154 Nd β^- decay 1993GrZZ,1995Gr19,1997Gr09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Parent: ¹⁵⁴Nd: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=25.9$ s 2; $Q(\beta^-)=2687$ 25; $\%\beta^-$ decay=100 ¹⁵⁴Nd-Q(β^{-}): From 2021Wa16.

The decay scheme, E γ , I γ are from 1993GrZZ and the measured β^- data are from 1995Gr19 and 1997Gr09 (all by the same authors), unless otherwise noted. Other: 1985Ka17. Activity also identified by 1974Bu09. Earlier articles by the same authors as 1993GrZZ are 1990An31, 1988GrZY, 1987Gr12, 1986GrZW, and 1986GrZZ.

Additional information 1. 1974Bu09: Produced by 235 U(th n,F), followed by chemical separation. Established parentage.

1985Ka17: Produced by 235 U(th n,F), followed by isotope separation. Parentage of 154 Pm (1.7 min) established; and 19 γ 's reported.

1986GrZW, 1993GrZZ: Produced by spontaneous fission of 252 Cf, followed by isotope separation. γ 's measured with Ge detectors. 50 γ 's reported. (Both references are private communications.).

1987Gr12: Produced by spontaneous fission of 252 Cf, followed by isotope separation. Parent half-life and 13 γ energies reported. 1990An31: Produced by spontaneous fission of ²⁵²Cf, followed by isotope separation. Level scheme is shown.

1995Gr19, 1997Gr09: Produced by spontaneous fission of 252 Cf, followed by isotope separation. Deduced I β^- to excited states and ground state from total absorption γ spectra.

¹⁵⁴Pm Levels

E(level) ^{†‡}	$J^{\pi #}$	T _{1/2}	Comments
0	(4^{+})	2.68 min 7	J^{π} , $T_{1/2}$: From Adopted Levels (level not observed in this dataset).
0+x	(1^{-})	1.73 min 10	Additional information 2.
			J^{π} , $T_{1/2}$: From Adopted Levels where this isomer is most likely the first "x" excited state of ¹⁵⁴ Pm.
50.688+x 14	(2^{-})		
68.006+x 16	(2^{-})		
79.382+x 23	(1^{-})		
105.690+x 34	(2^{-})		
151.702+x 14	(1^{+})		
154.93+x 6			
173.81+x 5	(2^{-})		
180.689+x 16	(1^{+})		
185.492+x 27	$(0^+, 1^+)$		
194.192+x <i>34</i>	$(0^+, 1^+)$		
244.615+x 32	$(0^+, 1^+)$		
268.78+x 26			
505.49+x? 23			
597.39+x <i>30</i>			
633.85+x 9	(0,1)		
652.36+x 27			
682.31+x 8	(0,1)		
699.99+x? 30			
831.55+x 8	(1^{+})		
850.227+x 29	(1^{+})		
906.96+x 5	(0,1)		
1049.64+x 8	(1^{+})		
1060.53+x 8	(0,1)		
1204.50+x 11	(0,1)		
1389.21+x <i>10</i>	(0,1)		
1662.70+x 20	(0,1)		
1689.99+x <i>31</i>	(0,1)		

¹⁵⁴Nd β⁻ decay **1993GrZZ,1995Gr19,1997Gr09** (continued)

¹⁵⁴Pm Levels (continued)

[†] Additional information 3.

[‡] From least-squares fit to γ energies, with questionable γ 's omitted.

From Adopted Levels.

β^- radiations

This decay scheme is given here with its lowest (1⁻) level shown as being at 0+x keV. This level is more likely an isomer, as discussed in the ¹⁵⁴Pm Adopted Levels, with the (4⁺) state as g.s. Consequently the E(decay) values are smaller by the "x" value (based on the estimates in Adopted Levels this is of the order of 30 keV *10*), which also can slightly affect the log *ft* calculations (more importantly for the higher excited levels) From this reason the calculated β -decay parameters shown in the table should be used rather prudently.

The $I\beta^-$ to the excited levels have been deduced, independently of the γ data, from the total absorption γ spectrometer, TAGS, data of 1997Gr09. When necessary, new levels, called "pseudolevels", and associated decay γ 's are included in the analysis. Since the resolution of the TAGS system is typically 50-100 keV, the intensity assigned to a pseudolevel may thus represent the β^- feeding to a single level or to a group of levels in that region.

av E β : Additional information 4.

