### Adopted Levels, Gammas

|                                                                  |                                          |                              | Tuno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | History<br>Author Citation Literature Cutoff Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                          | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Author Citation Elterature Cuton Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                  |                                          | F                            | ull Evaluati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10n N. Nica NDS 200,2 (2025) 22-Aug-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Q(\beta^{-})=2687\ 25;$<br>S(2n)=11573 24,<br>Additional inform | S(n)=6<br>S(2p)=<br>nation 1<br>nation 2 | 320.5 29; S(j<br>21180 200 ( | p)=11300 <i>I</i><br>(syst) (2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2; $Q(\alpha) = -3158 \ 12 \ 2021 \text{Wa16}$<br>Wa16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  |                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>154</sup> Nd Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  |                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cross Reference (XREF) Flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                  |                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $^{154}$ Pr $\beta^-$ decay<br>B $^{252}$ Cf, $^{248}$ Cm SF decay<br>C $^{239}$ Pu(n,F $\gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E(level) <sup>†</sup>                                            | $J^{\pi \ddagger}$                       | $T_{1/2}^{\#}$               | XREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0@                                                             | $0^{+}$                                  | 25.9 \$ 2                    | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\% B^{-} = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.0                                                              | 0                                        | 25.7 5 2                     | in the second se | $T_{1/2}$ : From <sup>154</sup> Nd $\beta^-$ decay (1987Gr12); other: 26 s 2, from $\beta^-$ decay (1985Ka17). The value of 1987Gr12 is also given by the same authors in 1986GrZZ, 1988GrZY and 1990An31. 1974Bu09 report 40 s <i>10</i> , but 1985Ka17 state that this half-life should not be assigned to <sup>154</sup> Nd and 1987Gr12 conclude it should be assigned to <sup>155</sup> Pm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 70.80 <sup>@</sup> 10                                            | $2^{+}$                                  | 7.7 ns 20                    | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_{1/2}$ : From <sup>252</sup> Cf SF decay (1974JaYY). Other: > 2 ns (1970Wi16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 233.24 <sup>@</sup> 14                                           | 4+                                       |                              | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 481.4 <sup>@</sup> 4                                             | 6+                                       |                              | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 808.7 <sup>@</sup> 5                                             | $8^{+}$                                  |                              | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 961.4 <sup><i>a</i></sup> 5                                      | (1 <sup>-</sup> )                        |                              | AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J <sup><math>\pi</math></sup> : probably the 1 <sup>-</sup> bandhead of the $K^{\pi}=(1^{-})$ band, $\alpha=1$ band in (n,F $\gamma$ ) (2009Si21); compatible with $\gamma$ 's to 0 <sup>+</sup> and 2 <sup>+</sup> in <sup>154</sup> Pr $\beta^{-}$ decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1002.83 <sup>&amp;</sup> 21                                      | (2 <sup>-</sup> )                        |                              | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1027.68 <sup><i>a</i></sup> 19                                   | (3-)                                     |                              | A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $J^{\pi}$ : band member; compatible with $\gamma'$ s to 2 <sup>+</sup> and 4 <sup>+</sup> levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1128.26 22                                                       | $(4^{-})$                                |                              | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1162.94 3                                                        | (5)                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1209.1 - 6<br>1297.97 <sup>b</sup> 22                            | (4 <sup>-</sup> )                        | 3.0 µs 3                     | вс<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E(level): 1974CIZX in ( <sup>252</sup> Cf SF decay) report two isomeric decays, 162.6 2<br>( $T_{1/2}=1.300 \ \mu s \ 41$ ) in <sup>154</sup> Nd that primarily decays to the 4 <sup>+</sup> level and very little<br>to the 6 <sup>+</sup> level, and a 169.9 2 ( $T_{1/2}=1.003 \ \mu s \ 37$ ) assigned to mass 154.<br>Similarly, 1970Jo20 also in ( <sup>252</sup> Cf SF decay) report two isomeric decays, 162.5<br>( $T_{1/2}=2.1 \ \mu s$ ) and 169.9 ( $T_{1/2}=1.7 \ \mu s$ ) both in mass 154. In (n,F $\gamma$ ) a 169.8 3<br>$\gamma$ ray was identified at this (4 <sup>-</sup> ) isomer, but no 162 $\gamma$ ray. Overall, despite the<br>missing evidence, the evaluator would tentatively place the 162 transitions also to<br>this isomer.<br>T <sub>1/2</sub> : weighted average of 3.2 $\mu s \ 3$ (2009Si21) and 2.7 $\mu s \ 3$ (2013YoZZ). All<br>studies are from (n,F $\gamma$ ) by fitting the summed time spectra of the most intense<br>delayed $\gamma$ rays.<br>Dominant configuration= $v5/2[642] \otimes v3/2[521]$ (2009Si21, (n,F $\gamma$ )). |
| 1325.4 <sup>cc</sup> 4<br>1348.8? 8                              | (6 <sup>-</sup> )<br>(5 <sup>-</sup> )   |                              | BC<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E(level): No evidence was found by 2009Si21 ((n,F $\gamma$ )) for a (5 <sup>-</sup> ) isomer with T <sub>1/2</sub> >1 $\mu$ s reported in 1998Ga12 ( <sup>252</sup> Cf, <sup>248</sup> Cm SF decay), reason for which the evidence of this level as questionable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

