Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

 $Q(\beta^{-})=-6940 \text{ syst}; S(n)=9360 \text{ syst}; S(p)=-204 14; Q(\alpha)=4400 \text{ syst}$ 2021Wa16

 $\Delta Q(\beta^{-})=360, \Delta S(n)=250, \Delta Q(\alpha)=280 \text{ (syst, 2021Wa16).}$

S(2n)=22390 280, S(2p)=2520 210, Q(\varepsilon p)=7020 200 (syst, 2021Wa16).

Additional information 1. All data are from the ¹⁵⁴Lu IT decay, except for three levels populated in the ¹⁵⁸Ta α decay.

¹⁵⁴Lu Levels

Cross Reference (XREF) Flags

¹⁵⁴Lu IT decay (35 μs) ¹⁵⁸Ta α decay (55 ms) ¹⁵⁸Ta α decay (36.0 ms) ¹⁵⁸Ta α decay (6.1 μs) A

В

С

D

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	(2 ⁻)		В	$%ε+%β^+≈100; %α≈0$ E(level): Level reported in ¹⁵⁸ Ta α decay (1997Da07). J ^π : From a consideration of measured and calculated proton emission half-lives for the 10.5 ms state of ¹⁶⁶ Ir, 1997Da07 conclude that the proton emission is from the π d _{3/2} , rather that from a π s _{1/2} or π h _{11/2} orbital. This, together with systematics which indicates that the odd neutron is in the ν f _{7/2} orbital, suggests that this ¹⁶⁶ Ir state has Configuration=((π d _{3/2})(ν f _{7/2})). For this configuration, the Nordheim strong rule for angular-momentum coupling in odd-odd nuclides indicates that the J ^π =2 ⁻ coupling lies lower in energy. Hence, the ¹⁶⁶ Ir ground state most likely has J ^π =2 ⁻ . Since this level is fed by a succession of three unhindered (ΔL=0) α decays from the ¹⁶⁶ Ir ground state, its J ^π should be the same. $%ε+%β^+$: Estimated by evaluator from non observation of α decay (1997Da07).
62 12	(9 ⁺) [#]	1.12 s 8	A CD	%ε+%β ⁺ ≈100 Additional information 2. E(level): From 2021Ko07. %ε+%β ⁺ : Value assumed by evaluator from the lack of reported α decay and the fact that the measured half-life is comparable to that calculated for the ε decay, namely 1.18 s (2019Mo01). Also, α systematics suggest %α≈0.002. E(level): There has been some question as to whether this level is the same as the level that decays via ε to ¹⁵⁴ Yb. In their study of the ¹⁵⁴ Lu ε decay, 1988Vi02 assign the ε parent level as (7 ⁺). However, the evaluator has concluded, based on the information from the in-beam studies (1993Zh10,1996Zh09) of the ¹⁵⁴ Yb level scheme, that the J ^π value of the ¹⁵⁴ Lu parent in the ε decay is probably not (7 ⁺) but rather is (9 ⁺) (see the discussion in the ¹⁵⁴ Lu ε decay dataset). Throughout this evaluation, it has been assumed that the (9 ⁺) level reported here is the same as the parent state of the ¹⁵⁴ Lu ε decay. T _{1/2} : From weighted average of 0.96 s <i>10</i> (1981Ho10) and 1.16 s 5 (1988Vi02). Other: 1.1 s (1984HaZD). J ^π : 1988Vi02 report significant ε+β ⁺ feeding from ¹⁵⁴ Lu to the (6 ⁺) and (8 ⁺) levels in ¹⁵⁴ Yb and from this conclude that J ^π for the ¹⁵⁴ Lu parent is (7 ⁺). They also indicate that this ε+β ⁺ feeding pattern suggests a similar structure for these two final states. The odd proton and odd neutron in the ¹⁵⁴ Lu parent state are in the π h _{11/2} and ν f _{7/2} orbitals, respectively. The implied low log <i>ft</i> values indicate strong Gamow-Teller transitions, which in this case would be π h _{11/2} →ν h _{9/2} . It is now