E(decay)	E(level)	Iβ ^{-†‡#}	Log ft	Comments
(997, 25)	1689.99 + x	0.34	5.6	av $E\beta = 338.10$
()), 20)	1000000000	0101	0.0	$I\beta^{-}$: TAGS value (1997Gr09) is 0.24.
(1024 25)	1662.70 + x	0.34	5.6	av $E\beta = 349 \ 10$
()				$I\beta^{-}$: TAGS value (1997Gr09) is 0.39.
$(1298\ 25)$	1389.21+x	1.9	5.3	av $E\beta=462$ 11
($I\beta^-$: TAGS value (1997Gr09) is 2.81; this may include other levels that have not
				been observed.
(1482 25)	1204.50+x	2.2	5.4	av Eβ=541 11
				$I\beta^-$: TAGS value (1997Gr09) is 2.91; this may include other levels that have not
				been observed.
(1626 25)	1060.53+x	3.7	5.3	av E β =602 11
(1637 25)	1049.64+x	5.0	5.2	av $E\beta = 607 \ 11$
(1780 25)	906.96+x	5.3	5.3	av $E\beta = 670 \ 11$
				$I\beta^{-}$: TAGS value (1997Gr09) is 6.31.
(1837 25)	850.227+x	20.5	4.8	av E β =695 11
(1855 25)	831.55+x	3.7	5.6	av $E\beta = 703 \ 11$
(2005 25)	682.31+x	0.22	6.9	av Eβ=769 11
				$I\beta^{-}$: TAGS value (1997Gr09) is 0.39.
(2053 25)	633.85+x	0.28	6.9	av Eβ=790 11
				$I\beta^-$: TAGS value (1997Gr09) is 0.194.
(2181 25)	505.49+x?	0.27	7.0	av Eβ=848 11
				$I\beta^-$: TAGS value (1997Gr09) is 0.194.
(2442 25)	244.615+x	1.1	6.6	av E β =965 11
				$I\beta^{-}$: TAGS value (1997Gr09) is 0.0.
(2493 25)	194.192+x	0.76	6.8	av E β =988 11
				$I\beta^{-}$: TAGS value (1997Gr09) is 0.0.
(2501 25)	185.492+x	0.64	6.9	av E β =992 11
				$I\beta^{-}$: TAGS value (1997Gr09) is 0.0.
(2506 25)	180.689+x	11.4	5.6	av E β =994 11
				$I\beta^{-}$: TAGS value (1997Gr09) is 9.80.
(2535 25)	151.702+x	26.4	5.3	av E β =1007 11
$(2608\ 25)$	79.382+x	11.9	5.7	av E β =1040 11
(2687 25)	0+x	≤5.4	≥6.1	av $E\beta = 1076 \ II$
				$I\beta^-$: Based on upper limit of measured value of $I\beta(0+50+68+79+105)=13.7$ 36,
				from $4\pi \beta \gamma$ (1995Gr19), and $I\beta(79)=11.9$, from γ intensity balance with

 $I\beta(50+68+105)\approx 0.$

Continued on next page (footnotes at end of table)

¹⁵⁴Nd $β^-$ decay 1993GrZZ,1995Gr19,1997Gr09 (continued)

β^- radiations (continued)

[†] Values are from γ intensity balances, except those for the 0- and 79-keV levels, which are from measurements of 1995Gr19. The $I\beta^-$ values from the TAGS data (1997Gr09) are generally in excellent agreement with those from the intensity balances. The TAGS value is given in a comment if it differs by more than 10%. Since the scheme is not complete, values less than 0.2% are not given. Values for levels at 50, 68, and 105 keV are assumed to be 0.

[‡] The pseudolevels and the associated I β^- from the TAGS data analysis are 1270 keV, 0.4%; 1470, 0.6; 1550, 0.8%; 1800, 0.3%; and 1900, 0.3%.

[#] Absolute intensity per 100 decays.

From ENSDF

$\gamma(^{154}\text{Pm})$

I γ normalization, I(γ +ce) normalization: Calculated to give 100% feeding of ground state from γ and β^- transitions. I γ normalization: Additional information 6.