evaluator considers the existence of this level as questionable. J<sup> $\pi$ </sup>: From  $\gamma$ 's to 4<sup>+</sup> and 6<sup>+</sup> levels which imply J<sup> $\pi$ </sup>=4<sup>+</sup>,5,6<sup>+</sup>. (5<sup>-</sup>) is preferred by

Continued on next page (footnotes at end of table)

#### <sup>154</sup>Nd Levels (continued)

| E(level) <sup>†</sup>       | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$ | XREF | Comments                                                                              |
|-----------------------------|--------------------|----------------|------|---------------------------------------------------------------------------------------|
|                             |                    |                |      | 1998Ga12 on the basis of similarity with the $5^-$ isomer in the isotone $^{156}$ Sm. |
| 1384.3 <sup>c</sup> 3       | (5 <sup>-</sup> )  |                | С    |                                                                                       |
| 1488.0 <sup>b</sup> 4       | (6 <sup>-</sup> )  |                | С    |                                                                                       |
| 1523.7 4                    |                    |                | Α    |                                                                                       |
| 1583.8 8                    |                    |                | Α    |                                                                                       |
| 1593.7 <sup>&amp;</sup> 5   | (8 <sup>-</sup> )  |                | BC   |                                                                                       |
| 1608.7 <sup>°</sup> 4       | (7-)               |                | С    |                                                                                       |
| 1675.5 <sup>@</sup> 6       | $12^{+}$           | 1.9 ps         | BC   |                                                                                       |
| 1746.8 <sup>b</sup> 5       | (8 <sup>-</sup> )  |                | С    |                                                                                       |
| 1902.4 <sup>°</sup> 5       | (9 <sup>-</sup> )  |                | С    |                                                                                       |
| 1931.8 <mark>&amp;</mark> 6 | (10 <sup>-</sup> ) |                | BC   |                                                                                       |
| 2074.6 <sup>b</sup> 6       | $(10^{-})$         |                | С    |                                                                                       |
| 2194.1 10                   |                    |                | Α    |                                                                                       |
| 2200.8 <sup>@</sup> 7       | $14^{+}$           | 1.0 ps         | BC   |                                                                                       |
| 2263.8 <sup>°</sup> 6       | $(11^{-})$         |                | С    |                                                                                       |
| 2337.4 <sup>&amp;</sup> 7   | (12 <sup>-</sup> ) |                | BC   |                                                                                       |
| 2468.0 <sup>b</sup> 6       | $(12^{-})$         |                | С    |                                                                                       |
| 2691.6 <sup>c</sup> 7       | (13-)              |                | С    |                                                                                       |
| 2777.3 <sup>@</sup> 8       | 16+                | 0.69 ps        | BC   |                                                                                       |
| 2807.3 <sup>&amp;</sup> 7   | (14 <sup>-</sup> ) |                | BC   |                                                                                       |
| 2950.3 <sup>b</sup> 7       | (14-)              |                | С    |                                                                                       |
| 3337.8 <mark>&amp;</mark> 8 | (16 <sup>-</sup> ) |                | BC   |                                                                                       |
| 3399.3? <sup>@</sup>        | $(18^{+})$         |                | BC   |                                                                                       |

