Adopted Levels, Gammas

			Tuno	Author	History	Literatura Cutoff Data
			Full Evaluation	n N Nica	NDS 200 2 (2025)	22-Aug-2022
$Q(\beta^{-}) = -2034$ S(2n) = 17177	9; S(r 15, S(2	n)=7699 <i>10</i> ; S(2p)=8500 <i>40</i> (2	p)=2785 <i>9</i> ; Q 2021Wa16).	$(\alpha) = 4041 \ 4$	2021Wa16	22-Aug-2022
					¹⁵⁴ Ho Levels	
				Cross	Reference (XREF) Fla	ags
				A B	154 Er ε decay 141 Pr(16 O,3n γ)	
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments
0	2-	11.76 min <i>19</i>	р А 9 <i>µ</i> <i>µ</i> <i>µ</i> <i>µ</i> <i>µ</i> <i>1</i> 9 <i>Р</i> <i>µ</i> <i>µ</i> <i>2</i> <i>1</i> <i>1</i> <i>9</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>		$%ε+%β^+=99.981~5$ 2e+0.19~10 1^{156} Ho)=0.334 fm ² 4 (om graph of 1988NeZ ation of data on nuclea 86 fm 33. rfine structure (1988No onflicts with J=1 report 4 average of 11.75 m 2 ay. Others: 11.8 m 10 4Sc19, who give 0.01' om 1974Sc19 evaluation StZV based on the mean lass Spectroscopy. StZV based on the mean pectroscopy.	1989A127). Others: 0.26 fm ² (1989OtZZ); 0.4 Z). If rms charge radii, 2013An02 report eZZ and 1989A127); π from E1 γ from 1 ⁺ level. rted from atomic-beam magnetic resonance data 20 (1993A103) and 11.8 m 5 (1968Wa12) from (1967Ha34) and 12.5 m 5 (1974PeZS) from α 7 3 and 0.028 9. Other: 0.042 24 (1968Go13). on). Issurement by 1989A127 by Laser Resonance assurement by 1989A127 by Laser Resonance
26.9 2	1^{+}		A J	π : log $ft \approx 4.0$) from 154Er $2^- \varepsilon$ dec	ay parent and E1 γ to g.s.
0+x	8+	3.10 min <i>14</i>	4 AB 9 μ 4 2 5 5 7 7 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1	Additional info $\&\varepsilon + \%\beta^+ = 100$ $[= +5.63 \ 6; \ Q=$ Additional info $\Delta < r^2 > (\text{ground } \Xi)$ $\exists (\text{level}): x = 24$ π : J=8 measur allowed-unhi ε decay to 6 $\Gamma_{1/2}$: Weighted $\Gamma_{1/2}$: Weighted Γ_{54} Ho ε deca $\&\alpha$: From Γ_{54} Ho $\Xi\alpha = 3721 \ 5$ (fr & IT: IT decay ι : From 20198 Ionisation M \Im : From 20198	prmation 1. ; $%\alpha < 0.001$; %IT≈0 =-1.0 5 prmation 2. state-isomer)=0.015 fm 3 28 (2021Ko07). red by 1989A127 (usin indered (log/t=4.9) ε t + states. 1 average of 3.25 m 10 ay and 3.0 m 3 (19717) Ho α decay (3.10 m) (om evaluations by 197 is unobserved. StZV based on the mean lass Spectroscopy. StZV based on the mean base of the mean lass Spectroscopy. StZV based on the mean base of the mean lass Spectroscopy.	n ² (1989A127, 1989OtZZ). g resonance ionization spectroscopy). π =+ from ransition to a 7 ⁺ state in ¹⁵⁴ Dy and no, or little, 0 (1968Wa12) and 2.80 m <i>15</i> (1993A103) from 5001) from α decay. 1974Sc19). 4Sc19 and 2013Ba31). asurement by 1989A127 by Laser Resonance asurement by 1989A127 by Laser Resonance
18.8+x 4 20.9+x 3 58.7+x 3 213.3+x 3			B B B J B	π : (7) postulat	ted by 2013Mo35 with	no arguments.

Continued on next page (footnotes at end of table)

