma} = 121 \ \text{from } ^{154} \text{Pm } \beta^{-} \ \text{decay} \\ &(1.73 \ \text{m}). \end{aligned}$
1706.71	3+	1440.05 ^{<i>f</i>} 10	100 ^{<i>f</i>}	266.817 4+	M1+E2		0.00149 25	$\begin{aligned} &\alpha(\text{K}) = 0.00123 \ 21; \ \alpha(\text{L}) = 0.000163 \ 27; \\ &\alpha(\text{M}) = 3.5 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 7.9 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 1.18 \times 10^{-6} \ 20; \\ &\alpha(\text{P}) = 7.5 \times 10^{-8} \ 14; \ \alpha(\text{IPF}) = 5.83 \times 10^{-5} \ 25 \end{aligned}$
		1624.87 12	45 18	81.981 2+	M1+E2	+0.75 +25-10	0.00129 5	$\alpha(K)=0.00099 \ 4; \ \alpha(L)=0.000130 \ 5; \ \alpha(M)=2.78\times10^{-5}$ 11 $\alpha(N)=6.30\times10^{-6} \ 26; \ \alpha(O)=9.5\times10^{-7} \ 4; \\ \alpha(P)=6.04\times10^{-8} \ 28; \ \alpha(IPF)=0.0001291 \ 25$
1741 1754.51	(8+)	1197 742.2 <i>3</i> 833.4 <i>3</i>	85 100	544.10 6 ⁺ 1012.40 3 ⁻ 921.345 1 ⁻				
1755.67	(3 ⁻)	315.5 <i>3</i> 742.90 <i>6</i> 834.05 <i>20</i> 1674.1 <i>4</i>	33 7 100 3 99 3 11.7 15	$\begin{array}{rrrr} 1440.04 & 2^+ \\ 1012.40 & 3^- \\ 921.345 & 1^- \\ 81.981 & 2^+ \end{array}$				
1760 1764.4	9-	857 1681.6 5	60	902.75 8 ⁺ 81.981 2 ⁺				

11

$\gamma(^{154}\text{Sm})$ (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J ²	f Mult. [#]	δ	α^{d}	Comments
1764.4		1764.9 4	100	0.0 0+				
1774.31	5-	1230.16 7	100 4	544.10 6+	F 1		7.11.10-4.10	(W) 0.000407 ((L) 5.40 10-5.0 (D) 1.140 10-5
		1509.0 4	20.3	266.817 41	EI		/.11×10 + 10	$\alpha(K)=0.000427$ 6; $\alpha(L)=5.42\times10^{-5}$ 8; $\alpha(M)=1.148\times10^{-5}$
1004.00	7 +			544.10				$\alpha(N)=2.60\times10^{-6} \ 4; \ \alpha(O)=3.91\times10^{-7} \ 5; \\ \alpha(P)=2.485\times10^{-8} \ 35; \ \alpha(IPF)=0.0002148 \ 30$
1804.99	5+	1261.0 1	474	544.10 6+			0.00124.20	(W) 0.00107.17 (L) 0.000141.22 (M) 2.0 (10 ⁻⁵ .5
		1538.1 2	100 5	266.817 4*	M1(+E2)		0.00134 20	$\alpha(K)=0.00107 \ 17; \ \alpha(L)=0.000141 \ 22; \ \alpha(M)=3.0\times10^{-5} \ 5$ $\alpha(N)=6.8\times10^{-6} \ 11; \ \alpha(O)=1.03\times10^{-6} \ 16; \ \alpha(P)=6.5\times10^{-8} \ 11; \ \alpha(IPF)=9.3\times10^{-5} \ 4$ Mult : From (n n'y) $\delta=0.00 \ 2 \ or \ -9.2 \ (2006De19)$
1815.04	$2^{+}.3$	276.00 25	46	1539.19 3+				With: 110m (n,n y), 0-0.00 2 01 9 2 (2000)(19).
	y -	375.06 8	100	1440.04 2+				
		528.8 ^f 4	12^{f}	1286.29 2+				E_{γ} : From 2006De19, (n,n' γ).
		637.14 ^ƒ 6	24 f	1177.812 2+				E_{γ} : From 2006De19, (n,n' γ).
		802.7 3	27	1012.40 3-				
		1548.6 2	77	266.817 4+				
		1733.11 15	93	81.981 2+	E1,M1		0.00103 26	$\alpha(K)=6.4\times10^{-4} \ 30; \ \alpha(L)=8; \ \alpha(M)=1.8\times10^{-5} \ 9$ $\alpha(N)=4.0\times10^{-6} \ 20; \ \alpha(O)=6.1\times10^{-7} \ 30; \ \alpha(P)=3.9\times10^{-8}$ $19; \ \alpha(IPF)=2.8\times10^{-4} \ 10$ Mult.: From 2006De19 (n,n' γ).
1818.37	$(4^+, 5)$	1274.33 19	40 4	544.10 6+				· · · · · · · · · · · · · · · · · · ·
1005 0	1.0+	1551.54 9	100 4	266.817 4+	+ 1723		0.01000.10	δ : 2006De19, (n,n' γ), give δ =-0.05 5 or -5 +1-2.
1825.9	12+	492.9 5	100	1333.0 10	* [E2]		0.01333 19	B(E2)(W.u.)=282 +19-17 α (K)=0.01093 16; α (L)=0.001880 27; α (M)=0.000411 6 α (N)=9.22×10 ⁻⁵ 13; α (O)=1.319×10 ⁻⁵ 19; α (P)=6.28×10 ⁻⁷ 9
1878.70	(2^{+})	339.68 20	25	1539.19 3+				
		406.63 15	23	1472.16 (4)	「)			
		438.70 20	79 45	$1440.04 2^{+}$ 1286.29 2 ⁺				
		701.1 3	21	1177.812 2+				
		956.9 3	76 9	921.345 1-				E _γ : From (n,n'γ). In ¹⁵⁴ Pm β ⁻ decay (2.68 min), a questionable γ with Eγ=958.1 4 is shown. I _γ : From Iγ(956.9γ)/Iγ(1796.8γ) in (n,n'γ) and Iγ(1796.8γ). from ¹⁵⁴ Pm β ⁻ decay (2.68 min), Iγ≤12, but γ is shown as questionable.
		1611.97 25	46	266.817 4+				· · · · ·
		1796.85 <i>15</i>	100	81.981 2+	M1+E2	-1.5 +8-70	0.00106 9	$\alpha(K)=0.00073\ 7;\ \alpha(L)=9.6\times10^{-5}\ 10;\ \alpha(M)=2.05\times10^{-5}\ 20$