<sup>†</sup> From a least-squares fit to the listed  $\gamma$  energies.

 $\ddagger$  For the members of the yrast and the side bands: from (n,F $\gamma$ ) based on considerations of the expected band structure and the deexcitation characteristics of spontaneous-fission fragments. Individual arguments are given for levels reported only in the <sup>154</sup>Pr  $\beta^-$  decay.

- <sup>#</sup> From 1994Sm07 in <sup>252</sup>Cf,<sup>248</sup>Cm SF decay unless noted otherwise.
- <sup>@</sup> Band(A):  $K^{\pi} = 0^{+}$  band.

- <sup>&</sup> Band(R):  $K^{\pi}=(0^{-})$  band,  $\alpha=0$ . <sup>a</sup> Band(B):  $K^{\pi}=(1^{-})$  band,  $\alpha=0$ . <sup>b</sup> Band(C):  $K^{\pi}=(4^{-})$  band,  $\alpha=0$ .
- <sup>*c*</sup> Band(c):  $K^{\pi} = (4^{-})$  band,  $\alpha = 1$ .

## $\gamma(^{154}\text{Nd})$

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f  J_f^{\pi}$ | Mult. | $\alpha^{\ddagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------|------------------------|------------------------|------------------|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70.80                  | 2+                   | 70.8 1                 | 100                    | 0.0 0+           | [E2]  | 7.79                | B(E2)(W.u.)=95 25<br>$\alpha$ (K)=2.96 5; $\alpha$ (L)=3.76 6; $\alpha$ (M)=0.861 14<br>$\alpha$ (N)=0.186 3; $\alpha$ (O)=0.0235 4; $\alpha$ (P)=0.0001258 18<br>E <sub><math>\gamma</math></sub> : from <sup>154</sup> Pr $\beta^-$ decay. Others: 70.8 1 from <sup>252</sup> Cf, <sup>248</sup> Cm SF<br>decay and 70.8 3 from (n.F $\gamma$ ).            |
| 233.24                 | 4+                   | 162.4 <i>1</i>         | 100                    | 70.80 2+         | [E2]  | 0.398               | $\begin{aligned} &\alpha(K)=0.279 \ 4; \ \alpha(L)=0.0931 \ 14; \ \alpha(M)=0.0209 \ 3\\ &\alpha(N)=0.00454 \ 7; \ \alpha(O)=0.000607 \ 9; \ \alpha(P)=1.353\times10^{-5} \ 19\\ &E_{\gamma}: \ from \ ^{154}Pr \ \beta^{-} \ decay. \ Others: \ 162.4 \ 1 \ from \ ^{252}Cf, \ ^{248}Cm \ SF\\ &decay \ and \ 162.4 \ 3 \ from \ (n,F\gamma). \end{aligned}$ |