¹⁵⁴Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
285.0+x [#] 2	(9 ⁺)	В	J^{π} : $\Delta J=1 D(+Q) \gamma$ from (10 ⁺).
$339.3 + x^{@}2$	(10^{+})	В	I^{π} : (E2) γ to 8 ⁺ isomer
$521.7 + x^{a} 4$	(10^{-})	B	J^{π} : (11) from D(+O) γ to (10 ⁺): bandhead of (11 ⁻) band from systematics.
701.7+x 5	()	B	
814.2+x ^{&} 5	(12 ⁻)	В	J^{π} : (11) from D(+Q) γ to (10 ⁺): π =(-) based on bandhead of (12 ⁻) band from systematics.
854.1+x [#] 4	(11^{+})	В	J^{π} : in-band (E2) γ to (9 ⁺).
$890.4 + x^{\textcircled{0}}4$	(12^+)	В	J^{π} : in-band E2 γ to (10 ⁺).
$1097.0 + x^{a}.5$	(12^{-})	B	π^{*} in-band E2 γ to (11 ⁻).
1198.4+x 5	$(12^{-}, 13^{-})$	В	J^{π} : γ to (11 ⁻) and γ from (14 ⁻).
1376.2+x ^{&} 5	(14 ⁻)	В	J^{π} : in-band E2 γ to (12 ⁻).
$1453.8 + x^{\#} 5$	(13^{+})	В	J^{π} : in-band E2 γ to (11 ⁺).
$1475.6 \pm x^{@}5$	(14^+)	R	I^{π} : in-band E2 γ to (12 ⁺)
$1473.0+x^{a}$ 5	(1+) (15^{-})	R	I^{π} : in-band E2 y to (12 ⁻).
$17284 \pm x 5$	(13^{-})	B	I^{π} , $E^{2} \sim from (16^{-})$
$1868.5 \pm x.5$	(14^+)	B	J^{π} : (E2) γ to (12 ⁺).
$1073 1 \pm x^{\&} 5$	(16^{-})	R	I^{π} : in-band E2 γ to (14^{-})
2187.0+x.5	(10^{-})	B	J^{π} : (M1+E2) γ to (15 ⁻).
$2229.9 + x^{(0)} 6$	(16^+)	R	I^{π} : in-band F2 γ to (14 ⁺)
$2229.9 + x^{\#} 6$	(10^{+})	D	I^{π} : in band (E2) α to (12^+)
$2302 \ 3+x^{a} \ 5$	(13^{-})	R	I^{π} : in-band (E2) γ to (15 ⁻).
$2385 4 \pm x^{b} 5$	(17)	R	I^{π} : in band E2 γ to (15 ⁻).
$2303.4 \pm x$ 5	(10^{-})	B	π^{π} . (M1+E2) γ to (16 ⁻).
2446.2+x 6	(16^+)	B	J^{π} : (E2) γ to (14 ⁺).
$2641.7 \pm \sqrt{8}.5$	(10^{-})	D	I^{π} : in band (E2) of to (16 ⁻)
$2041.7 \pm x^{\circ}$ 5 2741 6 $\pm x^{\circ}$ 6	(10^{-})	D R	J. III-balld (E2) γ to (10). I ^{π} : (M1+F2) γ from (20 ⁻)
$2058.2 \pm x^{(0)}$	(19^+)	D D	I^{π} : in band E2 of to (16^+)
$3038.3 \pm x = 0$ $3072.4 \pm x^{a}.6$	(10^{-})	D	J. III-bally E2 γ to (10).
$3160 0 \pm x 6$	(19) (18^+)	B	$J : \text{In-band}(E2) \neq \text{to}(17).$ $I^{\pi}: (E2) \approx \text{to}(16^+)$
$2217.4 + x^{b}.6$	(10^{-})	D D	$J : (D2) \neq (0 (10^{-}))$
$3217.4 \pm x = 0$	(20^{-})	D	$J : (N11+E2) \neq (0 (19)).$
3390.0+X = 0 2454.8+x=7	(20^{+})	В	J [*] : In-Dand (E2) γ to (18).
$3434.0 \pm x$ 7 $3458.0 \pm x$ 6	(20^{-})	D R	$J : (E1) \gamma (0) (19^{-})$. $I^{\pi} : E2 \gamma (to) (18^{-})$
$3638.4 \pm x^{c}$ 6	(20^{-})	R	I^{π} : in-band (F2) v to (10 ⁻)
3640.4 + x.7	(21^{+})	B	I^{π} : (21) from D(+O) γ to (20 ⁺): π =(+) from expected four quasiparticle configuration
00101111	(=1)	-	assigned by 2013Mo35.
3849.8+x ^a 6	(21^{-})	В	J^{π} : in-band (E2) γ to (19 ⁻).
3997.1+x ^b 6	(22^{-})	В	J^{π} : in-band (E2) γ to (20 ⁻).
4070.8+x 8	(22+)	В	J^{π} : (22) from D(+Q) γ to (21 ⁺); π =(+) from expected four quasiparticle configuration
			assigned by 2013Mo35.
			$T_{1/2}$: according to 2013Mo35 based on unbalanced intensity between populating /
			depopulating transitions an isomer with half-life of a few hundreds of ns is expected for
1200 0 6	(22-)	_	(22^+) level.
4299.8+x 6	(22)	В	$J^{*}: EZ \gamma \text{ to } (20)$.
4414.1+X° /	(23)	В	J [*] : In-Dand (E2) γ to (21). $\overline{\mathcal{I}}_{+}$ (E2) at the (21 ⁺)
$4332.8 + X \delta$	(23^{-})	В	$J^{**}(E2) \gamma = 10 (21^{-}).$
$4032.4 + X^{a}$ /	(23)	в	J^{T} : III-ballu (E2) γ to (21).
$4/60.3 + x^{\nu} 7$	(24^{-})	B	J [*] : in-band (E2) γ to (22 ⁻).
4930.0+X 8	(24')	В	J [*] : E2 γ IO (22 ⁺).
5212 8 J v 9	(25) (24^{+})	ъ В	J ^{**} : In-Dand (E2) γ to (23). π : (M1+E2) α to (23 ⁺)
J212.0+X 0	(24)	D	J^{*} . (W11+E2) γ to (25.).

Continued on next page (footnotes at end of table)

¹⁵⁴Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
5215.9+x 7	(25^{-})	В	J^{π} : (M1+E2) γ to (24 ⁻).
5349.0+x 8	(25^+)	В	J^{π} : E2 γ to (23 ⁺).
5436.7+x ^d 7	(27 ⁻)	В	Six quasiparticles maximum alignment state (2013Mo35). J^{π} : E2 γ to (25 ⁻).
5859.7+x 8	(26^{+})	В	J^{π} : (M1+E2) γ to (25 ⁺).
5998.6+x ^d 8 6351.9+x 9 6454.8+x 8	(28)	B B B	J^{π} : D(+Q) γ to (27 ⁻).
6677.0+x 8	(29 ⁻)	В	J^{π} : (E2) γ to (27 ⁻).
6882.3+x ^d 8	(30)	В	J^{π} : (E2) γ to (28).
7453.9+x ^d 9	(32)	В	J^{π} : E2 γ to (30).