12

						Ado	pted Levels, Gan	nmas (continued)
							$\gamma(^{154}\text{Sm})$ (co	ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
								$\alpha(\text{N})=4.6\times10^{-6} 5; \ \alpha(\text{O})=7.0\times10^{-7} 7; \ \alpha(\text{P})=4.4\times10^{-8} 5; \ \alpha(\text{IPF})=0.000201$
								δ Mult δ : From 2006De19 (n n' γ)
1878.70	(2^{+})	1878.3.5	6.2	0.0	0^{+}			Watt.,0. 11011 2000De19 (ii,ii y).
1890.45	1-	603.54 25	12	1286.29	2+			E_{γ}, I_{γ} : From ¹⁵⁴ Pm β^{-} decay (1.73 min). γ not reported by 2006De19, in (n n' γ)
		688.1 <i>4</i>	15 5	1202.44	0^{+}			(1.5.1 7).
		1808.29 <i>19</i>	100 7	81.981	2+	E1	8.06×10 ⁻⁴ 11	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000317 \ 4; \ \alpha(\mathbf{L}) = 3.99 \times 10^{-5} \ 6; \ \alpha(\mathbf{M}) = 8.46 \times 10^{-6} \ 12 \\ &\alpha(\mathbf{N}) = 1.917 \times 10^{-6} \ 27; \ \alpha(\mathbf{O}) = 2.88 \times 10^{-7} \ 4; \ \alpha(\mathbf{P}) = 1.843 \times 10^{-8} \ 26; \\ &\alpha(\mathbf{IPF}) = 0.000439 \ 6 \end{aligned}$
		1890.80 <i>16</i>	83 5	0.0	0+	E1	8.42×10 ⁻⁴ 12	$\alpha(K)=0.000295 \ 4; \ \alpha(L)=3.71\times10^{-5} \ 5; \ \alpha(M)=7.87\times10^{-6} \ 11$ $\alpha(N)=1.781\times10^{-6} \ 25; \ \alpha(O)=2.68\times10^{-7} \ 4; \ \alpha(P)=1.715\times10^{-8} \ 24;$ $\alpha(HE)=0.00500 \ 7$
1900		1820		81 981	2^{+}			a(1rr) = 0.0005007
1900		1900		0.0	$\bar{0}^{+}$			
1922.05	2+	584.4 6	19 4	1337.60	4+			
		909.7 <i>3</i>	21	1012.40	3-			E_{γ} : From ¹⁵⁴ Pm β^- decay (2.68 min). γ not reported by 2006De19 in (n,n' γ).
								I _γ : From I _γ (909.7 _γ)/I _γ (1655 _γ) in ¹⁵⁴ Pm β^- decay (2.68 min) and I _γ (1655 _γ).
		1655.24 15	100 6	266.817	4+			
		1840.44 18	98 6	81.981	2+			
1925.56	(2-)	1658.73 15	100	266.817	4+			
1945.61	(3 ⁻)	933.5 4	100	1012.40	3-			E_{γ} : γ not reported by 2006De19, (n,n' γ).
		1024.40 8	69	921.345	1			E_{γ} , Mult.: From 2006De19, (n,n' γ).
1050 54	1- 2+	1863.3 5	18	81.981	21			I_{γ} : From $I_{\gamma}(1863\gamma)/I_{\gamma}(1024\gamma)$ in $(n, n'\gamma)$ and $I_{\gamma}(1024\gamma)$. In I_{γ} Pm β decay (1.73 min), $I_{\gamma} \le 150$.
19/3.76	1,21	961.3.5	17	1012.40	3			
		1891.8 3	81 100	81.981	2 · 0+			
1074	(6^{+})	1420	100	544 10	0 6 ⁺			
1974	(0)	1707		266.817	4^+			
1086 50	3-	64 548 25	33	1022.05	2+	<mark>Е1</mark> &	0.803 13	$\alpha(\mathbf{K}) = 0.744, 10; \alpha(\mathbf{L}) = 0.1174, 16; \alpha(\mathbf{M}) = 0.02518, 35$
1900.39	5	04.546 25	55	1922.05	2	LI	0.095 15	$\alpha(R)=0.02518.55$ $\alpha(R)=0.00557.8; \alpha(Q)=0.000767.11; \alpha(P)=3.39\times10^{-5}.5$
		107.896 25	47	1878.70	(2 ⁺)	E1 ^{&}	0.2242 <i>31</i>	$\alpha(K)=0.1892\ 27;\ \alpha(L)=0.0276\ 4;\ \alpha(M)=0.00590\ 8$ $\alpha(N)=0.001315\ 18;\ \alpha(O)=0.0001865\ 26;\ \alpha(P)=9.27\times10^{-6}\ 13$
		171.6 3	49	1815.04	2+,3	E1 ^{&}	0.0637 9	α (K)=0.0541 8; α (L)=0.00757 11; α (M)=0.001617 24 α (N)=0.000362 5; α (O)=5.24×10 ⁻⁵ 8; α (P)=2.81×10 ⁻⁶ 4

From ENSDF

L.