# $\gamma$ (<sup>154</sup>Nd) (continued)

| nents                                                                           |
|---------------------------------------------------------------------------------|
| .0172 <i>3</i> ;<br>=0.0001150 <i>17</i> ;<br>248.6 from                        |
| 20630 <i>9</i> ;                                                                |
| :4.29×10 <sup>-5</sup> 7;<br>328.2 from                                         |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| 932.3 4 from $^{154}$ Pr<br>from (n,F $\gamma$ ). Other:<br>F decay).           |
| 794.3 4 from ${}^{154}$ Pr<br>from (n,F $\gamma$ ).                             |
| $100 \ / \ \text{from}^{13} \ \text{Pr} \beta$<br>(n.Ev).                       |
| 956.9 <i>3</i> from ${}^{154}$ Pr from (n,F $\gamma$ ).                         |
| )1 30 from <sup>154</sup> Pr $\beta^-$<br>(n,F $\gamma$ ).                      |
| 125.8 from                                                                      |
| 895.1 <i>4</i> from $^{154}$ Pr from (n,F $\gamma$ ).                           |
|                                                                                 |
|                                                                                 |
| )0319 5;                                                                        |
| $0 = 2.20 \times 10^{-5} 4;$                                                    |
| r: 400.7 from                                                                   |
| 138 67; $\alpha$ (M)=0.031                                                      |
| $0.2 \times 10^{-4} 41;$                                                        |
| 057 <i>20</i> ; <i>α</i> (M)=0.0126                                             |
| $3.9 \times 10^{-4}$ 12;                                                        |
| 0115 <i>11</i> ;                                                                |
| $3.0 \times 10^{-5} 5;$                                                         |
| 00907 <i>14</i> ;                                                               |
| ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |

Continued on next page (footnotes at end of table)