4

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{\&}$	$I_{(\gamma+ce)}^{a}$	Comments
13.5 17.3 28.7 <i>3</i>	2.6	194.192+x 68.006+x 79.382+x	$(0^+, 1^+) (2^-) (1^-)$	180.689+x 50.688+x 50.688+x	(1^+) (2^-) (2^-)	M1	9.07 31	≈2.5 ≈26	I _(γ+ce) : Deduced from γγ coincidence intensities. I _(γ+ce) : From γγ coincidence intensities. %Iγ≈0.34 α (L)=7.15 25; α (M)=1.53 5 α (N)=0.344 12; α (O)=0.0517 18; α (P)=0.00324 11 α : Deduced from γγ coincidence intensities. Theoretical
30.8 <i>3</i>	0.26	185.492+x	$(0^+, 1^+)$	154.93+x					value for pure M1 is 9.1 4. $\%$ I $\gamma \approx 0.034$
33.8 2	2.5	185.492+x	(0+,1+)	151.702+x	(1+)	M1(+E2)	1.0×10 ² 9		%Iγ≈0.33 α (L)=8; α (M)=17 <i>16</i> α (N)=4 4; α (O)=0.5 4; α (P)=0.0012 8 α : From γγ coincidence intensities. For mult=M1, α =5.6; for mult=E2, α =189.
37.63 6	7.6	105.690+x	(2 ⁻)	68.006+x	(2 ⁻)	M1(+E2)	6.×10 ¹ 5		%I $\gamma \approx 0.99$ $\alpha(L)=4; \alpha(M)=10 \ 10$ $\alpha(N)=2.2 \ 21; \alpha(O)=0.28 \ 25; \alpha(P)=9$ δ : The deduced α implies < 2% E2. For %E2=1, α is calculated to be 5.1 11.
45.99 <i>4</i> 50.691 22	11.7 8.4	151.702+x 50.688+x	(1^+) (2^-)	105.690+x 0+x	(2 ⁻) (1 ⁻)	E2	30.4 4		%I γ ≈1.5 %I γ ≈1.1 α (K)=4.44 6; α (L)=20.17 29; α (M)=4.66 7 α (K)=1.011 1/4; α (C)=0.1253 18; α (R)=0.0002406 34
63.94 5	1.49	244.615+x	(0+,1+)	180.689+x	(1+)	M1	5.62 8		$\alpha(N)=1.011$ 14, $\alpha(O)=0.1235$ 18, $\alpha(P)=0.0002400$ 34 %Iy ≈ 0.19 $\alpha(K)=4.77$ 7; $\alpha(L)=0.675$ 10; $\alpha(M)=0.1442$ 20 $\alpha(K)=0.0225$ 5, $\alpha(O)=0.00480$ 7; $\alpha(D)=0.000208$ 4
68.000 22	26.4	68.006+x	(2-)	0+x	(1-)	M1	4.71 7		$\alpha(N)=0.0325 3; \alpha(O)=0.00489 7; \alpha(P)=0.000508 4$ %Iy \approx 3.4 $\alpha(K)=3.99 6; \alpha(L)=0.564 8; \alpha(M)=0.1205 17$
70.78 4	1.10	244.615+x	(0+,1+)	173.81+x	(2 ⁻)	E1	0.681 10		$\alpha(N)=0.02714; \alpha(O)=0.004096; \alpha(P)=0.0002574$ %I $\gamma\approx 0.14$ $\alpha(K)=0.5718; \alpha(L)=0.087012; \alpha(M)=0.0185326$
72.319 22	10.4	151.702+x	(1+)	79.382+x	(1-)	E1	0.643 9		$\begin{aligned} &\alpha(N) = 0.00408 \ 6; \ \alpha(O) = 0.000572 \ 8; \ \alpha(P) = 2.67 \times 10^{-5} \ 4 \\ &\% I \gamma \approx 1.4 \\ &\alpha(K) = 0.539 \ 8; \ \alpha(L) = 0.0819 \ 11; \ \alpha(M) = 0.01743 \ 24 \end{aligned}$
79.38 15	21.3	79.382+x	(1 ⁻)	0+x	(1-)	M1,E2	4.1 11		α (N)=0.00384 5; α (O)=0.000539 8; α (P)=2.529×10 ⁻⁵ 35 %I γ ≈2.8 α (K)=2.38 18; α (L)=1.4 10; α (M)=0.31 24