						Adopted	Levels, Gam	mas (continued)
						, -	$\gamma(^{154}\text{Sm})$ (cor	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments
1986.59	3-	230.82 3	43	1755.67	(3 ⁻)			
		232.08 3	30	1754.51	2+			
		279.93 4	82	1706.71	3 ⁺ 2-			
		402.15 10	3.0	1584.50	3 3+			
		447.55	3.0 7.0	1515 18	5 2-			
		546 66 6	100	1440.04	$\frac{2}{2^{+}}$			
		700.0^8 3	4.5	1286.29	2+			
		974.0 ⁸ 4	2.0	1012.40	3-			
		1719.74 25	4.8	266.817	4+			
		1905.1 4	5.2	81.981	2+			
2013.4		675.8 6	100 20	1337.60	4+			
2015.40	$(1^{-},2^{+})$	837.4	100	1177.812	2+			
		1002.8 10	53	1012.40	3-			
		1933.5 3	93	81.981	2 ⁺			
2065.00	$(2, 4^{+})$	2015.5° 4	6/	0.0	0^{+}			
2065.90	(3,4)	143.74 13	12	1922.05	$(4^+ 5)$			
		247.75 15	100	1706 71	(4,5) 3 ⁺			
		526.7 4	7.1	1539.19	3+			
		$1799.4^8.5$	3.7	266.817	4 ⁺			
2069	(10^{+})	1166	017	902.75	8+			
2069.07	(2+)	95.2 <mark>8</mark> 3	0.5	1973.76	$1^{-},2^{+}$			
		782.9 <i>3</i>	2.5	1286.29	2+			
		866.5 <i>3</i>	5.3	1202.44	0^{+}			
		891.28 4	71	1177.812	2+			
		969.79 6	56 4	1099.26	0^{+}			
		1057.0 5	1.0	1012.40	3-			
		114/.69 0	100 0	921.345	1 4+			
		1987.04.10	1.4	200.017	4 2 ⁺			
		2069.04.8	20^{14}	0.0	0^{+}			
2131.82	(2^{+})	62.62^{8} 6	3.2	2069.07	(2^+)			
2101102	(-)	953.97 8	100	1177.812	2+			
		1032.55 8	69	1099.26	0^{+}			
		1210.2 3	15	921.345	1-			
		1865.7 5	6.4	266.817	4+			
		2050.1 3	13	81.981	2+			
2139.82	$(1,2^{+})$	124.43 4	1.1	2015.40	$(1^{-},2^{+})$	D 1 <i>C</i>	0.0005.35	
		166.06 <i>3</i>	3.6	1973.76	1-,2+	E1 ^{<i>u</i>}	0.0696 10	$\alpha(K)=0.0591 \ \&; \ \alpha(L)=0.00828 \ I2; \ \alpha(M)=0.001770 \ 25 \\ \alpha(N)=0.000397 \ \&; \ \alpha(O)=5.73\times10^{-5} \ \&; \ \alpha(P)=3.06\times10^{-6} \ 4$

					Adopt	ed Levels, Gam	nas (continued)
						γ ⁽¹⁵⁴ Sm) (con	tinued)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α^{d}	Comments
2139.82	$(1,2^+)$	194.29 6	0.9	1945.61 (3-)			
		384.5 <i>3</i>	0.4	1755.67 (3 ⁻)			
		465.8 3	1.0	1673.90 2			
		524.2 3	0.5	1614.77			
		624.6 4	0.8	1515.18 2			
		664.20 14	3.0	14/5.81 1			
		700.0 3 852 18 5	1.2	$1440.04 2^{+}$ 1286.20 2 ⁺			
		037 30 12	0.0	1260.29 2 $1202.44 0^+$			
		962.00.8	19.1.76	1177 812 2+			
		1040.7.5	0.8	$1099.26 0^+$			
		1218.57 10	3.7	921.345 1			
		1873.6 <mark>8</mark> 8	0.4	266.817 4+			
		2057.76 6	100 10	81.981 2+			
		2139.76 8	57	$0.0 0^+$			
2163	11-	403 ⁸		1760 9-			
		830		1333.0 10 ⁺			
2196.2?	$(1,2^+)$	1096.9 ⁸ 5	100	1099.26 0+			E_{γ} : The existence and placement of this γ are doubtful.
2232.8	$(3,4^{+})$	526.0 4	100	1706.71 3+			
2202.05	(2, 4+)	2150.58 5	14	81.981 2*			
2293.85	(3,4+)	307.3° 3	27	1986.59 3			
		3/1.70 3	≤29 100	$1922.05 2^{\circ}$ 1979.70 (2 ⁺)			
		413.25 13	100	10/0.70 (2) 1584.50 3 ⁻			
		853 18 5	<60	$1304.00 \ 3^{+}$			
		2026.9.3	<u>≤</u> 00 57	266 817 4+			
		2211.9.3	48	81.981 2+			
2368.81	$(1,2^+)$	853.3	≤26	1515.18 2-			
		1082.0 5	22	1286.29 2+			
		1191.1 <i>3</i>	44	1177.812 2+			
		1447.4 <mark>8</mark>	34	921.345 1-			
		2287.0 <i>3</i>	26	81.981 2+			
		2368.74 20	100	$0.0 0^+$			
2373.0	14+	547.1	100	1825.9 12+			
2421.4?	$(1,2^{+})$	2340.8 ⁸ 5	100	81.981 2+			
2420 40		2421.48 4	87	$0.0 0^{+}$			
2428.48 2420	(12^{+})	2340.48 10	100	81.981 2			
2439 2443.5	(12) 1^+	2361.5 5	38 24	81.981 2 ⁺	[M1]	$1.07 \times 10^{-3} 2$	B(M1)(W.u.)=0.014 9