# $\gamma(^{154}\text{Nd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$            | $\mathbf{J}_f^{\pi}$ | Mult. | $\alpha^{\ddagger}$ | Comments                                                                                               |
|------------------------|----------------------|------------------------|------------------------|------------------|----------------------|-------|---------------------|--------------------------------------------------------------------------------------------------------|
|                        | _                    |                        |                        |                  |                      |       |                     | $\alpha$ (N)=0.000437 7; $\alpha$ (O)=6.14×10 <sup>-5</sup> 9;<br>$\alpha$ (P)=2.38×10 <sup>-6</sup> 4 |
| 1325.4                 | (6 <sup>-</sup> )    | 197.2 <i>3</i>         | 100                    | 1128.26          | (4 <sup>-</sup> )    |       |                     | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 197.5 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.  |
|                        |                      |                        |                        |                  |                      |       |                     | $I_{\gamma}$ : from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                                     |
|                        |                      | 843.8                  | 57                     | 481.4            | 6+                   |       |                     | $E_{\gamma}, I_{\gamma}$ : from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                         |
| 1348.8?                | $(5^{-})$            | 870                    | 100                    | 481.4            | 6+                   |       |                     | $E_{\gamma}$ , $I_{\gamma}$ : from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                      |
|                        |                      | 1113                   | ≈14                    | 233.24           | 4+                   |       |                     | $E_{\gamma}$ , $I_{\gamma}$ : from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                      |
| 1384.3                 | (5 <sup>-</sup> )    | 86.3 2                 | 100                    | 1297.97          | (4 <sup>-</sup> )    |       |                     |                                                                                                        |
| 1488.0                 | (6 <sup>-</sup> )    | 103.8 2                | 100 50                 | 1384.3           | (5 <sup>-</sup> )    |       |                     |                                                                                                        |
|                        |                      | 190 <sup>#</sup>       | 7                      | 1297.97          | (4 <sup>-</sup> )    |       |                     |                                                                                                        |
| 1523.7                 |                      | 520.7 4                | 36.1 24                | 1002.83          | (2 <sup>-</sup> )    |       |                     | $E_{\gamma}, I_{\gamma}$ : from <sup>154</sup> Pr $\beta^-$ decay.                                     |
|                        |                      | 562.5 4                | 100 4                  | 961.4            | $(1^{-})$            |       |                     | $E_{\gamma}, I_{\gamma}$ : from <sup>154</sup> Pr $\beta^-$ decay.                                     |
| 1583.8                 |                      | 581.0 7                | 100                    | 1002.83          | $(2^{-})$            |       |                     | $E_{\gamma}$ , $I_{\gamma}$ : from <sup>154</sup> Pr $\beta^{-}$ decay.                                |
| 1593.7                 | (8-)                 | 268.3 <i>3</i>         | 100                    | 1325.4           | (6 <sup>-</sup> )    |       |                     | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 268.5 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.  |
|                        |                      |                        |                        |                  |                      |       |                     | $I_{\gamma}$ : from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                                     |
|                        |                      | 784.8 <sup>#</sup>     |                        | 808.7            | 8+                   |       |                     | $E_{\alpha}$ : from <sup>252</sup> Cf. <sup>248</sup> Cm SF decay.                                     |
| 1608.7                 | $(7^{-})$            | 120.7 2                | 100 50                 | 1488.0           | (6 <sup>-</sup> )    |       |                     | ,,,,                                                                                                   |
|                        |                      | 224                    | 8                      | 1384.3           | (5-)                 |       |                     |                                                                                                        |
| 1675.5                 | $12^{+}$             | 466.4 <i>3</i>         | 100                    | 1209.1           | $10^{+}$             | [E2]  | 0.01423             | $B(E2)(W.u.)=2.7\times10^{2}$                                                                          |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha$ (K)=0.01173 <i>17</i> ; $\alpha$ (L)=0.00197 <i>3</i> ;<br>$\alpha$ (M)=0.000425 <i>6</i>     |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha$ (N)=9.40×10 <sup>-5</sup> 14; $\alpha$ (O)=1.366×10 <sup>-5</sup> 20;                         |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha(P) = 6.83 \times 10^{-7} \ 10$                                                                 |
|                        |                      |                        |                        |                  |                      |       |                     | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 466.5 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.  |
| 1746.8                 | (8-)                 | 138.1 2                | 100 40                 | 1608.7           | (7-)                 |       |                     |                                                                                                        |
|                        |                      | 259 <sup>#</sup>       | 18                     | 1488.0           | (6 <sup>-</sup> )    |       |                     |                                                                                                        |
| 1902.4                 | (9-)                 | 155.6 2                | 100 29                 | 1746.8           | (8-)                 |       |                     |                                                                                                        |
|                        |                      | 293                    | 71                     | 1608.7           | $(7^{-})$            |       |                     | 252 249                                                                                                |
| 1931.8                 | (10 <sup>-</sup> )   | 338.1 <i>3</i>         | 100                    | 1593.7           | (8 <sup>-</sup> )    |       |                     | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 338.3 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.  |
| 2074.6                 | $(10^{-})$           | 172.2 2                | 100 33                 | 1902.4           | (9-)                 |       |                     |                                                                                                        |
|                        |                      | 328                    | 25                     | 1746.8           | (8 <sup>-</sup> )    |       |                     | 171                                                                                                    |
| 2194.1                 |                      | 670.4 9                | 100                    | 1523.7           |                      |       |                     | $E_{\gamma}, I_{\gamma}$ : from <sup>154</sup> Pr $\beta^{-}$ decay.                                   |
| 2200.8                 | $14^{+}$             | 525.3 <i>3</i>         | 100                    | 1675.5           | $12^{+}$             | [E2]  | 0.01032             | $B(E2)(W.u.)=2.9\times10^{2}$                                                                          |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha(K)=0.00857\ 12;\ \alpha(L)=0.001378\ 20;$                                                      |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha(M) = 0.000296.5$                                                                               |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha(N) = 6.5 \times 10^{-5} 10; \ \alpha(O) = 9.61 \times 10^{-5} 14;$                             |
|                        |                      |                        |                        |                  |                      |       |                     | $\alpha(P) = 5.04 \times 10^{-7} 7$                                                                    |
| 22(2.0                 | (11-)                | 100.0.0                | 100.50                 | 2074 (           | (10-)                |       |                     | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 525.1 from <sup>232</sup> Cf, <sup>240</sup> Cm SF decay.  |
| 2263.8                 | (11)                 | 189.2 2                | 100 50                 | 20/4.6           | (10)                 |       |                     |                                                                                                        |
|                        |                      | 361"                   | 56                     | 1902.4           | (9 <sup>-</sup> )    |       |                     | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                |
| 2337.4                 | $(12^{-})$           | 405.6 3                | 100                    | 1931.8           | $(10^{-})$           |       |                     | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 405.8 from <sup>232</sup> Cf, <sup>246</sup> Cm            |
| 2468.0                 | (12 <sup>-</sup> )   | 204.2 2                | 100 50                 | 2263.8           | $(11^{-})$           |       |                     | SF decay.                                                                                              |
| 2601.6                 | $(12^{-1})$          | 394<br>222 5 2         | 14                     | 20/4.6           | (10)                 |       |                     |                                                                                                        |
| 2091.0                 | (13)                 | 428.3 Z                | 100 40                 | 2400.0<br>2263.8 | (12)<br>$(11^{-})$   |       |                     |                                                                                                        |
| 2777 3                 | 16+                  | 576 5 3                | 100                    | 2200.8           | 14+                  | [F2]  | 0.00810             | $B(F2)(W_{II}) = 2.6 \times 10^{2}$                                                                    |
|                        | 10                   | 510.55                 | 100                    | 2200.0           | 11                   | [22]  | 0.00010             | D(DD)(((,u))=2.0/10                                                                                    |

