Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

 $Q(\beta^{-})=7.72\times10^{3} \ 10$; $S(n)=4.36\times10^{3} \ 10$; $S(p)=10240 \ syst$; $Q(\alpha)=-3.97\times10^{3} \ 10$ 2021Wa16 $\Delta S(p)=220 \ (syst, 2021Wa16)$.

S(2n)=10240.0 1000, S(2p)=23150 320 (syst), Q(β⁻n)=1400.0 1000 (2021Wa16).

2017Wu04 compiled for XUNDL database by F.G. Kondev (ANL).

2017Wu04: The ¹⁵⁴Pr nuclide was produced at the RIBF-RIKEN facility using the ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of ¹⁵⁸Nd and ¹⁷⁰Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was 100 ions/s. Measured: implanted ion- β ⁻-t, implanted ion- β ⁻- γ -t and implanted ions- γ -t correlations. Deduced: T_{1/2}.

1996To05, 1990Ok04, 1988Ka16 (same group of authors): ¹⁵⁴Pr separated from ²³⁵U(n,F), E=thermal with the on-line isotope separator KUR-ISOL. Measured E γ , I γ , E X-ray, I X-ray, $\gamma\gamma$ -coin, $\gamma\gamma(t)$, (X-ray) $\gamma(t)$. Deduced T_{1/2}.

¹⁵⁴Pr Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	(3^{+})	2.3 s 1	%β ⁻ =100
			J^{π} : Suggested by 1996To05 based on proposed Nilsson configuration $\pi 3/2[541] \otimes v 3/2[521]$. Additional information 1.
			$T_{1/2}$: weighted average of 2.3 s <i>I</i> (from I γ (t) and Ix(t) (1988Ka16, 1990Ok04, 1996To05)) and 2.29 s 20 (2017Wu04).
			$\%\beta^-$: assumed to be 100%, since other decay modes seem to be unlikely.
			configuration: From systematics of well-deformed nuclei in this mass region, the $\pi 3/2[541]$ and
			$v_3/2[521]$ Nilsson orbitals are expected near the proton and neutron Fermi surfaces, respectively.
			Thus, using the Gallagher-Moszkowski rule, one may expect the $K^{\pi}=3^+$, $\pi 3/2[541] \otimes v 3/2[521]$ configuration for the ground state. The existence of a $K^{\pi}=0^+$ isomer, arising from the same

configuration for the ground state. The configuration, is also possible.