From ENSDF

Т

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments
								$\alpha(K)=0.000479$ 7; $\alpha(L)=6.21\times10^{-5}$ 9; $\alpha(M)=1.320\times10^{-5}$ 18
								α (N)=3.00×10 ⁻⁶ 4; α (O)=4.52×10 ⁻⁷ 6; α (P)=2.92×10 ⁻⁸ 4; α (IPF)=0.000517 2
2443.5	1+	2443.5 5	100	0.0	0^+	Ml	1.08×10^{-3} 2	$B(M1)(W.u.)=0.033 8$ $a(W)=0.000445 6; a(U)=5.76\times10^{-5} 8; a(W)=1.225\times10^{-5} 17$
								$\alpha(\mathbf{K})=0.000443$ 6, $\alpha(\mathbf{L})=5.70\times10^{-8}$ 6, $\alpha(\mathbf{M})=1.225\times10^{-7}$ 7/ $\alpha(\mathbf{N})=2.78\times10^{-6}$ 4: $\alpha(\mathbf{O})=4.20\times10^{-7}$ 6: $\alpha(\mathbf{P})=2.71\times10^{-8}$ 4: $\alpha(\mathbf{IPF})=0.000561$
2556.56	1-	2474.5 <i>3</i>	100	81.981	2^{+}	[E1]	$1.12 \times 10^{-3} 2$	B(E1)(W.u.)=0.0021 3
								α (K)=0.0001935 27; α (L)=2.422×10 ⁻⁵ 34; α (M)=5.13×10 ⁻⁶ 7
								$\alpha(N)=1.162\times10^{-6}$ 16; $\alpha(O)=1.750\times10^{-7}$ 24; $\alpha(P)=1.126\times10^{-8}$ 16;
							2	α (IPF)=0.000893 13
		2556.6 3	48 6	0.0	0^{+}	E1 ^{<i>c</i>}	$1.16 \times 10^{-3} 2$	$B(E1)(W.u.) = 9.4 \times 10^{-4} 10$
								$\alpha(K)=0.0001842\ 26;\ \alpha(L)=2.303\times10^{-3}\ 32;\ \alpha(M)=4.88\times10^{-6}\ 7$
								$\alpha(N)=1.105\times10^{\circ}$ 15; $\alpha(O)=1.664\times10^{\circ}$ 23; $\alpha(P)=1.072\times10^{\circ}$ 15; $\alpha(PP)=0.000943$ 13
								$I_{\rm e}$: From $(\gamma \gamma')$: other: $I_{\rm e}(2556)/I_{\rm e}(2474)=0.74$ from ¹⁵⁴ Pm β^- decay (1.73)
								m).
2591.32		917.0 5	13	1673.90	2			
		1389.3 3	25	1202.44	0^+			
		10/0.10 23	19	921.345	1 2+			
		2591.14 20	39	0.0	0^{+}			
2618.03	1-	2536.08 15	100	81.981	2+	[E1]	$1.15 \times 10^{-3} 2$	B(E1)(W.u.)=0.0017 4
								$\alpha(K)=0.0001864\ 26;\ \alpha(L)=2.332\times10^{-5}\ 33;\ \alpha(M)=4.94\times10^{-6}\ 7$
								α (N)=1.118×10 ⁻⁶ 16; α (O)=1.685×10 ⁻⁷ 24; α (P)=1.085×10 ⁻⁸ 15;
		2(17.02.20	(7.10	0.0	0+	D1 C	1 10 10-3 2	α (IPF)=0.000931 <i>13</i>
		2617.92 20	67 12	0.0	0^{+}	EI	1.19×10^{-3} 2	B(E1)(W,u)=0.0010 I (K) 0.0001777.25 (L) 2.2211.10=5 21 (M) 4.701.10=6 7
								$\alpha(\mathbf{K}) = 0.0001 / / / 23; \ \alpha(\mathbf{L}) = 2.221 \times 10^{-5} 31; \ \alpha(\mathbf{M}) = 4.70 \times 10^{-5} / 23; \ \alpha(\mathbf{M}) = 1.024 \times 10^{-8} 14.$
								$\alpha(17) = 1.003 \times 10^{-1} 13, \alpha(0) = 1.003 \times 10^{-1} 22, \alpha(1^{\circ}) = 1.034 \times 10^{-1} 14, \alpha(1PF) = 0.000980, 14$
								I_{γ} : From (γ, γ') ; other: $I_{\gamma}(2617)/I_{\gamma}(2536)=0.76$ from ¹⁵⁴ Pm β^{-} decay (1.73)
								m).
2636	13-	473 ⁸		2163	11-			
0701.09	$(1, 2^{+})$	810	41	1825.9	12+ 2+			
2721.28	(1,2')	2039.2 4	41 100	81.981 0.0	2 · 0+			
2743 7	1-	2661.7.5	100	81 981	2+	[E1]	1.21×10^{-3} 2	B(E1)(Wu) = 0.0014.2
_/ 12./		2001.7 5	100	01.701	-	[[2]]	1.21/(10) 2	$\alpha(K)=0.0001733\ 24;\ \alpha(L)=2.166\times10^{-5}\ 30;\ \alpha(M)=4.59\times10^{-6}\ 6$
								$\alpha(N)=1.039\times10^{-6}$ 15; $\alpha(O)=1.565\times10^{-7}$ 22; $\alpha(P)=1.009\times10^{-8}$ 14;
							-	α (IPF)=0.001007 14
		2743.7 5	58 8	0.0	0^+	E1 ^{<i>c</i>}	$1.25 \times 10^{-3} 2$	$B(E1)(W.u.)=7.4 \times 10^{-4} 6$