[†] From least-squares fit to $E\gamma$ data (18.8 and 20.9 keV unobserved γ rays not used by fitting procedure).

[‡] Based on multipolarities, assigned configurations and systematic behaviors of neighboring isotopes and isotones, as well as the fact that spin values are generally increasing with excitation energy for heavy-ion induced reactions. According to 2013Mo35 (in ¹⁴¹Pr(¹⁶O,3n) dataset) $J^{\pi'}$ s for the bandheads of the first four bands are consistent with those for the similar collective bands observed in heavier odd-odd isotopes and odd-odd ¹⁵²Tb. Specific arguments were given by evaluator.

[#] Band(A): $\pi h_{11/2} \otimes \nu f_{7/2}$ band.

[@] Band(B): $\pi h_{11/2} \otimes \nu h_{9/2}$ band.

- & Band(C): $\pi h_{11/2} \otimes \nu i_{13/2}$ band, $\alpha = 0$.
- ^{*a*} Band(c): $\pi h_{11/2} \otimes \nu i_{13/2}$ band, $\alpha = 1$.

^b Band(D): Band based on (18⁻).

^c Band(E): Band based on (19⁻).

^d Seq.(F): γ cascade based on (27⁻).

 $\gamma(^{154}\text{Ho})$

Additional information 3.

E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α #	Comments
26.9	1+	26.9 2	100	0 2	2-	E1	2.07 5	$\alpha(L)=1.62 4; \alpha(M)=0.363 9$ $\alpha(N)=0.0802 20; \alpha(O)=0.00940 23; \alpha(P)=0.000267 6$ $E_{\gamma}:$ From (1982To14). Other: 27.6 (1982Ba75). Mult : From $\alpha(L)\exp[-1.50 / 5 in^{154} \text{Er s} decay]$
18.8+x		(18.8)	100	0+x 8	8+			$\operatorname{Hum}_{\mathcal{L}}(\mathcal{L}) = 1.50 \ 15 \ \operatorname{Hz}^{-1.50} \ 15 \ \mathrm{Hz}^{-1.50} \ $
20.9 + x		(20.9)	100	0+x 8	8+			
58.7+x		58.7 3	100	0+x 8	8+			
213.3+x		154.6 3	32.9	58.7+x				
		192.4 3	100 9	20.9+x		D+Q		Additional information 4.
285.0+x	(9^+)	71.7 3	2.3 7	213.3+x				
	. ,	264.1 3	23 7	20.9+x		D(+Q)		Additional information 5.
		266.2 3	100 9	18.8+x				Additional information 6.
		285.0 <i>3</i>	21 5	0+x 8	8+			
339.3+x	(10^{+})	54.3 <i>3</i>	8.0 20	285.0+x ((9 ⁺)	D(+Q)		Additional information 7.
		318.4 <i>3</i>	100 10	20.9+x		D		Additional information 8.
		339.3 <i>3</i>	16.0 20	0+x 8	8+	(E2)	0.0462 7	α (K)=0.0350 5; α (L)=0.00862 12; α (M)=0.001990 29
								α (N)=0.000455 7; α (O)=5.98×10 ⁻⁵ 9; α (P)=1.854×10 ⁻⁶ 26
								Additional information 9.
								Mult.: Q or D+Q based on DCO, more likely (E2) (2013Mo35).
521.7+x	(11^{-})	182.4 <i>3</i>	100 15	339.3+x ((10^{+})	D(+Q)		Additional information 10.
701.7+x		180.0 <i>3</i>	100	521.7+x ((11^{-})			
814.2+x	(12^{-})	292.5 <i>3</i>	100	521.7+x ((11 ⁻)	D(+Q)		Additional information 11.
854.1+x	(11^{+})	569.1 <i>3</i>	100	285.0+x ((9+)	(E2)	0.01138 16	$\alpha(K)=0.00922$ 13; $\alpha(L)=0.001677$ 24; $\alpha(M)=0.000378$ 5
								α (N)=8.70×10 ⁻⁵ <i>12</i> ; α (O)=1.201×10 ⁻⁵ <i>17</i> ; α (P)=5.19×10 ⁻⁷ <i>7</i>
								Additional information 12.
890.4+x	(12^{+})	551.1 <i>3</i>	100	339.3+x ((10^{+})	E2	0.01233 17	α (K)=0.00996 14; α (L)=0.001838 26; α (M)=0.000415 6
								$\alpha(N)=9.54\times10^{-5}$ 13; $\alpha(O)=1.314\times10^{-5}$ 19; $\alpha(P)=5.59\times10^{-7}$ 8
								Additional information 13.
1097.0+x	(13 ⁻)	575.3 <i>3</i>	100	521.7+x ((11^{-})	E2	0.01108 16	α (K)=0.00899 13; α (L)=0.001626 23; α (M)=0.000366 5
								α (N)=8.43×10 ⁻⁵ <i>12</i> ; α (O)=1.166×10 ⁻⁵ <i>16</i> ; α (P)=5.06×10 ⁻⁷ <i>7</i> Additional information 14.
1198.4+x	$(12^{-}, 13^{-})$	101.4 3		1097.0+x ((13-)			
		384.2 <i>3</i>	60 20	814.2+x ((12^{-})			
		496.7 <i>3</i>		701.7+x				
		676.7 <i>3</i>	100 30	521.7+x ((11 ⁻)			
1376.2+x	(14 ⁻)	279.2 3	100 17	1097.0+x ((13 ⁻)	D		Additional information 15.
		562.0 <i>3</i>	56 17	814.2+x ((12 ⁻)	E2	0.01174 17	$\alpha(K)=0.00951 \ 13; \ \alpha(L)=0.001738 \ 24; \ \alpha(M)=0.000392 \ 6$