¹⁵⁴Nd β^- decay 1993GrZZ,1995Gr19,1997Gr09 (continued) $\gamma(^{154}\text{Pm})$ (continued) $I_{\gamma}^{\ddagger a}$ E_{γ}^{\dagger} Mult.# α**&** E_i (level) \mathbf{J}_i^{π} \mathbf{E}_{f} J^{π} Comments $\alpha(N)=0.07$ 5: $\alpha(O)=0.009$ 6: $\alpha(P)=1.3\times10^{-4}$ 4 α computed assuming $\delta = 1$. 79.75 25 1.9 185.492 + x $(0^+, 1^+)$ $105.690 + x (2^{-})$ %Iy≈0.25 83.697 20 53 0.434 6 151.702+x (1^{+}) $68.006 + x (2^{-})$ E1 %I*γ*≈6.9 $\alpha(K)=0.365$ 5; $\alpha(L)=0.0542$ 8; $\alpha(M)=0.01152$ 16 $\alpha(N)=0.00255$ 4: $\alpha(O)=0.000360$ 5: $\alpha(P)=1.748\times10^{-5}$ 25 87.7[@] 3 0.014 154.93 + x68.006+x (2⁻) $%I_{\gamma \approx 0.0018}$ 89.69 8 $(0^+, 1^+)$ 0.84 244.615+x 154.93+x %Iy≈0.11 $95.0^{@}3$ 0.08 173.81 + x (2^{-}) $79.382 + x (1^{-})$ %Iy≈0.01 101.019 20 151.702+x (1^{+}) $50.688 + x (2^{-})$ %Iy≈5.9 45 104.20 9 2.0 154.93 + x $50.688 + x (2^{-})$ %Iy≈0.26 105.7.3 0.9 105.690 + x (2⁻) 0+x (1^{-}) %Iy≈0.12 185.492 + x $(0^+, 1^+)$ 79.382+x (1⁻) %Iv≈0.065 106.4.3 0.5 0.1835 26 114.81 7.6 194.192+x $(0^+, 1^+)$ 79.382+x (1^{-}) (E1) %Iv≈0.99 $\alpha(K)=0.1554\ 22;\ \alpha(L)=0.02219\ 31;\ \alpha(M)=0.00472\ 7$ $\alpha(N)=0.001047$ 15; $\alpha(O)=0.0001504$ 21; $\alpha(P)=7.78\times10^{-6}$ 11 185.492 + x $(0^+, 1^+)$ 0.1723 24 %Iv≈2.2 117.481 25 17.1 68.006+x (2⁻) E1 $\alpha(K)=0.1460\ 20;\ \alpha(L)=0.02081\ 29;\ \alpha(M)=0.00442\ 6$ α (N)=0.000981 14; α (O)=0.0001412 20; α (P)=7.33×10⁻⁶ 10 122.95 10 1.74 173.81+x (2^{-}) $50.688 + x (2^{-})$ M1,E2 0.97 11 %Iy≈0.23 $\alpha(K)=0.69$ 4: $\alpha(L)=0.22$ 11: $\alpha(M)=0.049$ 27 $\alpha(N)=0.011$ 6; $\alpha(O)=0.0014$ 7; $\alpha(P)=3.8\times10^{-5}$ 9 α computed assuming $\delta = 1$. 126.15 8 1.24 194.192+x $(0^+, 1^+)$ 68.006+x (2⁻) %I*γ*≈0.16 130.002 20 48 180.689 + x (1^{+}) $50.688 + x (2^{-})$ E1 0.1307 18 %Iy≈6.2 $\alpha(K)=0.1109\ 16;\ \alpha(L)=0.01566\ 22;\ \alpha(M)=0.00333\ 5$ α (N)=0.000739 10; α (O)=0.0001068 15; α (P)=5.65×10⁻⁶ 8 $(0^+, 1^+)$ $50.688 + x (2^{-})$ 134.85 12 0.56 185.492+x %Iy≈0.073 151.703 20 100 151.702 + x (1^+) 0+x (1^{-}) %Iv≈13 165.21 5 13.2 244.615+x $(0^+, 1^+)$ $79.382 + x (1^{-})$ %I $\gamma \approx 1.7$ 167.89 8 2.2 850.227+x 682.31 + x (0,1) %Iy≈0.29 (1^{+}) 68.006+x (2⁻) %I*γ*≈0.14 176.5[°] 3 244.615+x 1.1^C $(0^+, 1^+)$ 176.5^C 3 0.14^C (0,1)%Iv≈0.018 682.31+x 505.49 + x?0.0535 7 180.693 22 66 180.689 + x (1^{+}) 0+x (1^{-}) E1 %I*γ*≈8.6 $\alpha(K)=0.0455$ 6; $\alpha(L)=0.00628$ 9; $\alpha(M)=0.001333$ 19 $\alpha(N)=0.000297$ 4: $\alpha(O)=4.35\times10^{-5}$ 6: $\alpha(P)=2.413\times10^{-6}$ 34 185.0[@] 3 0.6 185.492 + x $(0^+, 1^+)$ 0+x (1^{-}) %I $\gamma \approx 0.078$ 193.7 3 244.615+x $(0^+, 1^+)$ $50.688 + x (2^{-})$ %I*γ*≈0.14 1.1 $194.3^{@}.3$ 0.4 $(0^+, 1^+)$ %Iv≈0.052 194.192 + x0+x (1^{-}) 197.9 3 < 0.3 831.55+x 633.85+x (0,1)%Iγ≤0.039 (1^{+})