L

						A	dopted Levels,	Gammas (continued)
							γ ⁽¹⁵⁴ Sm)	(continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ} [‡]	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
					<u> </u>			$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0001656 \ 23; \ \alpha(\mathrm{L}) = 2.068 \times 10^{-5} \ 29; \ \alpha(\mathrm{M}) = 4.38 \times 10^{-6} \ 6 \\ \alpha(\mathrm{N}) = 9.92 \times 10^{-7} \ 14; \ \alpha(\mathrm{O}) = 1.495 \times 10^{-7} \ 21; \ \alpha(\mathrm{P}) = 9.64 \times 10^{-9} \ 13; \ \alpha(\mathrm{IPF}) = 0.001055 \\ 15 \end{array} $
2778.63	1	1022.4 <i>4</i> 1576.7 <i>8</i> 1856.3 <i>4</i> 2697.4 <i>3</i> 2778 6 3	33 36 36 27 100	1755.67 1202.44 921.345 81.981	(3^{-}) 0^{+} 1^{-} 2^{+} 0^{+}	D		I _{γ} : From ¹⁵⁴ Pm β^- decay (1.73 m); other: ≤ 17 from (γ, γ').
2793?	(14^{+})	967 <mark>8</mark>	100	1825.9	12^{+}	D	2	
2825.3	1-	2743.3 5	100	81.981	2+	[E1]	$1.25 \times 10^{-3} 2$	B(E1)(W.u.)=7.1×10 ⁻⁴ <i>16</i> α (K)=0.0001656 <i>23</i> ; α (L)=2.069×10 ⁻⁵ <i>29</i> ; α (M)=4.38×10 ⁻⁶ <i>6</i> α (N)=9.92×10 ⁻⁷ <i>14</i> ; α (O)=1.495×10 ⁻⁷ <i>21</i> ; α (P)=9.64×10 ⁻⁹ <i>13</i> ; α (IPF)=0.001055 <i>15</i>
		2825.3 5	53 14	0.0	0+	E1 ^C	1.28×10 ⁻³ 2	B(E1)(W.u.)= $3.5 \times 10^{-4} 8$ α (K)=0.0001585 22; α (L)= $1.979 \times 10^{-5} 28$; α (M)= $4.19 \times 10^{-6} 6$ α (N)= $9.49 \times 10^{-7} 13$; α (O)= $1.430 \times 10^{-7} 20$; α (P)= $9.23 \times 10^{-9} 13$; α (IPF)= 0.001099 15
2842.8	1-	2761.1 5	100	81.981	2+	[E1]	1.25×10 ⁻³ 2	B(E1)(W.u.)=8.5×10 ⁻⁴ <i>16</i> α (K)=0.0001640 <i>23</i> ; α (L)=2.049×10 ⁻⁵ <i>29</i> ; α (M)=4.34×10 ⁻⁶ <i>6</i> α (N)=9.82×10 ⁻⁷ <i>14</i> ; α (O)=1.480×10 ⁻⁷ <i>21</i> ; α (P)=9.55×10 ⁻⁹ <i>13</i> ; α (IPF)=0.001065 <i>15</i>
		2842.6 4	71 10	0.0	0+	E1 ^C	1.29×10 ⁻³ 2	B(E1)(W.u.)=5.6×10 ⁻⁴ 7 α (K)=0.0001571 22; α (L)=1.961×10 ⁻⁵ 27; α (M)=4.15×10 ⁻⁶ 6 α (N)=9.40×10 ⁻⁷ 13; α (O)=1.417×10 ⁻⁷ 20; α (P)=9.14×10 ⁻⁹ 13; α (IPF)=0.001108 16
2882.0	1-	2800.0 5	100	81.981	2+	[E1]	1.27×10 ⁻³ 2	I _γ : From (γ,γ'); other: Iγ(2761)/Iγ(2842)=0.87 from ¹⁵⁴ Pm β ⁻ decay (1.73 m). B(E1)(W.u.)=3.4×10 ⁻⁴ <i>16</i> α (K)=0.0001607 22; α (L)=2.006×10 ⁻⁵ 28; α (M)=4.25×10 ⁻⁶ 6 α (N)=9.62×10 ⁻⁷ <i>13</i> ; α (O)=1.449×10 ⁻⁷ 20; α (P)=9.35×10 ⁻⁹ <i>13</i> ; α (IPF)=0.001086
		2882.0 5	79 26	0.0	0+	E1 ^C	1.31×10 ⁻³ 2	B(E1)(W.u.)= $2.5 \times 10^{-4} 8$ α (K)= $0.0001539 22; \alpha$ (L)= $1.921 \times 10^{-5} 27; \alpha$ (M)= $4.07 \times 10^{-6} 6$ α (N)= $9.21 \times 10^{-7} 13; \alpha$ (O)= $1.388 \times 10^{-7} 19; \alpha$ (P)= $8.96 \times 10^{-9} 13; \alpha$ (IPF)= 0.001127 16
2907.3	1+	2825.3 5	52 13	81.981	2+	[M1]	1.14×10 ⁻³ 2	B(M1)(W.u.)=0.019 6 α (K)=0.000326 5; α (L)=4.21×10 ⁻⁵ 6; α (M)=8.95×10 ⁻⁶ 13 α (N)=2.030×10 ⁻⁶ 28; α (O)=3.06×10 ⁻⁷ 4; α (P)=1.982×10 ⁻⁸ 28; α (IPF)=0.000760 11