From ENSDF

γ (¹⁵⁴Ho) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
1453.8+x	(13+)	599.7 3	100	854.1+x	(11 ⁺)	E2	0.01001 14	$\alpha(N)=9.02\times10^{-5}$ 13; $\alpha(O)=1.244\times10^{-5}$ 18; $\alpha(P)=5.34\times10^{-7}$ 8 Additional information 16. $\alpha(K)=0.00815$ 11; $\alpha(L)=0.001448$ 20; $\alpha(M)=0.000326$ 5 $\alpha(N)=7.50\times10^{-5}$ 11; $\alpha(O)=1.040\times10^{-5}$ 15; $\alpha(P)=4.60\times10^{-7}$ 6
1475.6+x	(14+)	585.2 <i>3</i>	100	890.4+x	(12 ⁺)	E2	0.01062 15	Additional information 17. $\alpha(K)=0.00863 \ I2; \ \alpha(L)=0.001550 \ 22; \ \alpha(M)=0.000349 \ 5$ $\alpha(N)=8.03\times10^{-5} \ I1; \ \alpha(O)=1.112\times10^{-5} \ I6; \ \alpha(P)=4.86\times10^{-7} \ 7$ Additional information 18
1687.0+x	(15 ⁻)	590.0 <i>3</i>	100	1097.0+x	(13 ⁻)	E2	0.01041 15	$\alpha(K)=0.00847 \ I2; \ \alpha(L)=0.001515 \ 21; \ \alpha(M)=0.000341 \ 5 \ \alpha(N)=7.85\times10^{-5} \ I1; \ \alpha(O)=1.087\times10^{-5} \ I5; \ \alpha(P)=4.77\times10^{-7} \ 7 \ Additional information 19.$
1728.4+x 1868.5+x	(14 ⁻) (14 ⁺)	530.0 <i>3</i> 392.9 <i>3</i>	100 100 <i>30</i>	1198.4+x 1475.6+x	(12 ⁻ ,13 ⁻) (14 ⁺)	E2	0.0303 4	α (K)=0.02352 33; α (L)=0.00523 7; α (M)=0.001199 17 α (N)=0.000275 4; α (O)=3.67×10 ⁻⁵ 5; α (P)=1.273×10 ⁻⁶ 18 Additional information 20.
		978.1 <i>3</i>		890.4+x	(12 ⁺)	(E2)	0.00335 5	$\alpha(K)=0.00280\ 4;\ \alpha(L)=0.000425\ 6;\ \alpha(M)=9.41\times10^{-5}\ 13$ $\alpha(N)=2.176\times10^{-5}\ 31;\ \alpha(O)=3.11\times10^{-6}\ 4;\ \alpha(P)=1.607\times10^{-7}\ 23$ Additional information 21
1973.4+x	(16 ⁻)	286.4 <i>3</i> 597.2 <i>3</i>	100 <i>14</i> 81 <i>14</i>	1687.0+x 1376.2+x	(15 ⁻) (14 ⁻)	D(+Q) E2	0.01011 14	Additional information 22. $\alpha(K)=0.00823 \ I2; \ \alpha(L)=0.001465 \ 21; \ \alpha(M)=0.000330 \ 5$ $\alpha(N)=7.59\times10^{-5} \ I1; \ \alpha(O)=1.052\times10^{-5} \ I5; \ \alpha(P)=4.64\times10^{-7} \ 7$ Additional information 23
2187.0+x	(16 ⁻)	458.6 <i>3</i> 500.0 <i>3</i>	33 <i>10</i> 100 <i>33</i>	1728.4+x 1687.0+x	(14 ⁻) (15 ⁻)	(M1+E2)	0.024 8	$\alpha(K)=0.020\ 7;\ \alpha(L)=0.0032\ 7;\ \alpha(M)=0.00071\ 15$ $\alpha(N)=0.00016\ 4;\ \alpha(O)=2.3\times10^{-5}\ 6;\ \alpha(P)=1.2\times10^{-6}\ 5$ Additional information 24
		810.8 <i>3</i>	67 20	1376.2+x	(14-)	E2	0.00500 7	$\alpha(K) = 0.00415 \ 6; \ \alpha(L) = 0.000661 \ 9; \ \alpha(M) = 0.0001471 \ 21$ $\alpha(N) = 3.40 \times 10^{-5} \ 5; \ \alpha(O) = 4.81 \times 10^{-6} \ 7; \ \alpha(P) = 2.369 \times 10^{-7} \ 33$
2229.9+x	(16 ⁺)	754.3 3	100	1475.6+x	(14 ⁺)	E2	0.00586 8	$\begin{aligned} \alpha(\mathbf{K}) = 0.00485 \ 7; \ \alpha(\mathbf{L}) = 0.000791 \ 11; \ \alpha(\mathbf{M}) = 0.0001763 \ 25 \\ \alpha(\mathbf{N}) = 4.07 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 5.73 \times 10^{-6} \ 8; \ \alpha(\mathbf{P}) = 2.76 \times 10^{-7} \ 4 \end{aligned}$
2270.4+x	(15+)	816.6 <i>3</i>	100	1453.8+x	(13+)	(E2)	0.00492 7	Additional information 26. $\alpha(K)=0.00409 \ 6; \ \alpha(L)=0.000650 \ 9; \ \alpha(M)=0.0001445 \ 20$ $\alpha(N)=3.34\times10^{-5} \ 5; \ \alpha(O)=4.72\times10^{-6} \ 7; \ \alpha(P)=2.334\times10^{-7} \ 33$ Additional information 27
2302.3+x	(17 ⁻)	615.3 3	100	1687.0+x	(15 ⁻)	(E2)	0.00941 13	$\alpha(K)=0.00768 \ 11; \ \alpha(L)=0.001349 \ 19; \ \alpha(M)=0.000303 \ 4$ $\alpha(N)=6.98\times10^{-5} \ 10; \ \alpha(O)=9.70\times10^{-6} \ 14; \ \alpha(P)=4.34\times10^{-7} \ 6$ Additional information 28
2385.4+x	(18-)	83.1 <i>3</i> 198.4 <i>3</i>	<1.3 <1.3	2302.3+x 2187.0+x	(17 ⁻) (16 ⁻)			Additional information 29. Mult.: D(+Q) based on DCO value; 2013Mo35 adopted Q.