From ENSDF

¹⁵⁴Nd $β^-$ decay **1993GrZZ**, **1995Gr19**, **1997Gr09** (continued)

$\gamma(^{154}Pm)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
216.40 10	2.52	850.227+x	(1^{+})	633.85+x	(0,1)	%Iy≈0.33
218.5 4	1.4	268.78+x		50.688+x	(2-)	%Iγ≈0.18
244.70 [@] 15	0.91	244.615+x	$(0^+, 1^+)$	0+x	(1^{-})	%Iy≈0.12
x254.4 [@] 3 383.5 5 414.0 4	0.89 0.3 0.25	652.36+x 682.31+x	(0,1)	268.78+x 268.78+x		$\%$ I $\gamma \approx 0.12$ %I $\gamma \approx 0.039$ %I $\gamma \approx 0.033$
416.7 3	1.3	597.39+x		180.689+x	(1^{+})	%Iy≈0.17
425.2 ^{^w} 5 453.4 3	1 0.7	505.49+x? 633.85+x	(0,1)	79.382+x 180.689+x	(1^{-}) (1^{+})	$\%$ I $\gamma \approx 0.13$ $\%$ I $\gamma \approx 0.091$
454.8 ^{^w 5 471.7 3 482.1 3}	1.2 0.6 0.5	505.49+x? 652.36+x 633.85+x	(0,1)	50.688+x 180.689+x 151.702+x	(2^{-}) (1^{+}) (1^{+})	$\%$ I $\gamma \approx 0.16$ $\%$ I $\gamma \approx 0.078$ $\%$ I $\gamma \approx 0.065$
^x 496.4 [@] 3 501.8 3	<1.0 0.5	682.31+x	(0,1)	180.689+x	(1 ⁺)	%Iγ<0.13 %Iγ≈0.065
505.8 ^d 3	0.2	699.99+x?		194.192+x	$(0^+, 1^+)$	%Iγ≈0.026
508.7 4	0.7	682.31+x	(0,1)	173.81+x	(2 ⁻)	%Iy≈0.091
x524.0 [@] 3 527.3 4 554.6 3	<2 0.5 3.0	682.31+x 633.85+x	(0,1) (0,1)	154.93+x 79.382+x	(1-)	$\% I_{\gamma} < 0.26$ $\% I_{\gamma} \approx 0.065$ $\% I_{\gamma} \approx 0.39$
566.2 [@] 5	0.6	633.85+x	(0,1)	68.006+x	(2^{-})	%Iγ≈0.078
587.0 4	0.5	831.55+x	(1^{+})	244.615+x	$(0^+, 1^+)$	%Iy≈0.065
602.8 3	1.63	682.31+x	(0,1)	79.382+x	(1^{-})	$\%1\gamma\approx0.21$
$605.51 \ 10$	10.8	850.227+x	(1°)	244.015+X	$(0^{-},1^{+})$	%1γ≈1.4
$613.6 \overset{\circ}{} 4$	0.2	682.31+x	(0,1)	68.006+x	(2)	%1γ≈0.026
623.9° 3 637.4 3	<2 2.24	831.55+x	(1 ⁺)	194.192+x	$(0^+, 1^+)$	$\%1\gamma < 0.26$ % $1\gamma \approx 0.29$
645.9 ^{@} 5	0.6	831.55+x	(1^+)	185.492+x	$(0^+, 1^+)$	%Iy≈0.078
650.3 3	2.10	831.55+x	(1')	180.689 + x	(1^{+}) $(0^{+}, 1^{+})$	%1γ≈0.27 Ø Inc. 0.065
669 7 <i>4</i>	0.5	900.90+x 850 227+x	(0,1) (1^+)	$244.013 \pm x$ 180.689 \pm x	(0, 1) (1^+)	%1γ≈0.005 %Iv≈0.17
$676.6^{@}.4$	0.5	850.227 + x	(1^+)	173.81 + x	(1^{-})	%Iy~0.065
695.2° 5	0.5	850.227 + x	(1^+)	154.93 + x	(2)	%1y~0.005 %1y~0.065
698.73 20	4.6	850.227+x	(1^+)	151.702 + x	(1^{+})	%Iy≈0.6
$x717.0^{\textcircled{0}{0}}3$	1.2		. /			%Іγ≈0.16
721.46 5	16.6	906.96+x	(0,1)	185.492+x	$(0^+, 1^+)$	$\%$ I γ \approx 2.2
726.27 10	8.9	906.96+x	(0,1)	180.689+x	(1^{+})	%Iy≈1.2
^x 735.7 [@] 3	< 0.3		(a + 5	100 100	(9-)	%Iy<0.039
744.45 25	9.1	850.227+x	(1^{+})	105.690+x	(2 ⁻)	$\%1\gamma\approx1.2$

