¹⁵⁸Ta α decay (6.1 μs) 2014Ca03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Parent: ¹⁵⁸Ta: E=2809; J^{π}=19⁻; T_{1/2}=6.1 μ s *I*; Q(α)=6124 4; % α decay=1.4 2

¹⁵⁸Ta-Q(α): From 2021Wa16.

¹⁵⁸Ta-E,J^π: From 2014Ca03.

¹⁵⁸Ta-T_{1/2}: From γ (t) (2014Ca03, 2015Ca04); other: 6.4 μ s 4 from α (t) (2015Ca04).

¹⁵⁸Ta- $\%\alpha$ decay: $\%\alpha$ =1.4 2 measured by 2014Ca03.

2014Ca03 compiled by B. Singh (McMaster).

2014Ca03, 2015Ca04: ¹⁵⁸Ta produced by ¹⁰²Pd($E(^{58}Ni)$,pn) reaction with 255 MeV beam from JYFL accelerator facility. ¹⁵⁸Ta recoils separated by RITU separator and GREAT spectrometer. Measured E γ , I γ , $\gamma\gamma$ -coin, E α , (¹⁵⁸Ta ions) $\gamma\alpha$ correlations. Determined half-life of high-spin isomer using JUROGAM array for γ 's and DSSDs for particles. Deduced isomer decay modes, levels and J^{π} in ¹⁵⁸Ta.

Additional information 1.

¹⁵⁴Lu Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0 60 <i>12</i>	(2 ⁻) (9 ⁺)	1.12 s 8	E(level): from ¹⁵⁴ Lu Adopted Levels. $\%\epsilon + \%\beta^+ \approx 100$ E(level): from 2012Au07. In ¹⁵⁴ Lu Adopted Levels, level energy is listed in comments as 59 keV 9. $J^{\pi}, T_{1/2}$: from ¹⁵⁴ Lu Adopted Levels. Decay mode from ¹⁵⁴ Lu Adopted Levels.

α radiations

Eα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
8644 11	60	100	6.9×10 ⁵ 13	E α ,HF: from 2014Ca03. I α : the only known transition from the 6.1 μ s isomer.
				HF: calculated by evaluation code; $2014Ca03$ report ≈ 20 .

[†] The nuclear radius parameter $r_0(^{154}Lu)=1.5570\ 56$ is deduced from interpolation of radius parameters of the adjacent even-even nuclides in 2020Si16.

[±] For absolute intensity per 100 decays, multiply by 0.014 2.