S

γ (¹⁵⁴Ho) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
2385.4+x	(18 ⁻)	412.0 3	100 16	1973.4+x ((16 ⁻)	E2	0.0265 4	$\alpha(K)=0.02074\ 29;\ \alpha(L)=0.00448\ 6;\ \alpha(M)=0.001024\ 15$ $\alpha(N)=0.0002346\ 33;\ \alpha(O)=3.15\times10^{-5}\ 4;\ \alpha(P)=1.130\times10^{-6}\ 16$ Additional information 30.
2439.3+x	(17 ⁻)	252.3 3	100	2187.0+x ((16 ⁻)	(M1+E2)	0.16 4	α (K)=0.12 4; α (L)=0.0248 8; α (M)=0.00565 35 α (N)=0.00130 7; α (O)=0.000177 4; α (P)=7.1×10 ⁻⁶ 30 Additional information 31.
2446.2+x	(16 ⁺)	465.9 <i>3</i> 216.3 <i>3</i>	100 100	1973.4+x (2229.9+x ((16^{-}) (16^{+})			
		970.6 <i>3</i>	100	1475.6+x ((14 ⁺)	(E2)	0.00340 5	α (K)=0.00285 4; α (L)=0.000433 6; α (M)=9.58×10 ⁻⁵ 13 α (N)=2.215×10 ⁻⁵ 31; α (O)=3.16×10 ⁻⁶ 4; α (P)=1.632×10 ⁻⁷ 23 Additional information 32.
2641.7+x	(18-)	339.4 <i>3</i> 668.3 <i>3</i>	100 <i>30</i> 100 <i>30</i>	2302.3+x (1973.4+x ((17^{-}) (16^{-})	D (E2)	0.00774 11	Additional information 33. $\alpha(K)=0.00635 \ 9; \ \alpha(L)=0.001080 \ 15; \ \alpha(M)=0.0002419 \ 34$
						. ,		$\alpha(N)=5.58\times10^{-5} \ 8; \ \alpha(O)=7.79\times10^{-6} \ 11; \ \alpha(P)=3.60\times10^{-7} \ 5$ Additional information 34.
2741.6+x	(19 ⁻)	356.2 3	100	2385.4+x ((18 ⁻)	D(+Q)		Additional information 35.
3058.3+x	(18*)	828.4 3	100	2229.9+x ((16 ⁺)	E2	0.00477 7	$\alpha(K)=0.00396\ 6;\ \alpha(L)=0.000628\ 9;\ \alpha(M)=0.0001395\ 20$ $\alpha(N)=3.22\times10^{-5}\ 5;\ \alpha(O)=4.57\times10^{-6}\ 6;\ \alpha(P)=2.264\times10^{-7}\ 32$ Additional information 36.
3072.4+x	(19 ⁻)	687.0 <i>3</i>	<25	2385.4+x ((18 ⁻)	D(+Q)	0.007/0.0	Additional information 37.
		770.1 3	100 30	2302.3+x ((17-)	(E2)	0.00560 8	$\alpha(K)=0.00464$ 7; $\alpha(L)=0.000751$ 11; $\alpha(M)=0.0001673$ 23 $\alpha(N)=3.86\times10^{-5}$ 5; $\alpha(O)=5.45\times10^{-6}$ 8; $\alpha(P)=2.64\times10^{-7}$ 4 Additional information 38.
3169.9+x	(18+)	940.0 <i>3</i>	<100	2229.9+x ((16+)	(E2)	0.00364 5	α (K)=0.00304 4; α (L)=0.000466 7; α (M)=0.0001032 14 α (N)=2.385×10 ⁻⁵ 33; α (O)=3.40×10 ⁻⁶ 5; α (P)=1.742×10 ⁻⁷ 24
3217.4+x	(20^{-})	475.8 <i>3</i>	<167	2741.6+x ((19 ⁻)	(M1+E2)	0.027 9	Additional information 39. $\alpha(K)=0.023 \ 8; \ \alpha(L)=0.0036 \ 8; \ \alpha(M)=0.00081 \ 16$
								α (N)=0.00019 4; α (O)=2.7×10 ⁻⁵ 6; α (P)=1.3×10 ⁻⁶ 5 Additional information 40.
2206 6 L V	(20^{-})	832.0 3	100 33	2385.4 + x ((18^{-})	D(+0)		Additional information 41
5590.0+X	(20)	524.2 5 754.9 3	100 <i>30</i>	2641.7+x ((19 ⁻)	D(+Q) (E2)	0.00585 8	Additional information 41. $\alpha(K)=0.00484\ 7;\ \alpha(L)=0.000789\ 11;\ \alpha(M)=0.0001760\ 25$ $\alpha(N)=4.06\times10^{-5}\ 6;\ \alpha(O)=5.72\times10^{-6}\ 8;\ \alpha(P)=2.76\times10^{-7}\ 4$ Additional information 42.
3454.8+x	(20 ⁺)	713.2 3	100	2741.6+x ((19 ⁻)	(E1)	2.52×10 ⁻³ 4	$\alpha(K)=0.002147 \ 30; \ \alpha(L)=0.000292 \ 4; \ \alpha(M)=6.38\times10^{-5} \ 9 \ \alpha(N)=1.475\times10^{-5} \ 21; \ \alpha(O)=2.130\times10^{-6} \ 30; \ \alpha(P)=1.177\times10^{-7} \ 17 \ Additional information 43.$ Mult.: D interpreted by 2013Mo35 as (E1) from comparison with 279.2y, 286.4y, and 356.2y known (M1(+E2)) transitions with DCO=0 \ 65-0 \ 69 \ (2013Mo35).
3458.0+x	(20 ⁻)	816.2 3	50 15	2641.7+x ((18 ⁻)	(E2)	0.00492 7	$\alpha(K)=0.00409~6; \ \alpha(L)=0.000651~9; \ \alpha(M)=0.0001447~20$