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁵⁴Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				believed, however, that the configurations of the two ¹⁵⁴ Yb final states are quite different (see the discussion in the ¹⁰⁶ Cd(⁵⁴ Fe, α 2p γ) data set, as well as those in the original studies (1993Zh10,1996Zh09)). Only one of these states, the (8 ⁺) level, can be fed by a strong Gamow-Teller transition. The transition to the (6 ⁺) level would be π h _{11/2} $\rightarrow \nu$ f _{7/2} . It will be much weaker (and, possibly, may not take place). Thus, the basis for a (7 ⁺) assignment appears to be considerably weakened. The evaluator has chosen to adopt J ^{π} =(9 ⁺) for the ¹⁵⁴ Lu ε decay parent, in agreement with the systematics of the spins in this mass region.
81.0 4	$(8^+)^{\#}$		AC	
118.9 5	(8 ⁺ ,9 ⁺ ,10 ⁺)		С	J^{π} : from prompt 59.9 γ compatible with dipole transition and no parity change expected between low-energy $\pi h_{11/2}$ states in ¹⁵⁴ Lu (2019Pa27).
416.8 4	$(9^+)^{@}$		Α	
945.8 <i>4</i>	$(10^+)^{@}$		Α	
1261.8 4	$(10^{-})^{\&}$		Α	
1284.4 4	(11 ⁻)&		A	
1461.4 4	(11^+)		A	
1499.8 5	$(12^{-})^{a}$		A	
1872.8 6	(12^{-})		Α	
1970.6 5	(13-)		Α	
2140.3 5	(13 ⁺)		Α	
2283.8 5	(14 ⁻)		Α	
2490.3 5	(14^{+})		Α	
2490.3+x	(15^{+})		Α	Additional information 3.
2620.7+x <i>3</i>	(17^{+})	35 µs 3	Α	%IT=100
				The configurational makeup of this level is discussed in the theoretical study of 2002Ma80.

[†] From a least-squares fit to the γ -ray energies with 59 and 2490.3+x held fixed. [‡] Unless noted otherwise, the J^{π} and configuration assignments for the levels above 70 keV are those suggested from ¹⁵⁴Lu IT decay (1990Mc02) and are based on analogy to those in ¹⁵⁰Ho and ¹⁵²Tm.

[#] Configuration=((π h_{11/2})(ν f_{7/2})).

[@] Configuration= $((\pi h_{11/2})(\nu h_{9/2}))$.

 $\& 3^-$ octupole vibration built on the g.s. configuration.

^{*a*} Configuration= $((\pi h_{11/2})(\nu i_{13/2}))$.

 $\gamma(^{154}Lu)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
81.0	(8 ⁺)	22.2 5	100	62 (9 ⁺)
118.9	$(8^+, 9^+, 10^+)$	59.9 <i>5</i>		62 (9 ⁺)
416.8	(9 ⁺)	335.9 <i>3</i>	100 11	81.0 (8 ⁺)
		358.1 6	73	62 (9 ⁺)
945.8	(10^{+})	529.1 4	100	416.8 (9 ⁺)
1261.8	(10^{-})	316.2 5	18 4	945.8 (10 ⁺)
		845.2 <i>4</i>	86 8	416.8 (9 ⁺)
		1202.5 5	100 18	62 (9 ⁺)
1284.4	(11 ⁻)	(22.6 [‡] 6)		1261.8 (10 ⁻)
		338.7 4	100 10	945.8 (10 ⁺)
1461.4	(11^{+})	1402.3 4	100	62 (9 ⁺)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽¹⁵⁴ Lu) (continued)								
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
1499.8	(12^{-})	215.4 3	100	1284.4	(11^{-})	(M1)	0.422	
1872.8	(12-)	411.6 5	100	1461.4	(11+)			
1970.6	(13 ⁻)	98.0 6	23 13	1872.8	(12^{-})			
2140.2	(12+)	4/0./ 4	100 10	1499.8	(12)			
2140.5	(13^{-1})	040.0 4 678 8 4	26.4	1499.8	(12) (11^+)			
2283.8	(14 ⁻)	313.4 5	100 20	1970.6	(11^{-}) (13 ⁻)			
		784.3 6	80 20	1499.8	(12^{-})			
2490.3	(14^{+})	206.8 4	18 2	2283.8	(14^{-})			
		350.0 3	100 10	2140.3	(13^+)			
2400.2 + *	(15^{+})	519.54	37 4	19/0.6	(13^{-}) (14^{+})			
$2490.3 \pm x$ 2620 7 $\pm x$	(13) (17^+)	(x) 130.4.3	100	2490.3 $2490.3 \pm x$	(14) (15^+)	F2	1 238 27	$B(F2)(W_{11}) = 0.00391 \pm 37 = 32$
2020.71X	(17)	150.15	100	2120.31X	(13)		1.230 21	The large hindrance of this transition, as well as those of a number of other such transitions in neutron-deficient nuclides in this mass region, has been discussed by 2002Ma80 in the framework of an extended seniority reduction formalism involving three valence orbitals, together with significant proton excitation out

of the ¹⁴⁶Gd core.

[†] Values from 1993Mc03, ¹⁵⁴Lu IT decay.

[‡] From E(level) differences, transition not observed.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{154}_{71}Lu_{83}$