Т

						A	dopted Levels,	Gammas (continued)
							γ (¹⁵⁴ Sm) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	E_{f}	J_f^{π}	Mult. [#]	α^d	Comments
2907.3	1+	2907.3 5	100	0.0	0+	M1 ^c	1.16×10 ⁻³ 2	B(M1)(W.u.)=0.033 7 α (K)=0.000307 4; α (L)=3.96×10 ⁻⁵ 6; α (M)=8.42×10 ⁻⁶ 12 α (N)=1.909×10 ⁻⁶ 27; α (O)=2.88×10 ⁻⁷ 4; α (P)=1.865×10 ⁻⁸ 26; α (IPF)=0.000801 11
2968.2 3051.23	16+	595.2 919.23 20 1576.7 8 1764.9 4 1873.6 8 2130.4 3 2968.9 4	100 41 55 24 72 45	2373.0 2131.82 1475.81 1286.29 1177.812 921.345 81.981	14 ⁺ (2 ⁺) 1 ⁻ 2 ⁺ 2 ⁺ 1 ⁻ 2 ⁺			
3091.5	1+	3009.5 5	49 5	81.981	2+	[M1]	1.18×10 ⁻³ 2	B(M1)(W.u.)=0.045 6 α (K)=0.000286 4; α (L)=3.68×10 ⁻⁵ 5; α (M)=7.82×10 ⁻⁶ 11 α (N)=1.774×10 ⁻⁶ 25; α (O)=2.68×10 ⁻⁷ 4; α (P)=1.733×10 ⁻⁸ 24; α (IPF)=0.000852 12
		3091.5 5	100	0.0	0+	M1 ^C	1.21×10 ⁻³ 2	B(M1)(W.u.)=0.084 8 α (K)=0.000270 4; α (L)=3.47×10 ⁻⁵ 5; α (M)=7.39×10 ⁻⁶ 10 α (N)=1.676×10 ⁻⁶ 23; α (O)=2.530×10 ⁻⁷ 35; α (P)=1.638×10 ⁻⁸ 23; α (IPF)=0.000891 12
3117.0	1+	3035.0 5	53 6	81.981	2+	[M1]	1.19×10 ⁻³ 2	B(M1)(W.u.)=0.033 5 α (K)=0.000281 4; α (L)=3.61×10 ⁻⁵ 5; α (M)=7.68×10 ⁻⁶ 11 α (N)=1.742×10 ⁻⁶ 24; α (O)=2.63×10 ⁻⁷ 4; α (P)=1.702×10 ⁻⁸ 24; α (IPF)=0.000864 12
		3117.0 5	100	0.0	0+	M1 ^C	1.21×10 ⁻³ 2	B(M1)(W.u.)=0.058 7 α (K)=0.000265 4; α (L)=3.42×10 ⁻⁵ 5; α (M)=7.26×10 ⁻⁶ 10 α (N)=1.647×10 ⁻⁶ 23; α (O)=2.487×10 ⁻⁷ 35; α (P)=1.610×10 ⁻⁸ 23; α (IPF)=0.000904 13
3193.42	1+	2015.5 ^e 4 3111.2 5	71 ^e 57	1177.812 81.981	2+ 2+	[M1]	1.21×10 ⁻³ 2	B(M1)(W.u.)=0.092 9 α (K)=0.000266 4; α (L)=3.43×10 ⁻⁵ 5; α (M)=7.29×10 ⁻⁶ 10 α (N)=1.653×10 ⁻⁶ 23; α (O)=2.497×10 ⁻⁷ 35; α (P)=1.616×10 ⁻⁸ 23; α (IPF)=0.000901 13
		3193.4 5	100 8	0.0	0+	M1 ^C	1.23×10 ⁻³ 2	E _γ : Simple average of 3111.4 5 (γ,γ') and 3110.9 5 (¹⁵⁴ Pm β ⁻ decay (1.73 m)). B(M1)(W.u.)=0.150 <i>11</i> α (K)=0.0002524 35; α (L)=3.25×10 ⁻⁵ 5; α (M)=6.90×10 ⁻⁶ <i>10</i> α (N)=1.565×10 ⁻⁶ 22; α (O)=2.363×10 ⁻⁷ 33; α (P)=1.530×10 ⁻⁸ 21;

From ENSDF

 $^{154}_{62}\mathrm{Sm}_{92}$ -18

 $^{154}_{62}\mathrm{Sm}_{92}$ -18

I.