6

$\gamma(^{154}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
								α (N)=3.34×10 ⁻⁵ 5; α (O)=4.73×10 ⁻⁶ 7; α (P)=2.336×10 ⁻⁷ 33 Additional information 44.
3458.0+x	(20 ⁻)	1072.6 3	100 30	2385.4+x	(18-)	E2	0.00277 4	$\alpha(K)=0.002328 \ 33; \ \alpha(L)=0.000346 \ 5; \ \alpha(M)=7.64\times10^{-5} \ 11 \\ \alpha(N)=1.768\times10^{-5} \ 25; \ \alpha(O)=2.53\times10^{-6} \ 4; \ \alpha(P)=1.335\times10^{-7} \ 19 $
3638.4+x	(21 ⁻)	896.8 <i>3</i>	100	2741.6+x	(19 ⁻)	(E2)	0.00402 6	Additional information 45. $\alpha(K)=0.00335 5; \ \alpha(L)=0.000519 7; \ \alpha(M)=0.0001153 \ 16$ $\alpha(N)=2.66\times10^{-5} 4; \ \alpha(O)=3.79\times10^{-6} 5; \ \alpha(P)=1.919\times10^{-7} \ 27$
3640.4+x	(21^+)	185.6 3	100	3454.8+x	(20^+)	D(+Q)	0.00540.0	Additional information 46. Additional information 47.
3849.8+x	(21)	///.4 3	100	3072.4+x	(19)	(E2)	0.00548 8	$\alpha(K)=0.00454$ 6; $\alpha(L)=0.000733$ 10; $\alpha(M)=0.0001634$ 23 $\alpha(N)=3.77\times10^{-5}$ 5; $\alpha(O)=5.32\times10^{-6}$ 7; $\alpha(P)=2.59\times10^{-7}$ 4 Additional information 48
3997.1+x	(22-)	358.7 <i>3</i> 779.7 <i>3</i>	100 <i>30</i> 100 <i>30</i>	3638.4+x 3217.4+x	(21 ⁻) (20 ⁻)	D(+Q) (E2)	0.00545 8	Additional information 49. $\alpha(K)=0.00451 6; \alpha(L)=0.000728 10; \alpha(M)=0.0001622 23$ $\alpha(N)=3.74\times10^{-5} 5; \alpha(Q)=5.28\times10^{-6} 7; \alpha(P)=2.57\times10^{-7} 4$
4070.8+x	(22+)	430.4 3	100	3640.4+x	(21+)	D(+Q)	0.001/00./	Additional information 50. Additional information 51.
4299.8+x	(22)	841.8 3	100	3458.0+x	(20)	E2	0.00460 6	$\alpha(K)=0.00383 \text{ S}; \ \alpha(L)=0.000604 \text{ 8}; \ \alpha(M)=0.0001342 \text{ 19}$ $\alpha(N)=3.10\times10^{-5} \text{ 4}; \ \alpha(O)=4.39\times10^{-6} \text{ 6}; \ \alpha(P)=2.189\times10^{-7} \text{ 31}$ Additional information 52.
4414.1+x	(23 ⁻)	775.7 3	100 2	3638.4+x	(21 ⁻)	(E2)	0.00551 8	$\alpha(K)=0.00456\ 6;\ \alpha(L)=0.000737\ 10;\ \alpha(M)=0.0001643\ 23$ $\alpha(N)=3.79\times10^{-5}\ 5;\ \alpha(O)=5.35\times10^{-6}\ 8;\ \alpha(P)=2.60\times10^{-7}\ 4$
4552.8+x	(23 ⁺)	912.4 3	100	3640.4+x	(21+)	(E2)	0.00387 5	Additional information 53. $\alpha(K)=0.00324 5; \ \alpha(L)=0.000499 7; \ \alpha(M)=0.0001106 \ 16$ $\alpha(N)=2.56\times10^{-5} 4; \ \alpha(O)=3.64\times10^{-6} 5; \ \alpha(P)=1.852\times10^{-7} \ 26$
4632.4+x	(23-)	782.6 3	100	3849.8+x	(21-)	(E2)	0.00540 8	Additional information 54. $\alpha(K)=0.00448 \ 6; \ \alpha(L)=0.000721 \ 10; \ \alpha(M)=0.0001607 \ 23$
4760.3+x	(24 ⁻)	346.2 <i>3</i>	100 <i>30</i>	4414.1+x	(23 ⁻)	D(+Q)		$\alpha(N)=3.71\times10^{-5}$ 5; $\alpha(O)=5.24\times10^{-6}$ 7; $\alpha(P)=2.55\times10^{-6}$ 4 Additional information 55. Additional information 56.
		763.2 3	60 20	3997.1+x	(22-)	(E2)	0.00571 8	α (K)=0.00473 7; α (L)=0.000768 <i>11</i> ; α (M)=0.0001712 24 α (N)=3.95×10 ⁻⁵ 6; α (O)=5.57×10 ⁻⁶ 8; α (P)=2.70×10 ⁻⁷ 4
4930.0+x	(24+)	377.2 3	100 30	4552.8+x	(23 ⁺)	(M1+E2)	0.050 16	Additional information 57. $\alpha(K)=0.041 \ 15; \ \alpha(L)=0.0071 \ 11; \ \alpha(M)=0.00159 \ 21$ $\alpha(N)=0.00037 \ 5; \ \alpha(O)=5.1\times10^{-5} \ 9; \ \alpha(P)=2.4\times10^{-6} \ 10$
		859.2 <i>3</i>	30 10	4070.8+x	(22 ⁺)	E2	0.00440 6	Additional information 58. $\alpha(K)=0.003675; \alpha(L)=0.0005758; \alpha(M)=0.000127718$ $\alpha(N)=2.95\times10^{-5}4; \alpha(O)=4.19\times10^{-6}6; \alpha(P)=2.098\times10^{-7}29$
5171.6+x	(25 ⁻)	757.5 3	100	4414.1+x	(23 ⁻)	(E2)	0.00581 8	Additional information 59. $\alpha(K)=0.00481$ 7; $\alpha(L)=0.000782$ 11; $\alpha(M)=0.0001744$ 24