Continued on next page (footnotes at end of table)

## $\gamma(^{154}\text{Nd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f  J_f^{\pi}$          | Comments                                                                                                                                                                                                                                                                 |
|------------------------|----------------------|------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                        |                           | $\alpha(K)=0.00676\ 10;\ \alpha(L)=0.001054\ 15;\ \alpha(M)=0.000226\ 4$<br>$\alpha(N)=5.02\times10^{-5}\ 7;\ \alpha(O)=7.38\times10^{-6}\ 11;\ \alpha(P)=4.01\times10^{-7}\ 6$<br>$E_{\gamma}:\ from\ (n,F\gamma).\ Other:\ 576.6\ from\ ^{252}Cf,^{248}Cm\ SF\ decay.$ |
| 2807.3                 | (14 <sup>-</sup> )   | 469.9 <i>3</i>         | 100                    | 2337.4 (12 <sup>-</sup> ) | $E_{\gamma}$ : from (n,F $\gamma$ ). Other: 470.0 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                                                                                                                                                                    |
| 2950.3                 | (14 <sup>-</sup> )   | 258.7 <i>2</i>         | 100                    | 2691.6 (13 <sup>-</sup> ) |                                                                                                                                                                                                                                                                          |
| 3337.8                 | (16 <sup>-</sup> )   | 530.5 <i>3</i>         | 100                    | 2807.3 (14 <sup>-</sup> ) | $E_{\gamma}$ : from (n,Fγ). Other: 530.7 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                                                                                                                                                                             |
| 3399.3?                | (18 <sup>+</sup> )   | 619.6 <sup>#</sup> 9   | 100                    | 2777.3 16 <sup>+</sup>    | $E_{\gamma}$ : from (n,Fγ). Other: 620.4 from <sup>252</sup> Cf, <sup>248</sup> Cm SF decay.                                                                                                                                                                             |

<sup>†</sup> For the K<sup>π</sup>=(4<sup>-</sup>) bands all data are from (n,Fγ).
<sup>‡</sup> Additional information 3.
<sup>#</sup> Placement of transition in the level scheme is uncertain.



 $^{154}_{60}\text{Nd}_{94}$ 



 $^{154}_{60}\text{Nd}_{94}$ 

#### Adopted Levels, Gammas



<sup>154</sup><sub>60</sub>Nd<sub>94</sub>