						A	Adopted Levels,	Gammas (continued)
							γ (¹⁵⁴ Sn	n) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments
								$\alpha(\text{IPF})=0.000941 \ 13$ E _{\gamma} : From (\gamma,\gamma'); \gamma\$ not reported in ¹⁵⁴ Pm \beta^- decay (1.73 m). L: Computed from [\gamma(3111)] and [\gamma(3111)/[\gamma(3123)=0.57 \ 4 (from (\gamma,\gamma'))].
3339.5	1	(3257.5 5)	≤21 100	81.981 0.0	2^+ 0^+	D ^c		-y
3365.9	1	(3283.9 <i>5</i>) 3365.9 <i>5</i>	≤ 21	81.981 0.0	2^+ 0^+	D ^c		
3371.1	1+	3289.1 5	67 20	81.981	2+	[M1]	1.26×10 ⁻³ 2	B(M1)(W.u.)=0.019 7 α (K)=0.0002375 33; α (L)=3.05×10 ⁻⁵ 4; α (M)=6.49×10 ⁻⁶ 9 α (N)=1.471×10 ⁻⁶ 21; α (O)=2.221×10 ⁻⁷ 31; α (P)=1.439×10 ⁻⁸ 20; α (IPF)=0.000988 14
		3371.1 5	100	0.0	0+	M1 ^C	1.29×10 ⁻³ 2	B(M1)(W.u.)=0.027 7 α (K)=0.0002258 32; α (L)=2.90×10 ⁻⁵ 4; α (M)=6.16×10 ⁻⁶ 9 α (N)=1.397×10 ⁻⁶ 20; α (O)=2.110×10 ⁻⁷ 30; α (P)=1.367×10 ⁻⁸ 19; α (IPF)=0.001027 14
3426.4	1	(3344.4 5)	≤21 100	81.981	$2^+_{0^+}$	DC		
3492.4	1^{+}	3420.4 <i>3</i> 3410.4 <i>5</i>	42 20	0.0 81.981	2^+	[M1]	1.30×10 ⁻³ 2	B(M1)(W.u.)=0.008 5
								$\alpha(K)=0.0002205 \ 31; \ \alpha(L)=2.83\times10^{-5} \ 4; \ \alpha(M)=6.01\times10^{-6} \ 8 \\ \alpha(N)=1.364\times10^{-6} \ 19; \ \alpha(O)=2.060\times10^{-7} \ 29; \ \alpha(P)=1.334\times10^{-8} \ 19; \\ \alpha(IPF)=0.001044 \ 15$
		3492.4 5	100	0.0	0+	M1 ^C	1.32×10 ⁻³ 2	B(M1)(W.u.)=0.018 7 α (K)=0.0002100 29; α (L)=2.69×10 ⁻⁵ 4; α (M)=5.72×10 ⁻⁶ 8 α (N)=1.299×10 ⁻⁶ 18; α (O)=1.961×10 ⁻⁷ 27; α (P)=1.271×10 ⁻⁸ 18; α (IPF)=0.001077 15
3609.3	18+	641.1		2968.2	16+		2	
3621.7	1+	3539.7 5	49 14	81.981	2+	[M1]	1.33×10 ⁻³ 2	B(M1)(W.u.)=0.019 8 α (K)=0.0002044 29; α (L)=2.62×10 ⁻⁵ 4; α (M)=5.57×10 ⁻⁶ 8 α (N)=1.263×10 ⁻⁶ 18; α (O)=1.907×10 ⁻⁷ 27; α (P)=1.236×10 ⁻⁸ 17; α (IPF)=0.001096 15
		3621.7 5	100	0.0	0+	M1 ^c	1.36×10 ⁻³ 2	B(M1)(W.u.)=0.036 11 $\alpha(K)=0.0001951 27; \alpha(L)=2.500\times10^{-5} 35; \alpha(M)=5.31\times10^{-6} 7$ $\alpha(N)=1.205\times10^{-6} 17; \alpha(O)=1.819\times10^{-7} 25; \alpha(P)=1.179\times10^{-8} 17;$ $\alpha(PE)=0.001129 16$
3745.8	1	(3663.8 <i>5</i>) 3745.8 <i>5</i>	≤ 17 100	81.981 0.0	2^+ 0^+	D ^C		a(m) 0.00112/10
3759.8	1	(3677.8 5)	≤28 100	81.981	$2^{+}_{0^{+}}$	DC		
3801.3	1	3759.8 5 3719.3 5	93 <i>23</i>	0.0 81.981	2^+	D		

 $^{154}_{62}\mathrm{Sm}_{92}$ -19

From ENSDF

 $^{154}_{62}\mathrm{Sm}_{92}$ -19

L.