7

$\gamma(^{154}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	$\alpha^{\#}$	Comments
				<u> </u>			α (N)=4.03×10 ⁻⁵ 6; α (O)=5.67×10 ⁻⁶ 8; α (P)=2.74×10 ⁻⁷ 4 Additional information 60.
5212.8+x	(24+)	282.8 <i>3</i>	100	4930.0+x (24+)		
		660.0 <i>3</i>	100	4552.8+x (23 ⁺) (M1+E2)	0.012 4	$\alpha(K)=0.0100 \ 35; \ \alpha(L)=0.0015 \ 4; \ \alpha(M)=3.4\times10^{-4} \ 8 \ \alpha(N)=7.8\times10^{-5} \ 20; \ \alpha(O)=1.12\times10^{-5} \ 31; \ \alpha(P)=5.9\times10^{-7} \ 22 \ Additional information \ 61$
5215.9+x	(25 ⁻)	455.6 <i>3</i>	100	4760.3+x (24-) (M1+E2)	0.031 10	$\alpha(K)=0.025 \ 9; \ \alpha(L)=0.0041 \ 9; \ \alpha(M)=0.00092 \ 18 \ \alpha(N)=0.00021 \ 4; \ \alpha(O)=3.0\times10^{-5} \ 7; \ \alpha(P)=1.5\times10^{-6} \ 6 \ Additional information \ 62.$
5349.0+x	(25^{+})	136.2 3	50 50	5212.8+x (24 ⁺)		
		796.2 <i>3</i>	100 40	4552.8+x (23 ⁺) E2	0.00520 7	α (K)=0.00431 6; α (L)=0.000691 10; α (M)=0.0001539 22 α (N)=3.55×10 ⁻⁵ 5; α (O)=5.02×10 ⁻⁶ 7; α (P)=2.462×10 ⁻⁷ 35 Additional information 63
5436.7+x	(27 ⁻)	220.8 3	<33	5215.9+x (25 ⁻) E2	0.1759 26	$\alpha(K)=0.1200\ 17;\ \alpha(L)=0.0432\ 6;\ \alpha(M)=0.01016\ 15$ $\alpha(N)=0.002307\ 35;\ \alpha(O)=0.000291\ 4;\ \alpha(P)=5.82\times10^{-6}\ 8$
							Additional information 64.
		265.1 3	100 33	5171.6+x (25 ⁻) E2	0.0979 14	$\alpha(K)=0.0705 \ 10; \ \alpha(L)=0.02120 \ 31; \ \alpha(M)=0.00495 \ 7$
							α (N)=0.001127 17; α (O)=0.0001446 21; α (P)=3.56×10 ⁻⁶ 5
5859 7+x	(26^{+})	51073	100	5349.0+x (25 ⁺) $(M1+E2)$	0.023.8	$\alpha(K)=0.019.7: \alpha(L)=0.0030.7: \alpha(M)=0.00067.15$
505911 HA	(20)	510.7 5	100	55 17.0 TX (25) (1111122)	0.023 0	$\alpha(N) = 0.000154 \ 34; \ \alpha(O) = 2.2 \times 10^{-5} \ 6; \ \alpha(P) = 1.1 \times 10^{-6} \ 4$
							Additional information 66.
		646.9 <i>3</i>	100	5212.8+x (24 ⁺) (E2)	0.00835 12	α (K)=0.00684 <i>10</i> ; α (L)=0.001178 <i>17</i> ; α (M)=0.000264 <i>4</i>
							$\alpha(N)=6.09\times10^{-5}$ 9; $\alpha(O)=8.49\times10^{-6}$ 12; $\alpha(P)=3.87\times10^{-7}$ 5
5998.6+x	(28)	561.9.3	100	5436.7+x (27 ⁻) $D(+O)$		Additional information 68.
6351.9+x	()	492.2 3	100	5859.7+x (26 ⁺)		
6454.8+x		1018.1 <i>3</i>	100	5436.7+x (27-)		