From ENSDF

¹⁵⁴Nd β⁻ decay **1993GrZZ,1995Gr19,1997Gr09** (continued)

γ ⁽¹⁵⁴Pm) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
^x 751.8 [@] 5	0.85					%Iy≈0.11
755.34 12	8.2	906.96+x	(0,1)	151.702+x	(1^{+})	$\%$ I γ ≈1.1
763.66 15	1.17	831.55+x	(1^{+})	68.006+x	(2 ⁻)	%Iγ≈0.15
770.90 20	3.0	850.227+x	(1^{+})	79.382+x	(1^{-})	%Iy≈0.39
780.79 15	11.6	831.55+x	(1^{+})	50.688+x	(2^{-})	%Iγ≈1.5
782.7 <i>3</i>	1.1	850.227+x	(1^{+})	68.006+x	(2^{-})	%Iy≈0.14
^x 787.3 [@] 3	0.7					%Iy≈0.091
^x 793.0 [@] 3	0.74					%Iγ≈0.096
799.55 4	82	850.227+x	(1^{+})	50.688+x	(2^{-})	%Iy~11
804.96 25	3.5	1049.64+x	(1^{+})	244.615+x	$(0^+, 1^+)$	%Iγ≈0.46
815.9 <i>3</i>	0.8	1060.53 + x	(0,1)	244.615+x	$(0^+, 1^+)$	%Iy≈0.1
827.51 15	1.07	906.96+x	(0,1)	79.382+x	(1-)	%Ly≈0.14
831.59 15	9.8	831.55+x	(1^{+})	0+x	(1^{-})	%Iy≈1.3
839.0 <i>3</i>	5.8	906.96+x	(0,1)	68.006+x	(2^{-})	%Iy≈0.75
850.20 5	40	850.227+x	(1^{+})	0+x	(1 ⁻)	$\%$ I γ \approx 5.2
855.4 <i>3</i>	1.0	1049.64+x	(1^{+})	194.192+x	$(0^+, 1^+)$	%Iy≈0.13
864.16 15	14.2	1049.64+x	(1^{+})	185.492+x	$(0^+, 1^+)$	%Iy≈1.9
866.4 <i>3</i>	3.5	1060.53+x	(0,1)	194.192+x	$(0^+, 1^+)$	%Iy≈0.46
868.95 20	4.4	1049.64+x	(1^{+})	180.689+x	(1^{+})	%Iy≈0.57
875.02 15	6.0	1060.53+x	(0,1)	185.492+x	$(0^+, 1^+)$	%Iy≈0.78
908.78 12	14.0	1060.53+x	(0,1)	151.702+x	(1^{+})	$\%$ I γ \approx 1.8
944.08 20	4.8	1049.64+x	(1^{+})	105.690+x	(2 ⁻)	%Iy≈0.62
^x 953.2 [@] 3	0.9					%Iy≈0.12
960.0 <i>3</i>	2.8	1204.50+x	(0,1)	244.615+x	$(0^+, 1^+)$	%Iy≈0.36
970.0 [@] 3	1.7	1049.64+x	(1^{+})	79.382+x	(1^{-})	%Iy≈0.22
981.2 <i>3</i>	1.4	1060.53+x	(0,1)	79.382+x	(1^{-})	$\%$ I γ ≈0.18
981.4 <i>3</i>	3.0	1049.64+x	(1^{+})	68.006+x	(2 ⁻)	%Iy≈0.39
992.6 <i>3</i>	2.0	1060.53+x	(0,1)	68.006+x	(2^{-})	%Iy≈0.26
999.06 20	4.6	1049.64+x	(1^{+})	50.688+x	(2^{-})	%Iy≈0.6
1010.2 3	0.3	1204.50+x	(0,1)	194.192+x	$(0^+, 1^+)$	%Iy≈0.039
1018.85 25	5.6	1204.50+x	(0,1)	185.492+x	$(0^+, 1^+)$	%Iy≈0.73
1024.1 3	1.5	1204.50+x	(0,1)	180.689+x	(1^{+})	%Iy≈0.2
1049.7 [@] 4	1.1	1049.64+x	(1^{+})	0+x	(1 ⁻)	%Iy≈0.14
1052.79 20	3.8	1204.50+x	(0,1)	151.702+x	(1^{+})	%Iγ≈0.49
1060.6 <i>3</i>	0.9	1060.53+x	(0,1)	0+x	(1 ⁻)	%Iy≈0.12
1136.5 4	1.4	1204.50+x	(0,1)	68.006+x	(2^{-})	%Iy≈0.18
^x 1147.9 [@] 5	0.4					%Iy≈0.052
1153.7 [@] 3	1.24	1204.50+x	(0,1)	50.688+x	(2 ⁻)	%Iy≈0.16
1194.7 <i>3</i>	0.25	1389.21+x	(0,1)	194.192+x	$(0^+, 1^+)$	%Iy≈0.033
1283.51 15	6.1	1389.21+x	(0,1)	105.690+x	(2 ⁻)	%Iy≈0.79