						A	Adopted Levels,	Gammas (continued)
							γ (¹⁵⁴ Sn	n) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments
3801.3 3826.7	1 1-	3801.3 <i>4</i> 3744.7 <i>5</i>	100 100	0.0 81.981	0^+ 2^+	D ^C [E1]	1.66×10 ⁻³ 2	B(E1)(W.u.)=0.0012 3 α (K)=0.0001054 15; α (L)=1.310×10 ⁻⁵ 18; α (M)=2.77×10 ⁻⁶ 4
		3826.7 5	41 6	0.0	0+	E1 ^{<i>c</i>}	1.70×10 ⁻³ 2	$\alpha(N)=6.28\times10^{-7} \ 9; \ \alpha(O)=9.4/\times10^{-8} \ 13; \ \alpha(P)=6.13\times10^{-9} \ 9; \ \alpha(IPF)=0.001543 \ 22$ B(E1)(W.u.)=4.5×10 ⁻⁴ 9 $\alpha(K)=0.0001023 \ 14; \ \alpha(L)=1.270\times10^{-5} \ 18; \ \alpha(M)=2.69\times10^{-6} \ 4$ $\alpha(N)=6.09\times10^{-7} \ 9; \ \alpha(O)=9.18\times10^{-8} \ 13; \ \alpha(P)=5.95\times10^{-9} \ 8; \ \alpha(IPF)=0.001578 \ 22$
3836.7	1	3754.7 5	85 30	81.981	2+			
2944.0	1	3836.7 5	100	0.0	0^+	DC		
3844.0	1	3844.0.5	112 40	0.0	$\frac{2}{0^{+}}$	D^{c}		
4020		3940	100	81.981	2+	D		
		4020		0.0	0^{+}			
4240		4160		81.981	2+			
1205 7	20^{+}	4240		0.0	0^+			
4295.7	20	4220		3009.3 81.981	$\frac{10}{2^+}$			
1500		4300		0.0	0^{+}			
5027.9	22^{+}	732.2		4295.7	20^{+}			
6465.2	1-	3979 <mark>8</mark> 2	10 2	2486?				
		4479 3	0.3	1986.59	3-			
		4543 3	10 2	1922.05	$\frac{2}{(2^{-})}$			
		4709 5	43	1/33.07	(3)	[121]	2.00×10^{-3} 3	$R(E1)(W_{H}) = 8 \times 10^{-6} \pm 0.4$
		5025 5	55	1440.04	2		2.09×10 5	$\alpha(K) = 7.03 \times 10^{-5} \ 10; \ \alpha(L) = 8.70 \times 10^{-6} \ 12; \ \alpha(M) = 1.840 \times 10^{-6} \ 26$ $\alpha(N) = 4.17 \times 10^{-7} \ 6; \ \alpha(O) = 6.29 \times 10^{-8} \ 9; \ \alpha(P) = 4.08 \times 10^{-9} \ 6; \ \alpha(IPF) = 0.002005 \ 28$
		5263 <i>3</i>	71	1202.44	0+	E1 ^b	2.15×10 ⁻³ 3	B(E1)(W.u.)= $1.0 \times 10^{-5} + 8 - 4$ $\alpha(K)=6.61 \times 10^{-5} 9; \ \alpha(L)=8.17 \times 10^{-6} 11; \ \alpha(M)=1.728 \times 10^{-6} 24$ $\alpha(N)=3.92 \times 10^{-7} 5; \ \alpha(O)=5.91 \times 10^{-8} 8; \ \alpha(P)=3.84 \times 10^{-9} 5; \ \alpha(IPF)=0.002077 29$
		5287 3	82	1177.812	2+	E1 ^b	2.16×10 ⁻³ 3	$\alpha(K) = 6.57 \times 10^{-5} \ 9; \ \alpha(L) = 8.12 \times 10^{-6} \ 11; \ \alpha(M) = 1.718 \times 10^{-6} \ 24$ $\alpha(N) = 3.89 \times 10^{-7} \ 5; \ \alpha(O) = 5.87 \times 10^{-8} \ 8; \ \alpha(P) = 3.81 \times 10^{-9} \ 5; \ \alpha(IPF) = 0.002084 \ 29$ B(E1)(W u) = 1.1×10^{-5} + 10^{-5}
		5366 3	45 1	1099.26	0+	E1 ^b	2.18×10 ⁻³ 3	B(E1)(W.u.)= $6.0 \times 10^{-5} + 49 - 20$ α (K)= 6.44×10^{-5} 9; α (L)= 7.96×10^{-6} 11; α (M)= 1.684×10^{-6} 24 α (N)= 3.82×10^{-7} 5; α (O)= 5.76×10^{-8} 8; α (P)= 3.74×10^{-9} 5; α (IPE)= 0.002108 30
		5544 <i>3</i>	8 2	921.345	1-			$\alpha(K) = 6.17 \times 10^{-5} \ 9; \ \alpha(L) = 7.62 \times 10^{-6} \ 11; \ \alpha(M) = 1.612 \times 10^{-6} \ 23$

From ENSDF

 $^{154}_{62}\mathrm{Sm}_{92}$ -20

 $^{154}_{62}$ Sm₉₂-2

154 62
S
В
5
Ĩ,
2

Adopted Levels, Gammas (continued)

γ ⁽¹⁵⁴Sm) (continued)</sup>

E_i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ	Comments
6465.2	6383 <i>3</i> 6465 <i>3</i>	67 <i>1</i> 100	81.981 0.0	2 ⁺ 0 ⁺	E1+M2 ^b E1	0.081 <i>18</i>	 α(N)=3.65×10⁻⁷ 5; α(O)=5.51×10⁻⁸ 8; α(P)=3.58×10⁻⁹ 5; α(IPF)=0.002161 30 BE1W=1.0E-5 +9-4. Mult.: E1 multipolarity is not consistent with J^π's of 1⁻ to 1⁻. B(E1)(W.u.)=5.3×10⁻⁵ +43-18; B(M2)(W.u.)=0.039 +43-19 δ: From γ(θ) in (γ,γ'), mult=D+Q. Since a parity change is involved in the transition, mult is not M1+E2. B(E1)(W.u.)=8×10⁻⁵ +6-3 Mult.: From γ(θ) and linear polarization in (γ,γ').

[†] Values are from the measurement giving the most precise value. This is often the 154 Sm(n,n' γ) reaction or one of the 154 Pm β^- decays. [‡] Unless mentioned otherwise, from 154 Pm β^- decays (1971Da28, 1974Ya07, 1993GrZY) and (n,n' γ) (1986Be52).

[#] From ce data following Coulomb excitation (1970Da28) and $(n,n'\gamma)$, unless noted otherwise.

^(e) $\alpha(E0+M1+E2) = \alpha(E0) + \alpha(M1) + \alpha(E2)$ with $\alpha(E0) = \alpha_K(E2) \times q_K^2 / (\Omega_K(E0)/\Omega(E0))$ and $\alpha(M1)$, $\alpha(E2)$ and the ratio of electronic factors $\Omega_K(E0)/\Omega(E0)$

calculated by the code BrIcc.

[&] From $\alpha_{\rm K}(\exp)$ in ¹⁵⁴Pm β^- decay (2.68 m).

^{*a*} From $\alpha_{\rm K}(\exp)$ in ¹⁵⁴Pm β^- decay (1.73 m).

^b From $\gamma(\theta)$ in (γ, γ') (1977Be05) together with the observation that the transition involves a change of parity.

^c From $\gamma(\theta)$ and γ -branching considerations in (γ, γ') (1993Zi05).

^d Additional information 4.

2

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $^{154}_{62}{
m Sm}_{92}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{154}_{62}\text{Sm}_{92}$

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁵⁴₆₂Sm₉₂

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁵⁴₆₂Sm₉₂

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{154}_{62}\text{Sm}_{92}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{154}_{62}\text{Sm}_{92}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{154}_{62}Sm_{92}$

 $^{154}_{\ 62}Sm_{92}$

 $^{154}_{62}Sm_{92}$