Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

 $O(\beta^{-})=10690 \text{ syst}; S(n)=3540 \text{ syst}; S(p)=12350 \text{ syst}; O(\alpha)=-5790 \text{ syst}$ 2021Wa16

 $\Delta Q(\beta^{-})=360, \Delta S(n)=420, \Delta S(p)=500, \Delta Q(\alpha)=500 \text{ (syst, 2021Wa16)}.$

 $S(2n)=8380\ 420,\ S(2p)=26980\ 580,\ Q(\beta^-n)=5310\ 360\ (syst,2021Wa16).$

2017Wu04 compiled for XUNDL database by F. Kondev, ANL.

2020Wu04 compiled for XUNDL database by B. Singh, McMaster.

2017Wu04: The ¹⁵⁴La nuclide was produced at the RIBF-RIKEN facility using the ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of ¹⁵⁸Nd and ¹⁷⁰Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - ΔE method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was 100 ions/s. Measured: implanted ion- β^- -t, implanted ion- β^{-} - γ -t and implanted ions- γ -t correlations. Deduced: T_{1/2}.

2020Wu04: 154 La nuclide produced at the RIBF-RIKEN facility by 9 Be(238 U,F) reaction at E=345 MeV/nucleon and an intensity of 5 pnA. Identification of fission fragments of interest was made based on time-of-flight (tof), magnetic rigidity ($B\rho$), and energy loss (ΔE) using the BigRIPS spectrometer, determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The separated nuclei were implanted at a rate of 100 ions/s in the beta counting system of the Wide range Active Silicon-Strip Stopper Array for Beta and ion detection (WAS3ABi), which included a stack of five Double Sided Silicon Strip Detectors (DSSSDs). The WAS3ABi setup was surrounded by Euroball Riken Cluster Array (EURICA) array of 84 HPGe detectors for γ detection. Half-life of the separated and implanted ions was determined by fitting the time distribution of β (implants)- and/or $\beta\gamma$ (implants)-correlated decay curves to the sum of activities of parent nuclei, daughter nuclei, grand-daughter nuclei, β -delayed neutron daughter and grand-daughter nuclei, and a constant background. Comparison of measured half-lives with FRDM+QRPA (2003), FRDM+QRPA (2019), KTUY+GT2, RHB+pn-RQRPA, and DF+CQRPA theoretical calculations. Others: 2018Fu08, 2018Sh11.

¹⁵⁴La Levels

E(level)	J^{π}	T _{1/2}	Comments	
0.0	(2^{-})	161 ms 15	$\%\beta^{-}=100; \ \%\beta^{-}n=?$	
			$\%\beta^-$: Only β^- decay mode is expected.	
			J^{π} : From systematics of known quasiparticle states in neighboring nuclei and the proposed configuration (by the evaluator). The assignment is tentative.	
			$T_{1/2}$: from 2017Wu04, by using a fit to the implanted ion- β^- -t spectrum using the least-squares and maximum-likelihood methods. The data analysis included contributions from the parent, daughter and grand-daughter decays, as well as a constant background. Other result: 221 ms 89 (2020Wu04), assumed to correspond to ¹⁵⁴ La g.s., by fitting the time distribution of (implanted ions) β -correlated decay curves to the sum of activities of parent nuclei, daughter nuclei, grand-daughter nuclei, β^- n daughter and grand-daughter nuclei, and a constant background. The production of ¹⁵⁴ La of 2017Wu04 is about 100 stronger compared to 2020Wu04 leading to the more precise measurement that was adopted	
			configuration: From systematics of well-deformed nuclei in this mass region, the $\pi 1/2[420]$ and $\nu 5/2[523]$ Nilsson orbitals are expected near the proton and neutron Fermi surfaces, respectively. Thus, using the Gallagher-Moszkowski rule, one may expect the $K^{\pi}=2^{-}$, $\pi 1/2[420] \otimes \nu 5/2[523]$ configuration for the ground state. The assignment is tentative and it is made by the evaluator.	
			2018Fu08: 2080 ¹⁵⁴ La counts; 2018Sh11 141 ¹⁵⁴ La counts.	