6677.0+x	(29 ⁻)	1240.3 <i>3</i>	100	5436.7+x (27 ⁻) (E2)	2.08×10 ⁻³ 3	$\alpha(K)=0.001749\ 24;\ \alpha(L)=0.0002530\ 35;\ \alpha(M)=5.57\times10^{-5}\ 8\\\alpha(N)=1.290\times10^{-5}\ 18;\ \alpha(O)=1.859\times10^{-6}\ 26;\ \alpha(P)=1.003\times10^{-7}\ 14;\\\alpha(IPF)=1.005\times10^{-5}\ 15$
6882.3+x	(30)	883.7.3	100	5998.6 + x (28)	(E2)	0.00415 6	$\alpha(K)=0.00346.5; \alpha(L)=0.000538.8; \alpha(M)=0.0001194.17$
5552.5 TA	(50)	000.7 0	100	277010177 (20)	(22)	0.00112-0	$\alpha(N) = 2.76 \times 10^{-5} 4$; $\alpha(O) = 3.92 \times 10^{-6} 5$; $\alpha(P) = 1.979 \times 10^{-7} 28$ Additional information 70.
7453.9+x	(32)	571.6 <i>3</i>	100	6882.3+x (30)	E2	0.01126 <i>16</i>	$\alpha(K)=0.00913 \ I3; \ \alpha(L)=0.001656 \ 23; \ \alpha(M)=0.000373 \ 5 \ \alpha(N)=8.59\times10^{-5} \ I2; \ \alpha(O)=1.187\times10^{-5} \ I7; \ \alpha(P)=5.13\times10^{-7} \ 7 \ Additional information \ 71.$

 ∞

γ (¹⁵⁴Ho) (continued)

- [†] From ¹⁴¹Pr(¹⁶O,3n) (2013Mo35).
 [‡] Adopted by evaluator based on the DCO results from ¹⁴¹Pr(¹⁶O,3n) dataset (2013Mo35) see dataset for details.
 [#] Additional information 72.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain) ----+ 412 0 E2 100 (17-) 2439.3+x + 24 | - 354 | - 42 100 | (18-) ŝ 2385.4+x 6153 810 - 2 - 2 - 00 500 - 2 - 00 53.00 - 2 - 00 - 33 - 25 - 00 - 33 - 25 - 00 $\frac{(17^{-})}{(15^{+})}$ 2302.3+x 2270.4+x $\exists \frac{3_{9,2}}{3_{8_{4}}} \underbrace{\epsilon_{9,0}}_{2_{8_{6}}} \underbrace{\epsilon_{9,0}}_{0_{4}}$ (16^+) 2229.9+x (16⁻) ¥ 2187.0+x 100 100 100 100 (16⁻) 1973.4+x (14^{+}) + ⁵90 £ 100 1868.5+x 1001 0:05 + (14-) 1728.4+x (15⁻) 1687.0+x ÷ ¥ ¥. -+ 5852 22100 | 1 39.2 E2100 $\frac{1}{2} \frac{5_{0,0}}{5_{0,0}} \frac{1}{5_{0,0}}$ (14^{+}) 1475.6+x (13^{+}) 1453.8+x (14^{-}) 1376.2+x 002:> 49:> 38:2 10:4 50:4 1 573, 1 2 2 100 (12-,13-) 1198.4+x (13-) 1097.0+x + 531, E2100 -+ ¹ + ¹+ + 2 + 1 + 2 + 0 + 0 (12^+) 890.4+x $\frac{(12^{-})}{(11^{+})}$ 854.1+x ¥. | 967 | | 967 | ÷ 814.2+x 4 182 4 40 10 701.7+x $\frac{1}{2} \frac{3g_3}{3k_3} \frac{1}{k_3} \frac{$ (11⁻) 521.7+x 200^{-1} (10+) 339.3+x (9+) 285.0+x 213.3+x 1 200 100 .8 <. 80 58.7+x 8 20.9+x ¥ Ť 18.8+x ¥ 8+ 0+x 0

3.10 min 14

11.76 min 19

¹⁵⁴₆₇Ho₈₇

Adopted Levels, Gammas

¹⁵⁴₆₇Ho₈₇