Ţ

$^{154}_{61}\mathrm{Pm}_{93}$ -7

From ENSDF

¹⁵⁴Nd β^- decay **1993GrZZ**, **1995Gr19**, **1997Gr09** (continued)

$\gamma(^{154}\text{Pm})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Comments
1310.4 [@] 4	0.8	1389.21+x	(0,1)	79.382+x	(1^{-})	%Iγ≈0.1 %Iγ≈0.77
$1321.17\ 20$ $1389.22^{@}\ 20$	1.9 1.9	1389.21+x 1389.21+x	(0,1) (0,1)	08.000+x 0+x	(2^{-}) (1^{-})	$\%1\gamma\approx0.77$ $\%1\gamma\approx0.25$
$1417.6^{@} 3$ x1457.1 3	1.6 0.8	1662.70+x	(0,1)	244.615+x	$(0^+, 1^+)$	%Iγ≈0.21 %Iγ≈0.1
1482.3 <i>3</i> 1509 6 <i>4</i>	0.5	1662.70+x 1689 99+x	(0,1) (0,1)	180.689+x 180.689+x	(1^+) (1^+)	%Iy≈0.065 %Iy≈0.27
1583.8 ^{b@} 5	0.5 ^b	1662.70+x	(0,1) (0,1)	79.382+x	(1^{-})	%Iy≈0.065
1583.8 ^{b@} 5 ^x 1706.6 5	0.5 ^b 0.3	1689.99+x	(0,1)	105.690+x	(2 ⁻)	$\%$ I $\gamma \approx 0.065$ $\%$ I $\gamma \approx 0.039$

[†] From 1993GrZZ.

[‡] From 1993GrZZ. Values have not been corrected for coincidence summing, which in the worst cases could be as large as 30%.

[#] Same values as the ¹⁵⁴Pm Adopted Gammas, based on data of 1993GrZZ, from $\alpha_{\rm K}(\exp)$, from IKx/I γ ratio or from $\alpha(\exp)$ based on intensity balances from $\gamma\gamma$ coincidence spectra.

[@] Existence and placement of γ is questionable.

[&] Additional information 5.

 ∞

^{*a*} For absolute intensity per 100 decays, multiply by ≈ 0.13 .

^b Multiply placed with undivided intensity.

^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁴Nd β⁻ decay 1993GrZZ,1995Gr19,1997Gr09

Decay Scheme

¹⁵⁴Nd β⁻ decay 1993GrZZ,1995Gr19,1997Gr09

Decay Scheme (continued)

154 Nd β^- decay 1993GrZZ,1995Gr19,1997Gr09

Decay Scheme (continued)

11